
Received July 14, 2018, accepted August 22, 2018, date of publication September 3, 2018, date of current version October 8, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2868427

Empirical Study on the Evolution of
Developer Social Networks
MOHAMED ABDELRAHMAN ALJEMABI 1,2 AND ZHONGJIE WANG1, (Member, IEEE)
1School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
2Faculty of Mathematical and Computer Science, University of Gezira, Wad Madani 21111, Sudan

Corresponding author: Zhongjie Wang (rainy@hit.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFB1400604 and in
part by the National Science Foundation of China under Grant 61772155, Grant 61832014, Grant 61832004, and Grant 61472106.

ABSTRACT Software development is incredibly complex. Specifically, open-source software (OSS) devel-
opment requires developers to collaborate with each other to conduct their work. Because software systems
are evolving with time, collaboration among software developers may affect the quality of evolved software.
The OSS developer teams collaborate in various tasks, including communications, coordination, and making
various social collaboration in the OSS projects (e.g., bug/issue report, discussion, code revisions, and
so on) without access restriction, and all these activities are used to generate an implicit developer social
network (DSN). The DSN that is based on a bug tracking system is one of the most important DSNs that
reflect the real collaboration between developers. As the software system evolves, the DSN evolves. This
paper describes an empirical study of the evolution of DSNs on OSS projects collected from GitHub. Four
perspectives were used: social network analysis, DSN as an ecosystem, community evolution patterns, and
the core-periphery structure. The results demonstrated the DSNs over time have followed the power law
degree distribution with+1% or more as an increasing rate to be more fitting over time. DSNs over time are
considered a small-world community. DSNs over time exhibits about 55% diversity with 75% of evenness
between the developers to contribute in different OSS projects in the same environment. Moreover, DSNs
over time have a few developers as core members and large developers as peripheral members. Finally, about
10% of developers changed their positions frequently over time.

INDEX TERMS Software engineering, open source software, software quality, software maintenance, bug
tracking systems, developer social network, evolution.

I. INTRODUCTION
The complexity of software systems necessitates methods
for effective software development [1], [2]. Over the last
two decades, researchers have become increasingly interested
in collaborative software development. Collaborative soft-
ware development represents a successful model of software
development, as developers’ communities collaborate on a
voluntary basis. For example, under a collaborative model,
developers of the software and users can submit bug reports
and requests for changes [1].

A huge amount of data is generated during software
development, as every version of the project’s code is stored
in version archives; every reported defect is saved in bug
tracking systems; and every piece of communication is kept
in email and forum archives. The data of all developers’
activities is stored in software repository systems, including
email systems, configuration management tools, and bug

tracking systems [3] such as GitHub, Source Forge, and
others [4]. Because software systems are evolving with time,
the quality of evolved software must be ensured during this
evolution. Recently, researchers have started to recognize the
complexities of software development activities such as work
dependencies [5], daily work routines [6], and social net-
works [7] which impact the quality of a software product [8].
Traces of these activities can be found in the repositories
used by developers on a daily basis, such as version control
systems VCS, bug tracking systems BTS, and email com-
munication archives [8]. Thus, the developer team structure
(or collaboration structure) may influence the quality of
evolved software systems. The OSS developer teams conduct
several tasks, including communications and coordination,
engaging in various forms of social collaboration in the open
source software projects (e.g., Bug/issue report, discussion,
code revisions, etc.). All these activities can be recorded on

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

51049

https://orcid.org/0000-0002-2380-1850


M. A. Aljemabi, Z. Wang: Empirical Study on the Evolution of DSNs

software repositories like GitHub and used to generate an
implicit developer social network (DSN) [4], [9].

The developer social network (DSN) is a tool for research-
ing the social collaboration features of developers in OSS
projects that facilitate software engineering. Studies of the
DSN concern the construction of a DSN, the analysis of a
DSN, and the application of a DSN for improving software
engineering tasks [4], [9]. Recently, various types of DSNs
with different features and methods have been constructed.
The common types of DSN are Project Participation-based
DSN (PP-DSN), Version Control System-based DSN (VCS-
DSN), and Bug Tracking System-based DSN (BTS-DSN)
as well as other DSNs such as Email-based DSN, Follow-
based social network, and forked-based sharing system. The
composition of a DSN consists of developers as nodes and
links between developers as edges [4], [9], [10]. Because
the developer team structure may influence the quality of
evolved software over time, and developer team structures has
changed over time, it is worthwhile to investigate the evolu-
tion of developer social networks (DSNs) and how this has
affected the software development. One of themost important
DSNs is BTS-DSN because, unlike other types of DSN,
it reflects the developers’ activities of software maintenance.
Also, BTS-DSNs focus on specific objectives related to the
software development process [9].

This study empirically investigates four perspectives that
are related to developer social networks (DSN): the Social
Network Analysis perspective (SNA), the ecosystem per-
spective, the community perspective, and the core-periphery
structure perspective. SNAuses several measures to study and
analyze social networks. The ecosystem perspective suggests
that the natural ecosystem and the software ecosystem are
similar in several aspects and thus uses natural ecosystem
evolution to describe the evolution of developer social net-
works (DSN). This perspective includes the use of biodiver-
sity measurements to show how DSNs have evolved over
time. The community perspective suggests that communities
have a set of developers who work on similar issues and share
similar interest in DSNs. Because these communities change
over time, this approach studies howDSNs have evolved over
time from the community’s perspective. The core-periphery
structure perspective conceptualizes a developer social net-
work (DSN) as a core-periphery structure which is composed
of a small set of core developers and a large set of periph-
eral developers. The core-periphery structure perspective also
uses this model to explain how DSNs evolve over time. The
following describes how the perspectives were applied to
study DSNs:

(1) Social network analysis (SNA) perspective: From the
social network analysis perspective, a comparison between
constructions of DSNs in each period of time and between
evolved DSNs was conducted to determine the differences
and the extent of those differences as well as to show the
evolution of DSNs over time using social network metrics.

(2) Ecosystem perspective: The ecosystem perspective
views a developer social network (DSN) as an ecosystem.

The relationship between developer social networks and nat-
ural ecosystems were investigated, and biodiversity measure-
ments were used to assess how DSNs evolve over time.

(3) Community perspective: The communities in DSN
change over time; some big communities are split into smaller
ones, some smaller communities are merged into bigger ones,
some communities disappear, and so on. These phenomena
were studied to determine evolution patterns in DSNs.

(4) Core-periphery Structure perspective: In different
DSNs and at different times within the same DSN, a devel-
oper’s position changes between a peripheral developer and
being a core team member. These developer position changes
in DSNs over time were classified.

