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ABSTRACT We consider designing demodulators for linear vector channels that use reduced-size trellis
descriptions for the received signal. We assume an iterative receiver and use interference cancellation (IC)
with soft-information provided by an outer decoder tomitigate the signal part that is not covered by a reduced-
size trellis description. In order to reach a trellis description, a linear filter is applied as a front end to compress
the signal structure into a small trellis. This process requires three parameters to be designed: 1) the front-
end filter; 2) the feedback filter through which the IC is done; and 3) a target response which specifies
the trellis. Demodulators of this form have been studied before under the name channel shortening (CS),
but the interplay between CS, IC, and the trellis-search processes has not been adequately addressed in
the literature. In this paper, we analyze two types of CS demodulators that are based on the Forney and
Ungerboeck detection models, respectively. The parameters are jointly optimized with a generalized mutual
information (GMI) function.We also introduce a third type of CS demodulator that is, in general, suboptimal,
which has closed-form solutions. Furthermore, signal-to-noise ratio asymptotic properties are analyzed, and
we show that the third CS demodulator asymptotically converges to the optimal CS demodulator in the sense
of GMI maximization.

INDEX TERMS Channel shortening (CS), intersymbol interference (ISI), multi-inputmulti-output (MIMO),
front-end filter, feedback filter, target response, generalized mutual information (GMI), Forney model,
Ungerboeck model, turbo equalization, demodulator, linear minimum mean square error (LMMSE), inter-
ference cancellation (IC), extrinsic information transfer (EXIT), block-error-rate (BLER), BCJR.

I. INTRODUCTION
Channel shortening (CS) demodulators have a long and
rich history, see [3]–[16]. For intersymbol interference (ISI)
channels, Forney, Jr., [17] showed that Viterbi Algo-
rithm (VA) [19] implements maximum likelihood (ML)
detection. However, the complexity of VA is exponential in
the memory of the channel which prohibits its use in many
cases of interest. As a remedy, Falconer and Magee [4] pro-
posed in 1973 the concept of CS. The concept is to filter the
received signal with a prefilter such that the effective channel
has a much shorter duration than the original one, and then
apply VA to the shortened channel.

Traditionally, CS demodulators have been optimized from
various criteria such as minimummean square error (MMSE)
and signal-to-interference-plus-noise ratio (SINR) [5]–[13].
Venkataramani and Erden [14] attempted to minimize the
error probability of an uncoded system, which leads to a new

notion of posterior equivalence between the target response
and the filtered channel. But as [14] works with uncoded
error probabilities, the analysis does not adequately address
the case of coded systems and Shannon capacity properties.
The first paper that works with capacity-related cost mea-
sures is [15] where the authors considered the achievable
rate, in the form of generalized mutual information (GMI)
[18], [20]–[23], that the transceiver system can achieve if
a CS demodulator is adopted. However, [15] is limited to
ISI channels only, and the design method in [15] of the
CS demodulator is in fact not always possible to execute.
The limitations of [15] were first dealt with in [18], which
extended the CS concept to any linear vector channel such
as multi-input multi-output (MIMO) and ISI channels, and
resulted in a closed-form optimization procedure.

On the other hand, iterative receivers such as turbo
equalization [24]–[28] followed as a natural extension to
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turbo codes for designs of iterative detection and decod-
ing receivers. When it comes to turbo equalization, com-
mon settings of the demodulator are [24] the maximum
a posterior (MAP) demodulator [43] and its suboptimal
variants such as dimension-reduction and subspace based
detections [29], [30], and linearMMSE (LMMSE) [31], [32].
The suboptimal demodulators replace the MAP with a linear
equalizer or a decision feedback equalizer (DFE) to reduce
the prohibitive complexity. One open problem in the area of
turbo equalization is the development of other non-trellis-
based detection methods that provide performance between
MAP and LMMSE [24], [32].

Instead of fully removing the trellis-based detection,
another approach is to reduce the memory-size of the original
linear vector channel through an interference cancellation
(IC) based prefiltering. To the best of our knowledge, there
is limited literature [26], [33] on such a demodulator design
that combines both IC based prefiltering and a memory-size
shortened BCJR in an iterative receiver. A closely related
concept is delayed-decision-feedback-sequence-estimation
(DDFSE) [34], [35], which also reduces the number of states
in the BCJR. However, in DDFSE the IC is done within a
single iteration, and not between the iterations.