The conclusions of the study are summarized as follows:
∗ More than 70% of the new coming developers have

contributed in DSNs over time, and 30% of old developers
had continued their contributions.
∗ There is 55% or more of diversity between developers

who have contributed to different OSS projects in the same
environments over time. However, the evenness (equitability)
shows (70% −80%) between developers of different OSS
projects in the same environment could be influenced by the
density of developers over time and.
∗ DSNs over time exhibited all five community patterns.

The percentage of each pattern differed among DSNs, as it
depended on the collaboration between developers in OSS
projects.
∗ Through the evolution of DSNs, less than 20% of the

developers were coremembers and about 80% of the develop-
ers were peripheral members over time. However, more than
90% of the developers kept their position as a core or periph-
eral member over time and less than 10% of developers
changed their position frequently over time.

The remainder of this paper is organized as follows.
Section 2 introduces the developer social networks (DSNs),
Social Network Analysis (SNA), DSNs as ecosystems,
community evolution patterns, and the core-periphery struc-
ture. Section 3 presents the components of the empirical
study: project selection with data preparation, research ques-
tions (RQs), and extracting a BTS-DSN. Section 4 presents
the evolution of DSNs using the social network analysis per-
spective, the ecosystem perspective, the community perspec-
tive, and the core-periphery structure perspective. Section 5
analyses the threats to validity, and Section 6 presents the
conclusions.

II. BACKGROUND
A. DEVELOPER SOCIAL NETWORK (DSNs)
A developer social network (DSN) is a tool for researching
the features of social collaboration among developers in
OSS projects; such analysis can facilitate the performance
of software engineering tasks. Studies of developer social
networks (DSN) concern the construction of a DSN, the
analysis of a DSN, and the application of the DSN for
improving software engineering tasks [4]. In past studies,
several researchers have constructed various types of DSNs.

51050 VOLUME 6, 2018



M. A. Aljemabi, Z. Wang: Empirical Study on the Evolution of DSNs

We list the most common types of DSN. First, The Project–
participation based DSN (PP-DSN) based on participation
relationship between developers in OSS projects [4]. Second,
the VCS-DSN based on the code co-change relations among
developers; This network is built depending on contribution
based on common file change managed by version control
system such as CVS, SVN, and Git, called version control
systems based DSNs (VCS-DSNs) [10], [11]. Third: the
follow-based social network involves developers receiving
‘‘follow-up’’, or updates, regarding their activities rather
than maintaining personal relationships [4]. Fourth: the
BTS-DSN is based on the bug report/comment/fix rela-
tionships among developers [12]. Particularly, the studies
in [3] and [13] construct DSNs based on interactions among
developers involving comments regarding the same bug
issues. In [14] and [15], the construction of a direct DSN is
based on interactions of ‘‘reply-to’’ comments and assignee
and reassignee bug reports among developers. Hong et al. [3]
studied the evolution of DSNs and compared DSNs with
popular GSNs such as Facebook and Twitter using the
SNA approach (e.g., power law, the degree of separation,
modularity, and community size). Kumar and Gupta [13]
studied the evolution of DSNs using different measurements:
the number of contributors, average degree, average path
length, average distance, clique size, and clustering coef-
ficient. Cataldo and Herbsleb [16] demonstrated the evo-
lution of DSNs by mapping the geographical distribution
of the projects. Lim and Bentley [17] studied the evolv-
ing relationships between social networks and stakeholder
involvement in software projects. Sharma and Kaulgud [18]
investigated team evolution during a project testing phase
using SNA techniques. Tsay et al. [19] detected the influence
developers in Apache projects through the social network
activities, by investigating email based DSN and using SNA
and prediction model, and conclude that the social com-
munications are a better predictors than patching activity.
Gharehyazie et al. [20] examined the contribution decisions
by using the social and technical information of Github
through building a statistical model analyzing the association
of different pull request, submitter and repository measures
of contributions. They found that projects managers when
evaluating pull requests can used information of the technical
contribution practices of a pull request and the strength of the
social connection between submitter and project manager.
Teixeira et al. [21] studied the OpenStack ecosystems by
investigated the role of group, sub-communities and business
models by combines qualitative analysis of archival data and
SNA visualization in VCS-DSN. Results show the collabo-
ration within the ecosystem does not necessary affected by
the competition for the same revenue model. Addition to the
expected collaboration between developers from same firm
did not hold within the OpenStack ecosystem.

B. SOCIAL NETWORK ANALYSIS (SNA)
In our study, we follow a social network analysis approach
that includes centrality measurement, global metrics, metrics

of community structure, and properties metrics. (1) Centrality
measurement is used to measure the central location of nodes
in the network and includes factors of degree, closeness,
and betweenness centrality. Degree centrality is used in an
undirected network to measure node centrality. (2) Global
metrics measure the network as a whole using factors such
as size of the network, the number of nodes and edges,
diameter, and graph density. (3) Properties metrics, including
a power law probability distribution, are used to describe
social phenomena with a diagram that depicts the existance
of the significant leaders in a DSN, and average path length.
(4) Community structure or modularity is used to quantify
the strength of a community structure [4], [22]. We used
the most important metrics in SNA analysis to capture the
high properties and detailed properties of DSNs to show how
DSNs evolve over the time.

C. DSNs AS ECOSYSTEMS
This study uses the following defition of a software ecosys-
tem : ‘‘a collection of software projects which are developed
and evolve together in the same environment.’’ This under-
standing indicates several parallels and similarities between
natural ecosystems and software ecosystems [1], [23]. For
instance, in a natural ecosystem, nature is the environment,
while in a software ecosystem, the environment refers to
the development environment, or the software and hardware
tools used during the development process [24]. There are
also some similarities between software ecosystems and
developer social networks (DSN), especially in the social
collaboration between developers to achieve different tasks
for OSS projects. For instance, the main parts of a software
ecosystem are also those of the developer social network:
vendors, OSS projects, developers, and the development envi-
ronment. Moreover, the collaborative and social aspects of
contributor communities (users and developers) are important
for software ecosystem consideration, especially because,
like software projects, the contributor communities evolve
over the time, as there is a clear relationship between the
sustainability of an ecosystem and its social aspects [25].
However, this study draws three parallels between the evo-
lution of developer social networks (DSN) and that of nat-
ural ecosystems: (1) the developers as the equivalent of the
‘‘individuals’’; (2) the contributors to the OSS projects as the
equivalent of the ‘‘living species’’; and (3) the collaboration
between contributors to perform their tasks on OSS projects
as the equivalent of the ‘‘environment’’. We used biodiversity
measurements to show how DSNs evolve over time, includ-
ing a diversity index, richness, and evenness. A diversity
index1 (Di) is a quantitative measure that reflects the number
of different elements (such as OSS projects) in a dataset and
simultaneously considers how evenly the basic entities (such
as developers) are distributed among those types. Species
richness2 or abundance (S) is the number of different species

1https://en.wikipedia.org/wiki/Diversity_index
2https://en.wikipedia.org/wiki/Species_richness

VOLUME 6, 2018 51051



M. A. Aljemabi, Z. Wang: Empirical Study on the Evolution of DSNs

represented in an ecological community, landscape, or region.
In our study, we consider the richness measurement as
developer density (DDj). The Shannon diversity index3 (H)
which is commonly used to characterize species diversity in
a community, is used. Shannon’s index (H) accounts for both
abundance and evenness of the species. Species evenness4 or
Equitability (E) refers to how close each species in an envi-
ronment is in number. The equitability value is distributed
between 0 and 1, with 1 indicating complete evenness.

D. COMMUNITY EVOLUTION
Proposed by Lin et al. [26], there are five categories for the
patterns of community evolution: extinct, emerge, merge,
split, and derivation. (1) Extinction occurs when the post
community set of a community contains no community,
which implies that the developers have left or completely
scattered to other communities. (2) Emergence happens when
the prior community set of a community contains no com-
munity, which may signify the emergence of a new inter-
est or area of bugs. (3) Merge describes when a community
has at least two communities in its prior community set,
which indicates that at least two communities have shared
bugs and, therefore, common interest. (4) Split happens when
a community has at least two communities in its post commu-
nity set, which shows that an interesting discrepancy occurred
in the single community. (5) The derivation pattern is a one-
to-one correspondence between the prior and post commu-
nity, which includes the following; (i) Expandation occurs
when a community increases in size and its prior community
set comprises only one community, which indicates that
newcoming developers are being attracted to this community.
(ii) Shrinking happens when a community decreases in size
and its prior community set comprises only one community,
which is evidence that the community’s developers are leav-
ing the project or taking other communities [3], [26].

E. CORE-PERIPHERY STRUCTURE
The organization of OSS development communities can be
described as a core-periphery structure [27], [28], with a set
of tightly connected core nodes and a set of more loosely
connected periphery nodes [29]. The small group of core
developers in the OSS projects significantly contribute to the
development and evolution of the project for a relatively long
time [27], [30]. The larger group of peripheral developers
occasionally contributes to the project [27], [30]. Peripheral
developers mostly interact with the core developers and rarely
communicate with other peripheral developers [27]. Due
to their significant contributions and higher level among
of interactions, the core developers are the most reputed
contributors in an OSS community [27], [30]. However,
the groups of core contributors and peripheral developers
change over time. Core contributors can become peripheral
contributors and vice versa. Because of these constant shifts,

3https://en.wikipedia.org/wiki/Diversity_index
4https://en.wikipedia.org/wiki/Species_evenness

the core-periphery structure provides a useful tool for study-
ing the evolution of DSNs. Several studies have focused on
characterizing the core-periphery structures of OSS develop-
ment communities. Fielding was the first to describe the core
developer group and their roles in the Apache project [27].
Later studies found the core groups of multiple develop-
ment projects contained only 3-25% of the developers, and
these developers contribute 40-90% of the code [27], [31].
While the number of core developers in a project may not
be high, the members belonging to the core change over
time [27], [31].

III. EMPIRICAL STUDY SETUP
A. PROJECT SETELCTIONS AND DATA PREPRATION
In our empirical study of the evolution of DSNs, we used
data collected from the GitHub community, which has a
strong reputation and interest to join among the major-
ity of developers [11]. The selection of these projects was
based on the 89 root projects on the dataset offered by
GHTorrent [32], which contained detailed information on the
social coding activities of about 89 root projects and their
forks with data of watchers, commits, issues, pull requests,
and comments. Because this data was enormous (around
4000 GB), we selected the data between April 2009 to
October 2013, and we extracted DSNs from a series of sub-
sequent four-month periods to examine DSN evolution.

Table.1 shows the general statistics about root OSS projects
and projects that used in this study.

TABLE 1. General statistics about root OSS projects in dataset.

B. RESEARCH QUESTIONS
RQ1: How does a DSN evolve over time?

RQ2: Is it possible to study the evolution of DSNs as the
evolution of a natural ecosystem? If yes, how do DSNs evolve
over time, based on biodiversity measurements?

RQ3: Are there any evolution patterns in DSNs? How can
these patterns be discovered?

RQ4: Is it possible to classify developers based on how
their position in the DSN changes over time?

C. RESEARCH VARIABLES
This empirical study uses two types of variables: independent
variables and dependent variables, as shown in Table 2.

51052 VOLUME 6, 2018



M. A. Aljemabi, Z. Wang: Empirical Study on the Evolution of DSNs

TABLE 2. Dependent-independent variables.

D. EXTRACTING DSNs
In our empirical study, we chose the BTS-DSN as an exam-
ple to examine the evolution of DSNs for several reasons.
First, the relationship between developers is focused on a
particular technical topic (e.g., bug report, comment, and bug
fixing). Second, the BTS-DSN reflects the real collaboration
between developers, unlike other DSNs. Third, the relation-
ship between developers in a BTS-DSN are short-lived, but
strong temporal relationship [9]. We used the following rules
to construct the BTS-DSN: if two developers commented on
the same bug issues, there is a link between them in the DSN;
in a Bug report, if a reporter developer assigns a bug issue to
an assignee developer for fixing, there is a link between the
two developers in the DSN; if developer A replies on a bug
report to developer B’s comment, there is a connection from
A to B in the DSN [4], [33].

Figure1 provides an illustrative example of BTS-DSN
construction and evolution over time: (a) Suppose we have
four developers (A, B, C, and D) who contributed to each bug
issue (e.g., bug report, comment, bug fixing). Based on their
collaboration relationship, we extract a developer social net-
work, as shown in the (b) side of the figure, which indicates
developers as nodes and links between developers as edges;
edges have different thicknesses depending on the frequency
of collaboration between the two developers regarding the

FIGURE 1. BTS-DSN construction and evolution.

various bug issues (weighted edge). (c) Shows how the DSNs,
the communities, and the developer positions evolve over
time.