In this paper, we generalize the GMI-maximization based
CS demodulator in [18] to cooperate with iterative receivers.
With iterative receivers, it is reasonable to expect that bet-
ter detection-performance can be attained by allowing the
parameters of CS demodulator to change over each iteration.
However, the CS demodulator in [18] does not take the prior
information into account, rendering a static design in all iter-
ations. We aim at constructing a CS demodulator that takes
soft-information provided by the outer-decoder into account
such that the parameters of CS demodulator are designed
for a particular level of prior knowledge. This procedure
includes an IC mechanism to deal with the signal part that are
not handled by the trellis-search, i.e., the BCJR. Preliminary
results for CS demodulators in iterative receivers are available
in [2] and [36], but this paper non-trivially advances the state-
of-the-art.

Although the trellis-search based detection is still utilized
in CS demodulator, the memory-size ν of the linear vec-
tor channel has been reduced which results in significant
complexity-reduction compared to MAP. Meanwhile, with
different values of ν, CS demodulator provides trade-offs
between the performance of LMMSE and MAP. As what
will become clear later that CS demodulator is closely
related to the concept of LMMSE with parallel interference
cancellation (LMMSE-PIC) [37]–[39], which cooperates the
soft-information into its filter-coefficients and IC process.
By setting ν = 0 in CS demodulator, it is identical
to LMMSE-PIC whose trellis-search process is trivial as
different layers are assumed to be independent after the
front-end filtering. However, CS demodulator advances the
LMMSE-PIC by including a trellis-search, where the parame-
ters of the front-end filter, IC, and the trellis-search are jointly
optimized. On the other hand, by setting ν to the original

memory-size of the linear vector channel, CS demodulator
is identical to MAP. Therefore, CS demodulator provides a
generalized framework that includes LMMSE-PIC and MAP
as two extreme cases for designing an iterative receiver.

The rest of the paper is organized as follows: The linear
vector channel model and the iterative receiver structure are
introduced in Section II, while the general form of CS demod-
ulator and the GMI are described in Section III. In Section IV
we analyze three types of CS demodulators for MIMO chan-
nels. In Section V we deal with ISI channels as asymptotic
versions of the results established in Section IV. The signal-
to-noise ratio (SNR) asymptotic of the CS demodulators are
discussed in Section VI. Numerical results are then shown in
Section VII, and Section VIII summarizes the paper.

NOTATION
Throughout the paper, a capital bold letter such as A repre-
sents a matrix, a lower case bold letter a represents a vector,
and a capital letter A represents a number. The expression
A ≺ 0 means matrix A is negative-definite, while A � 0
means A is positive-definite. We let IK represent a K ×K
identity matrix and the dimension is omitted when it can
be understood from the context. The superscripts have the
following meanings: (·)∗ is complex conjugate, (·)T is matrix
transpose, (·)† denotes the conjugate transpose of a matrix,
(·)−1 is matrix inverse. In addition, ∝ means proportional
to, E[·] is the expectation operator, Tr(·) takes the trace of
a matrix, R{·} returns the real part of a variable, ⊗ is the
Kronecker multiplication operator, vec(A) is a column vector
containing the columns of matrix A stacked on top of each
other, and [A,B] is the set of integers {k :A≤k≤B}.
Further, we say that a matrix A is banded within diagonals

[−ν1, ν2] (ν1, ν2≥0), if the (k, `)th element A(k, `) satisfies1

A(k, `) = 0, `− k > ν1 or k − ` > ν2.

Moreover, we define two matrix notations [ ]ν and [ ]\ν such
that A = [A]ν+ [A]\ν , and [A]ν is banded within diagonals
[−ν, ν] where [A]\ν are constrained to zeros.

II. SYSTEM MODEL
We consider linear vector channels according to the received
signal model

y = Hx+n (1)

where y is an N×1 vector of the received signal; x is a K×1
vector comprising unit-energy coded symbols that belong
to a constellation X ; H is an N × K matrix representing
the communication channel which is perfectly known to the
receiver; and n is zero-mean complex-valued Gaussian noise
vector with a covariance matrix N0I .
The model (1) may represent many different communica-

tion systems and we consider two typical cases, i.e., when

1Note that ν1 refers to the number of upper diagonals of A that are non-
zero. We have this convention in order to subsequently follow standard
notation for Toeplitz matrices [40].
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FIGURE 1. Iterative receiver structure with CS demodulator and outer-decoder. The target of the CS demodulator is to maximize the GMI
through jointly optimizing the parameters V , R, and G, which are referred to as the front-end filter, IC matrix, and trellis-representation
matrix, respectively.