IV. EMPIRICAL STUDY
A. SNA PERSPECTIVE
We constructed DSNs Gbts = (V, E), directly using the data
of OSS projects, P, collected from the dataset offered by
GHTorrent [32], and constructed DSNs for each period of
time: Gbts = (V ,E) = {G1,G2, . . .Gt }. The DSNs for
each period of time were constructed using the sequence of
issue data ISU; and the sequence of issue comments data
is IC. Due to the large volume of data, we selected four
of the successful OSS projects in the dataset that had dif-
ferent technology and extracted DSNs for each period of
time. These OSS projects were Homebrew,5 Hiphop-PHP,6

Tornado,7 and Node.8 Table 3 provides the general informa-
tion and statistics of the evolving DSNs in four OSS projects
over time using SNA.

As shown in Table 3, the DSNs of our OSS projects evolve
in the structure of the network over time, which reflects in
the number of issues (ISU), the number of nodes (V), and the
number of edges (E). All these parameters have changed over
time and lead to an effect on the degree of developers (AV),
the weighted developers’ degree (WD), and other metrics.
However, not all metrics behaved in this way. First, the degree
of developers changed, as did the average degree of develop-
ers (AV) and the weighted degree and its average (WD) for
all DSNs of the OSS projects.

The average degree (AV) and the average weighted
degree (WD) can increase or decrease over time depending on
the volume of the collaboration between developers, which is
impacted by the release of new versions of the OSS project.
Second, the modularity (Q) of the projects’ evolved DSNs
over time exhibits fluctuating increases, but at all periods of
time the value of the modularity is above 0.3, which indicates
a strong community structure [34]. Third, the Graph Den-
sity (GD) of DSNs for the four OSS projects over time ranged
from 0.007 to 0.3. The sequence of all theOSS projects’ graph

5https://github.com/mxcl/homebrew
6https://github.com/facebook/hiphop-php
7https://github.com/facebook/tornado
8 https://github.com//joyent/node

VOLUME 6, 2018 51053



M. A. Aljemabi, Z. Wang: Empirical Study on the Evolution of DSNs

TABLE 3. SNA ststistics and information for evolution of DSNs of four OSS projects.

density (GD) values decreased over time, thus making the
DSNs more dense and complex over time. Fourth, the aver-
age path length (PL) evolved from 1.8 to 2.2 in Tornado,
1.9 to 2.3 in Homebrew, 1.6 to 2.3 in Hiphop-PHP, and 1.8 to
2.3 in Node. The average of the average path length (PL) was
1.94 in the Tornado project, 2.20 in the Homebrew project,
2.07 in the Hiphop-PHP project, and 2.12 in the Node project.
Thus, the average path length (PL) of all four DSNs can
be considered as relatively constant over the long term. The
average path length slowly increases over time and most of
the pairs of developers remain connected within two hopes,
leading to evolved DSNs forming a small-scale community
over time.

1) POWER-LAW
The power law distribution typically features a one-sided
long tail with many large-valued outliers. In our study,
we investigate the cumulative degree distribution of

(G = (V, E), P (degree ≥ k) = Ck−θ , where C is a positive
constant and θ is an exponential parameter) DSNs for each
period of time. Figure2 shows the evolution of the degree
distribution for the DSNs of the four OSS projects, (a) Home-
brew, (b) Node, (c) Hiphop-PHP, and (d) Tornado, in log-log
scale axis. As shown in Figure2, the degree distribution of the
projects’ evolved DSNs followed the power law distribution
over time on α = 0.01. The degree distribution of developers
in DSNs over time followed the power law distribution and
evolved to fit more with the power law over time. This
indicates that the DSNs of all four OSS projects have a large
proportion of low-degree nodes and a very small proportion
of high-degree nodes.

2) DEVELOPER CHANGES
The new developers participate in projects; the old developers
still contribute to project; and other developers leave the
projects or participate in other projects. Figure 3 shows the

51054 VOLUME 6, 2018



M. A. Aljemabi, Z. Wang: Empirical Study on the Evolution of DSNs

FIGURE 2. Cumulative Degree distribution evolution.

FIGURE 3. Number of active developers over time. (a) Homebrew.
(b) Node. (c) Hiphop-PHP. (d) Tornado.

developer changes in the DSNs of the OSS projects over time
in (a) Homebrew, (b) Node, (c) Hiphop-PHP, and (d) Tornado.
For each column in this figure, the yellow bar indicates the
number of new developers in that time period and the blue
bar indicates the old developers who were active in that
time period. We observed that the percentage of new coming
developers is high in each period of time.

3) ANALYSIS SUMMARY
The results of analyzing the evolution of the DSNs from an
SNA perspective are be summarized as follows:

(1) In the studied DSNs, less than 4% of developers with
a high degree and 96% or more of developers with a low
degree over time. Also, more than 70% of the new coming
developers had contributed in DSNs over time, and 30% of
old developers had continued their contributions. However,
the evolved DSNs over time demonstrated tight-knit, and
strong community structures.

(2) In the studied DSNs, the ratio of average path length
increased slowly over time, as demonstrated by the mean of

the average path length for the DSNs. The mean of the aver-
age path length was 2.20 in Homebrew, 2.07 in Hiphop-PHP,
2.12 in Tornado, and 1.97 in Node project. Thus, the DSNs
over time are a small-scale community or ‘‘small-world’’.

B. ECOSYSTEMS PERSPECTIVE
In this section, we show the evolution of DSNs from an
ecosystem perspective. Under this assumption, the evolution
of DSNs parallels the evolution of natural ecosystems. So,
we selected from our dataset all the developers who were
working in the same environments. We chose Facebook and
Twitter vendor repositories as an example to conduct our
empirical study which contained five different OSS projects
in Facebook and four OSS projects in Twitter as root projects
and other forked projects. We used the original projects to
show how DSNs can evolve over time.

Figure 4. (a) depicts how Facebook joined into the Github
repository in April 2009 and established their projects
in 2009 with the Tornado9 project using the Python program-
ming language. In 2010, the Tornado project grew; in that
same year, three new OSS projects appeared in the Facebook
environment. These projects were Hiphop-PHP10 using C++
programming language, PHP-SDK11 using PHP program-
ming language, and Facebook-android-SDK12 using JAVA
programming language. In 2011, interactions among devel-
opers on each OSS project grew, and some developers col-
laborated on two projects. In 2012, Folly13 which used C++
programming language appeared. The number of developers
on each project was growing and, in 2013, some projects
had less contributors, and some of the developers began to
collaborate with others on different projects. Figure4. (b)
shows how Twitter joined into the Github repository in
January 2009 and established their projects with Flockdb14

and Gizzard15 in April 2010, Finagle16 on October 2010, and
all OSS projects with the Scala programming language.

9https://github.com/facebook/tornado
10https://github.com/facebook/hiphop-php
11https://github.com/facebook/php-sdk
12https://github.com/facebook/ facebook-android-sdk
13https://github.com/facebook/folly
14https://github.com/twitter/flockdb
15https://github.com/twitter/gizzard
16https://github.com/twitter/finagle

FIGURE 4. Evolution of DSNs in (a) Facebook, and (b) Twitter
environment.

VOLUME 6, 2018 51055



M. A. Aljemabi, Z. Wang: Empirical Study on the Evolution of DSNs

In 2011, the developers were working together on different
OSS projects. In 2012, the Zipkin17 project also appeared,
resulting from the growth of its developers through col-
laborations on the Finagle project. In 2013, the collabora-
tion between developers of the Zipkin and Finagle projects
increased, but the collaboration between developers on other
projects decreased, thus rendering these projects inactive.

1) BIODIVERSITY MEASUREMENTS
In this section, we investigate the evolved DSNs in
Facebook and Twitter environments through biodiversity
measurements, and we examine the developer density in each
OSS project over time in addition to studying the evenness
and diversity of developers over time. Figure 5 shows the
evolution of developer density (DDj) of OSS projects in
Facebook and Twitter environments over time. Each column
provides the percentage of the density of developers (i.e.,
the abundance of developers) of each project in each period.
Figure 5. (a) shows the developer densities of OSS projects
in the Facebook environment over time. The highest concen-
tration of the developers’ density was between the Tornado
and the Hiphop-PHP OSS projects, with lower percentages
of developer density in other OSS projects in the Facebook
environment.

Also, in some columns, some OSS projects
(e.g., PHP-SDK) did not exist, and after investigating,
we found that these projects are inactive, deprecated, and
have no contributors (i.e., extinct). Figure5.(b) shows the
developer densities of OSS projects in the Twitter envi-
ronment over time. The highest concentration of developer
density was firstly distributed between the Flockdb and
Gizzard projects, secondly between the Flockdb and Finagle
projects, and thirdly between the Finagle and Zipkin projects,
with lower percentages of developer densitites of other OSS
projects in the Twitter environment.

Table 4 shows the results of the biodiversity measures
of DSNs in the Facebook and Twitter environments in
each period of time. These measures include the diversity
index (DI (EC)), the Shannon diversity index (H(EC)), even-
ness (EH (EC)), the number of OSS projects in the ecosystem
(PEC ), and the number of developers in the ecosystem (V EC ).

17https://github.com/twitter/zipkin

FIGURE 5. Evolution of developers’ density in (a) Facebook, and
(b) Twitter environment.

Using these measures, we traced changes in values to demon-
strate the evolution of DSNs over time. First, the diversity
index (DI (EC)) of developers in the Facebook environment
changed from 0.44 to 0.69 over time, and in the Twitter envi-
ronment, the diversity index changed from 0.34 to 0.67 over
time. Second, the evenness value (EH (EC)) of developers
in the Facebook environment changed from 0.54 to 0.99.
In the Twitter environment, the evenness value changed from
0.56 to 0.97. The highest value of evenness (EH (EC)) indi-
cated complete evenness between developers in each OSS
project (the equality distribution of developers’ density in
each OSS project). The reason for these changes was that
most developers focused on particular OSS projects over
others. For example, in the second quarter of 2010, the DSNs
of the Facebook environment had owned two OSS projects,
the value of DI (EC) was 0.51, and the value of EH (EC)
was 0.99, meaning these projects had the same chance for
developers to contribute, and these developers had the same
density in each OSS project.

Figure 6 details the evolution of the diversity and evenness
indices (actual and predict) to explain the changing trends of
these measurements over time. When we traced the change
in evenness trends in the Twitter environment and compared

TABLE 4. Biodiversity measurements for developers in the Facebook environment.

51056 VOLUME 6, 2018



M. A. Aljemabi, Z. Wang: Empirical Study on the Evolution of DSNs

FIGURE 6. Evolution of diversity and evenness indices of evolved DSNs in
(a) Facebook, and (b) Twitter environments.

this change to the Facebook environment, we found that
the evenness between developers who collaborate through
OSS projects in the Twitter environment is greater than the
evenness in the Facebook environment.

Also, the collaboration between developers through OSS
projects in the Facebook environment has resulted in in
greater developer strength to work on specific projects over
time. In the Twitter environment, the collaboration between
developers through OSS projects has resulted in more col-
laboration between developers to work on OSS projects over
time.

2) ANALYSIS SUMMARY
The results of analyzing the evolution of DSNs from the
ecosystem perspective are as follows:

(1) The ratio of developer density changed over time.
In the Facebook environment, there was a high percentage of
developers’ density between the Tornado and Hiphop-PHP
projects over time, while the other projects demonstrated a
low percentage over time. In the Twitter environment, the per-
centage of developer density was distributed between projects
over time.

(2) The ratio of the diversity index over time exhibited
convergences of 56% and 55% in the Facebook and Twitter
environments, respectively. However, the ratio of the even-
ness index over time differs between developers in the two
environments, as the Facebook environment exhibits 70%
evenness while the Twitter environment exhibits 83% even-
ness. This difference is influenced by the ratio of the devel-
oper density in each environment over time.

C. COMMUNITY PERSPECTIVE
1) COMMUNITY EVOLUTION PATTERNS
As mentioned in Section 2.4, there are five categories of the
community evolution: derivation, merge, split, extinct, and
emerge [3], [26]. In our empirical study of the evolution
of DSNs, we all these community evolution patterns were
detected.

Figure 7 represents the evolution of the communities of
all the OSS projects’ DSNs between 2nd 2009 to 3rd 2013.
In Figure 7, each node represents a community, and each edge

FIGURE 7. Evolution of DSNs community.

represents an evolving relationship between two communi-
ties. In each node, the radius is proportional to the number
of developers. The edge starts horizontally from top to down
communities. Also, Figure7, presents a zooming piece of the
evolved communities which clearly describes the community
evolution patterns. We investigated these patterns to show
changes in the DSN communities of the four OSS projects
(Hiphop PHP, Tornado, Node, and Homebrew).