H represents a multi-input multi-output (MIMO) or an ISI
channel. In the MIMO case, the variables N and K are finite
while they grow without bounds in the ISI case. For the
MIMO case, a block-fading model is assumed to perform an
analysis for a whole transmitted data-block.

In an iterative receiver, the feedbacks from the outer-
decoder can be utilized to improve the performance. As the
outer-decoder provides the demodulator with a posteriori
probability (APP) and extrinsic information (in terms of bit
log-likelihood ratio (LLR)) [41], [42], side-information is
present about the symbols x and we represent this by the
probability mass function pk (s) = P(xk = s), (0 ≤ k ≤
K − 1). Note that the side-information does not consider
the dependency among the symbols, but are symbol-wise
marginal probabilities. This reflects the situation encountered
in iterative receivers with perfect interleaving. In those cases,
the prior probabilities provided from previous iterations are
assumed independent, i.e., P(x = s) =

∏
pk (s), and the

demodulator can compute x̂ = E[x] = [x̂0, x̂1, · · · , x̂K−1]T

in a per-entry fashion as

x̂k =
∑
s∈X

spk (s),

where the expectations are computed with respect to the prior
distribution pk (s).
With soft-information x̂, we define aK×K diagonal matrix

P reflecting the accuracy of the side-information as

P = Ey[xx̂†] = Ey[x̂x̂†], (2)

where x is the transmitted symbol for the received signal y,
and the exception ‘‘Ey’’ is taken by averaging x̂x̂† through the
whole transmitted data-block. Note that 0�P� I , and when
there is no soft-information available we have P = 0, while
with perfect feedback we get P=I .
For the ISI case, as there is only a single transmit-layer and

K is the length of data-block, P can be simplified as

P=αI, (3)

where

α =
1
K

K−1∑
k=0

|x̂k |2.

The task of the demodulator is to generate soft-information
about x given the observable y and the side-information. The
optimal demodulator is the MAP [43], [44] which evaluates
the posterior probabilities P(xk = s|y). However, the number
of leaves of the search-tree in MAP is in general |X |K which
is prohibitive for practical applications.With CS demodulator
we force the signal model to be an lower-triangular matrix
with only ν+1 (0≤ν<K−1) non-zero diagonals, by means
of a linear filter,2 where ν is referred to as the memory-size of
the CS demodulator. Then, the BCJR [45] can be applied over
a trellis with |X |ν states. Further, as there is side-information
present about x, the parts of H that are outside the memory
of BCJR can be partly eliminated by means of IC through the
prior mean x̂.

The structure of an iterative receiver utilizing a CS demod-
ulator is depicted in Fig. 1. The extrinsic information from an
outer-decoder is used to compute an estimate x̂ and a matrix
P that reflects the feedback quality. Based on the updated P
in each iteration, the optimal CS parameters are solved by
maximizing the GMI. A prefiltering and IC process are then
implemented on y with optimal V and R to obtain the signal
ŷ, which is sent to a memory-ν BCJR module specified by
an optimal G. Further, the extrinsic information iteratively
exchanged between the BCJR and the outer-decoder is also
used as a priori information for decoding the transmitted
symbols. Note that if we set ν = K − 1, the search-space
of the CS demodulator is no longer a trellis but corresponds
to the original tree and is equivalent to the MAP, while the
LMMSE-PIC is a special case of the CS demodulation with
ν=0.

2For finite length linear vector channels such as MIMO channel, ‘‘filter-
ing’’ means matrix multiplication.
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III. THE GENERAL FORM OF THE CS DEMODULATOR
We state two lemmas that are useful later, and Lemma 2 can
be verified straightforwardly.
Lemma 1: Let A1 and A2 be two K × K matrices,

where A1 is invertible and banded within diagonals [−ν, ν].
If [A−11 ]ν= [A2]ν , then

Tr
(
A1A2

)
=Tr

(
I
)
.