Figure 8 shows the ratios of community evolution patterns
over time for these OSS projects. As noted in the figure, all
five patterns appeared in the DSNs of the four OSS projects.
As shown in Figure 8. (a), the most frequent pattern in
the Homebrew projects was ‘‘extinct’’, which may indicate
that a lot of bug issues are found, and the developers are
quick to fix these issues. Addition to some of the newcomer
developers left the project. Figure 8. (b) shows that the most
frequent pattern in the Node project is ‘‘derivation’’, with a

FIGURE 8. Community evolution patterns for four OSS projects.
(a) Homebrew. (b) Node. (c) Hiphop-PHP. (d) Tornado.

VOLUME 6, 2018 51057



M. A. Aljemabi, Z. Wang: Empirical Study on the Evolution of DSNs

low percentage of the ‘‘emerge’’ pattern over time, which
may describe the interaction between developers who are
working together over time. Figure 8. (c) shows that the
‘‘split’’ and ‘‘merge’’ patterns exist between developers in the
community, which indicates that these developers can interact
with bug issues as a specialist working group. Figure 8. (d)
depicts how the developers of Tornado and communities
interact as working groups and then work together as one
group of developers to interact with bug issues. Moreover,
some of the newcomer developers left the project.

2) ANALYSIS SUMMARY
The results of analyzing the evolution of the DSNs evolution
using the community perspective are summarized as follows:

(1) The DSNs exhibited all five community evolution
patterns as well as the three sub-types of the derivation
pattern. The studied DSNs displayed different results for
each pattern. The ratio of the emerge pattern was 49.64% in
Homebrew, 29.17% in Tornado, 13.89% in Node, and 4.76%
inHiphop-PHP. The ratio of the extinct pattern was 49.30% in
Homebrew, 29.17% in Tornado, 11.11% in Node, and 5.95%
in Hiphop-PHP. The ratio of the merge pattern was 23.81%
in Hiphop-PHP, 14.39% in Homebrew, 13.89% in Node, and
6.25% in Tornado. The ratio of the split pattern was 17.86%
in Hiphop-PHP, 10.79% in Homebrew, 8.33% in Node, and
6.25% in Tornado projects. The ratio of the derivation pat-
tern was 66.67% in Node, 58.33% in Tornado, 52.38% in
Hiphop-PHP, and 28.13% in Homebrew.

D. CORE-PERIPHERY STRUCTURE PERSPECTIVE
In general, a social network that has a core-periphery struc-
ture is composed of a set of heavily connected core nodes and
a set of more weakly connected periphery nodes [29]. Here,
we show how DSNs can be portrayed in a core-periphery
structure and demonstrate how DSNs evolve over time using
the core-periphery structure perspective.

1) CORE-PERIPHERY STRUCTURE
First, we classified each OSS project in each period of time
to the core-peripheral structure through Core Identification
using the k-means (CKI) approach [27], which is based on
six centrality scores (degree, betweenness, closeness, eigen-
vector, PageRank, and eccentricity). Second, in each period
of time we investigated the percentage of the core developers
and the peripheral developers of the evolved DSNs.

Figure 9 displays the percentages of the core developers
and the peripheral developers in each period of time for the
DSNs of the four OSS projects: (a) Homebrew, (b) Node,
(c) Hiphop-PHP, and (d) Tornado. As we noted in Figure 9,
the percentage of core developers was between 1% and 19%
of developers over time, while the percentage of peripheral
developers was between 99% and 81% of developers over
time. In general, in the DSNs of all the projects, the percent-
age of the core developers was low, while the percentage of
the periphery developers was high percentage over time. All
results of the individual DSNs in the specific time period are

FIGURE 9. Evolution of core-periphery structure percentage over time.
(a) Homebrew. (b) Node. (c) Hiphop-PHP. (d) Tornado.

consistent with other previous studies. Thus, we conclude that
the evolved DSNs over time have a set of a few developers
as the core members and a set of several developers as the
peripheral developers.

2) THE CHANGE OF DEVELOPERS’ POSITION
In this section, we used the results of the previous section to
investigate the change in developers’ positions. We examined
the change in developers’ positions deeply using the CKI
approach [27] in each evolved DSN over time (Gt = (Vt , Et ),
CKI (Gt ) = VCDUV PD). Figure10 presents the heat chart of a
sample of developers in theDSNs of (a) Homebrew, (b) Node,
(c) Hiphop-PHP, and (d) Tornado. In Figure10, the bold red
indicates the developers at the core position, and the light red
shows the developer in the peripheral position, but the white
space accounts for the absent contribution of developers in a
specific period of time.

As noted in figure 10, some developers changed their
position from a peripheral member to a core member in the
project and vice versa; moreover, some developers left the
project and contributed again as a peripheral or core member,
and some developers contributed to the project as a coremem-
ber the entire time. Thus, the developers in each DSN have
changed their position from core to peripheral members and
vice versa over time. Also, we observed that some developers
remained stable as a core member or a peripheral member
and some changed their position between the two consecutive
periods. We noted that in the Homebrew project, the average
ratio of keeping stable developers was 96.14%, and the aver-
age ratio of the frequently changing developers was 3.86%.
In the Tornado project, the average ratio of keeping stable
developers was 94.20%, and the average ratio of the fre-
quently changing developers was 5.80%. In the Hiphop-PHP
project, the average ratio of the keeping stable developers
was 91.34%, and the average ratio of the frequently changing
developers was 8.66%. In the Node project, the average ratio
of the keep stable developers was 87.35%, and the average
ratio of the frequently changing developers was 12.65%.

51058 VOLUME 6, 2018



M. A. Aljemabi, Z. Wang: Empirical Study on the Evolution of DSNs

FIGURE 10. Change of developers’ position in the projects.
(a) Homebrew. (b) Node. (c) Hiphop-php. (d) Tornado.

3) ANALYSIS SUMMARY
The results of analyzing DSN’s evolution using the core-
periphery structure perspective is summarized as follows:

(1) In the DSNs, less than 20% of the developers were core
members and about 80% of the developers were peripheral
members over time.

(2) In the DSNs, more than 90% of the developers kept
their position as a core or peripheral member over time and
less than 10% of developers changed their position frequently
over time.

V. THREATS TO VALIDITY
(1) Construct validity: In this work, we conducted anal-
ysis only to study the evolution of DSNs, and we used
BTS-DSN/ All independent variables were extracted from
bug reports with comments on bug issues by developers.
However, besides bug reports, developers have other types
of contributions such as documentation, commenting on
others’ work, project management, and so on. Performing the
analysis solely on bug reports with comments ignores these
contributions, thus threating the validity of the study’s results.

(2) Internal validity: In our work, to construct DSNs over
time, we used the Github dataset directly, and there were no
significant threats to internal validity. In the SNA analysis to
show the evolution of DSNs, the results may have changed

depending on the type of DSN.Also, in studying the evolution
of DSNs from the ecosystem perspective, there were changes
depending on the type of DSN. In the community perspective,
there were also changes that depended on the type of DSN.
In the core-periphery structure perspective, there were no
significant threats to internal validity.

(3) External validity: In this work, we conducted analysis
only on the GitHub project, which has been well studied
in prior research. We chose 11 of 89 OSS root projects
that were considered famous, mature, and successful; these
projects have relatively differentiated functionality scales as
well as diversified structures, team sizes, and contribution
forms, so they are adequately representative of other projects.
We used the GHTorrent dataset to extract necessary data for
constructing the BTS-DSN. It is possible that this study’s
results may not generalize to other projects. However, our
methodology for analysis can be easily applied to analyse
other OSS projects.

VI. CONCLUSIONS AND FUTURE WORK
We conducted an empirical study of the evolution of DSNs
to show how DSNs evolve over time using four different
perspectives: Social Network Analysis perspective (SNA),
the ecosystem perspective, the community evolution patterns
perspective, and the core-periphery structure perspective.
In the SNA perspective, we examined the evolution of DSNs
in different periods of time. We show that in each period of
time, the DSNs follow a power law degree distribution; the
community structure for each DSN in each period of time
exhibited a strong community, and the DSNs in each period of
time were ‘‘small-world’’. Using the ecosystem perspective,
we examined the evolution of DSNs using the biodiversity
measurements, such as the density of developers, a diversity
index, and the evenness index of DSNs in each period of time,
as a novel approach to studying the evolution of DSNs. Using
the community perspective, we found that the communities
of the DSNs manifested all five types of evolution pattern
(emerge, split, merge, extinct, and derivation. Finally, using
the core-periphery structure perspective, we investigated the
changes in developers’ positions over time. In future work,
we will use the results of the current study as well as other
references to develop the notion of ‘‘social collaboration
patterns mining’’.

REFERENCES
[1] T. Mens, M. Claes, P. Grosjean, and A. Serebrenik, ‘‘Studying evolving

software ecosystems based on ecological models,’’ in Evolving Software
Systems. Berlin, Germany: Springer, 2014, pp. 297–326.

[2] I. Kwan, A. Schroter, and D. Damian, ‘‘Does socio-technical congruence
have an effect on software build success? a study of coordination in a
software project,’’ IEEE Trans. Softw. Eng., vol. 37, no. 3, pp. 307–324,
May/Jun. 2011.

[3] Q. Hong, S. Kim, S. C. Cheung, and C. Bird, ‘‘Understanding a developer
social network and its evolution,’’ in Proc. 27th IEEE Int. Conf. Softw.
Maintenance (ICSM), Sep. 2011, pp. 323–332.

[4] W. Zhang, L. Nie, H. Jiang, Z. Chen, and J. Liu, ‘‘Developer social net-
works in software engineering: Construction, analysis, and applications,’’
Sci. China Inf. Sci., vol. 57, no. 12, pp. 1–23, 2014.

VOLUME 6, 2018 51059



M. A. Aljemabi, Z. Wang: Empirical Study on the Evolution of DSNs

[5] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb, ‘‘Software
dependencies, work dependencies, and their impact on failures,’’ IEEE
Trans. Softw. Eng., vol. 35, no. 6, pp. 864–878, Nov./Dec. 2009.

[6] J. Śliwerski, T. Zimmermann, and A. Zeller, ‘‘When do changes induce
fixes?’’ in ACM SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–5, 2005.

[7] T.Wolf, A. Schroter, D. Damian, and T. Nguyen, ‘‘Predicting build failures
using social network analysis on developer communication,’’ in Proc. 31st
Int. Conf. Softw. Eng., 2009, pp. 1–11.

[8] N. Bettenburg and A. E. Hassan, ‘‘Studying the impact of social inter-
actions on software quality,’’ Empirical Softw. Eng., vol. 18, no. 2,
pp. 375–431, 2013.

[9] M. A. Aljemabi and Z. Wang, ‘‘Empirical study on the similarity and
difference betweenVCS-DSN andBTS-DSN,’’ inProc. Int. Conf.Manage.
Eng., Softw. Eng. Service Sci., Wuhan, China, 2017, pp. 30–37.

[10] Y. Tymchuk, A. Mocci, and M. Lanza, ‘‘Collaboration in open-source
projects: Myth or reality?’’ in Proc. 11th Work. Conf. Mining Softw. Repos-
itories, 2014, pp. 304–307.

[11] A. Jermakovics, A. Sillitti, and G. Succi, ‘‘Exploring collaboration
networks in open-source projects,’’ in Open Source Software: Quality
Verification—OSS. Berlin, Germany: Springer, 2013.

[12] T. Zhang and B. Lee, ‘‘An automated bug triage approach: A concept pro-
file and social network based developer recommendation,’’ in Intelligent
Computing Technology. Berlin, Germany: Springer, 2012, pp. 505–512.

[13] A. Kumar and A. Gupta, ‘‘Evolution of developer social network and its
impact on bug fixing process,’’ in Proc. 6th India Softw. Eng. Conf., 2013,
pp. 63–72.

[14] J. Xuan, H. Jiang, Z. Ren, and W. Zou, ‘‘Developer prioritization in bug
repositories,’’ in Proc. 34th Int. Conf. Softw. Eng. (ICSE), Jun. 2012,
pp. 25–35.

[15] K. Crowston and J. Howison, ‘‘The social structure of free and open source
software development,’’ First Monday, vol. 10, no. 2, 2005. [Online].
Available: http://journals.uic.edu/ojs/index.php/fm/article/view/1478, doi:
10.5210/fm.v0i0.1478.

[16] M. Cataldo and J. D. Herbsleb, ‘‘Communication networks in geograph-
ically distributed software development,’’ in Proc. ACM Conf. Comput.
Supported Cooperat. Work, 2008, pp. 579–588.

[17] S. L. Lim and P. J. Bentley, ‘‘Evolving relationships between social net-
works and stakeholder involvement in software projects,’’ in Proc. 13th
Annu. Conf. Genet. Evol. Comput., 2011, pp. 1899–1906.

[18] V. S. Sharma and V. Kaulgud, ‘‘Studying team evolution during software
testing,’’ in Proc. 4th Int. Workshop Cooperat. Hum. Aspects Softw. Eng.,
2011, pp. 72–75.

[19] J. Tsay, L. Dabbish, and J. Herbsleb, ‘‘Influence of social and technical
factors for evaluating contribution in GitHub,’’ in Proc. 36th Int. Conf.
Softw. Eng., 2014, pp. 356–366.

[20] M. Gharehyazie, D. Posnett, B. Vasilescu, and V. Filkov, ‘‘Developer
initiation and social interactions in OSS: A case study of the apache
software foundation,’’Empirical Softw. Eng., vol. 20, no. 5, pp. 1318–1353,
2015.

[21] J. Teixeira, G. Robles, and J. M. González-Barahona, ‘‘Lessons learned
from applying social network analysis on an industrial free/libre/open
source software ecosystem,’’ J. Internet Services Appl., vol. 6, p. 14,
Aug. 2015.

[22] M. S. Zanetti, I. Scholtes, C. J. Tessone, and F. Schweitzer, ‘‘Categorizing
bugs with social networks: A case study on four open source software
communities,’’ in Proc. Int. Conf. Softw. Eng., 2013, pp. 1032–1041.

[23] M. Lungu, ‘‘Towards reverse engineering software ecosystems,’’ in Proc.
IEEE Int. Conf. Softw. Maintenance (ICSM), Sep./Oct. 2008, pp. 428–431.

[24] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, ‘‘The
evolution of project inter-dependencies in a software ecosystem: The case
of apache,’’ in Proc. ICSM, Sep. 2013, pp. 280–289.

[25] C. R. B. de Souza, F. F. Filho, M. Miranda, R. P. Ferreira, C. Treude, and
L. Singer, ‘‘The social side of software platform ecosystems,’’ in Proc. CHI
Conf. Hum. Factors Comput. Syst., 2016, pp. 3204–3214.

[26] Y.-R. Lin, H. Sundaram, Y. Chi, J. Tatemura, and B. L. Tseng, ‘‘Blog com-
munity discovery and evolution based on mutual awareness expansion,’’ in
Proc. IEEE/WIC/ACM Int. Conf. Web Intell., 2007, pp. 48–56.

[27] A. Bosu and J. C. Carver, ‘‘Impact of developer reputation on code
review outcomes in OSS projects: An empirical investigation,’’ in Proc.
8th ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas., 2014, Art. no. 33.

[28] T. T. Dinh-Trong and J. M. Bieman, ‘‘The FreeBSD project: A replication
case study of open source development,’’ IEEE Trans. Softw. Eng., vol. 31,
no. 6, pp. 481–494, Jun. 2005.

[29] S. P. Borgatti and M. G. Everett, ‘‘Models of core/periphery structures,’’
Social Netw., vol. 21, no. 4, pp. 375–395, 2000.

[30] Y. Ye and K. Kishida, ‘‘Toward an understanding of the motivation open
source software developers,’’ in Proc. 25th Int. Conf. Softw. Eng., 2003,
pp. 419–429.

[31] G. Robles, J.M. Gonzalez-Barahona, and I. Herraiz, ‘‘Evolution of the core
team of developers in libre software projects,’’ in Proc. 6th IEEE Int. Work.
Conf. Mining Softw. Repositories, 2009, pp. 167–170.

[32] G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman, ‘‘Lean GHTor-
rent: GitHub data on demand,’’ in Proc. 11th Work. Conf. Mining Softw.
Repositories, 2014, pp. 384–387.

[33] A. Sureka, A. Goyal, and A. Rastogi, ‘‘Using social network analysis for
mining collaboration data in a defect tracking system for risk and vulnera-
bility analysis,’’ in Proc. 4th India Softw. Eng. Conf., 2011, pp. 195–204.

[34] H. Kwak, C. Lee, H. Park, and S. Moon, ‘‘What is Twitter, a social
network or a news media?’’ in Proc. 19th Int. Conf. World Wide Web, 2010,
pp. 591–600.

MOHAMED ABDELRAHMAN ALJEMABI
received the B.S. degree in statistical and computer
science and the M.S. degree in computer science
from the University of Gezira,Wadmadani, Sudan,
in 2007 and 2010, respectively. He is currently pur-
suing the Ph.D. degree in computer science with
the School of Computer Science and Technology,
Harbin Institute of Technology, Harbin, China.

From 2012 to 2014, he was a Lecturer with the
Faculty of Mathematical and Computer Science,

University of Gezira. His research interests include information systems,
software engineering, and mining software repository.

ZHONGJIE WANG (M’08) received the B.S.,
M.S., and Ph.D. degrees in computer science from
the School of Computer Science and Technol-
ogy, Harbin Institute of Technology. He is cur-
rently a Professor with the School of Computer
Science and Technology, Harbin Institute of Tech-
nology. He has authored two books more than
50 articles. His research interests include services
computing, service engineering, Internet services
and cloud, social network service, software engi-

neering, software architecture, software evolution, social software engineer-
ing and crowdsourcing, and mining software repositories.

Dr. Wang is a Senior Member of the China Computer Federation (CCF),
the Deputy Secretary of the Technical Committee of Services Com-
puting (CCF), and a member of the Technical Committee of Software
Engineering (CFF).

51060 VOLUME 6, 2018

http://dx.doi.org/10.5210/fm.v0i0.1478

	INTRODUCTION
	BACKGROUND
	DEVELOPER SOCIAL NETWORK (DSNs)
	SOCIAL NETWORK ANALYSIS (SNA)
	DSNs AS ECOSYSTEMS
	COMMUNITY EVOLUTION
	CORE-PERIPHERY STRUCTURE

	EMPIRICAL STUDY SETUP
	PROJECT SETELCTIONS AND DATA PREPRATION
	RESEARCH QUESTIONS
	RESEARCH VARIABLES
	EXTRACTING DSNs

	EMPIRICAL STUDY
	SNA PERSPECTIVE
	POWER-LAW
	DEVELOPER CHANGES
	ANALYSIS SUMMARY

	ECOSYSTEMS PERSPECTIVE
	BIODIVERSITY MEASUREMENTS
	ANALYSIS SUMMARY

	COMMUNITY PERSPECTIVE
	COMMUNITY EVOLUTION PATTERNS
	ANALYSIS SUMMARY

	CORE-PERIPHERY STRUCTURE PERSPECTIVE
	CORE-PERIPHERY STRUCTURE
	THE CHANGE OF DEVELOPERS' POSITION
	ANALYSIS SUMMARY


	THREATS TO VALIDITY
	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	MOHAMED ABDELRAHMAN ALJEMABI
	ZHONGJIE WANG