Proof: Let A3 = A2−A−11 , then it holds that [A3]ν =
0 and A3 = [A3]\ν . As A1 = [A1]ν , the elements along the
main diagonal ofA1A3 are zeros. Hence, we have Tr

(
A1A2

)
=

Tr
(
A1(A−11 +A3)

)
=Tr(I).

Lemma 2: Let A1 and A2 be two K × K matrices that
are banded within diagonals [−ν1, ν2] and [−ν3, ν4], respec-
tively. Then the product A1A2 is banded within diagonals
[max(−(ν1+ν3), 1− K ),min(ν2+ν4,K − 1)].

A. SYSTEM MODEL OF THE CS DEMODULATOR
The CS demodulators that we investigate operate on the basis
of a mismatched3 function

p̃(y|x) = exp
(
2R{x†(Vy−Rx̂)}−x†Gx

)
(4)

for given feedbacks x̂, instead of the true conditional proba-
bility distribution function (pdf)

p(y|x) =
1

(πN0)N
exp

(
−
‖y−Hx‖2

N0

)
. (5)

Note that p̃(y|x) may not be a valid pdf, but this is irrel-
evant for demodulation, see [46]. The matrices V , R, and
G are denoted as the front-end filter, IC matrix, and trellis-
representation matrix as mentioned earlier, respectively.
Without loss of generality, we have absorbed the noise power
N0 into them. Detection models (4) and (5) are equivalent if
we set V =H†/N0, R=0, and G=H†H/N0, in which case
the CS demodulator represents the MAP.

The detection model (4) has its roots in Falconer and
Magee’s paper [4] with an additional IC process, in which
case it is described as

T̃ (y|x) = exp
(
−‖Wy− Tx̂− Fx‖2

)
(6)

By setting T = 0, we obtain the same model in [4]. If iden-
tifying V = F†W , R= F†T , and G= F†F, the model (6) is
equivalent to (4) since

T̃ (y|x)∝ exp
(
2R{x†(F†Wy− F†Tx̂)}−x†F†Fx

)
= exp

(
2R{x†(Vy− Rx̂)} − x†Gx

)
.

Detection model (6) is usually denoted as ‘‘Forney’’
model due to its Euclidean-distance form, while the gen-
eral model (4) is called ‘‘Ungerboeck’’ model [47]–[49].
An advantage of the Ungerboeck model is that the parameter
optimization through GMI-maximization is simpler [18] than

3By ‘‘mismatched’’ we mean that p̃(y|x) may not be a valid pdf and
in general differs from the true pdf p(y|x) even with x̂ = 0, but such a
‘‘mismatched’’ property is for the purpose of reducing the size of trellis-
description in the BCJR.

the Forney model. However, as both models can be viewed
as ‘‘natural’’ CS demodulators, we investigate both in CS
demodulator design for iterative receivers in this paper.

In order to optimize (V ,R,G), we choose to work with the
GMI which is an achievable rate for a receiver that operates
on the basis of a mismatched version of the channel law. The
GMI in nats per channel-use is defined as

IGMI = −Ey
[
log p̃(y)

]
+Ex,y

[
log p̃(y|x)

]
(7)

where

p̃(y)=
1
πK

∫
p̃(y|x) exp(−‖x‖2)dx

and the expectation is taken over the true pdfs p(y) and
p(x, y). Although finite constellations X are used in practice,
they are hard to analyze. In order to obtain a mathemati-
cally tractable problem, here we use a zero-mean complex-
valued Gaussian constellation with an unit-variance for each
entry in x. With Gaussian inputs, the trellis discussed earlier
has no proper meaning as the number of states is infinite.
However, the Gaussian assumption is only made to design
the CS parameters (V ,R,G) that can also be used for finite
constellations.

We first state Theorem 1 that states the GMI for model (4).
Theorem 1: The GMI for the detection model (4) equals

IGMI(V ,R,G)

= log
(
det(I+G)

)
−Tr(G)+2R

{
Tr(VH−RP)

}
−Tr

(
(I+G)−1

(
V (N0I+HH†)V†

−2R
{
VHPR†}

+RPR†)). (8)

The proof of Theorem 1 is given in Appendix A. Here we
use the fact (I+G) � 0 shown in [18], otherwise the GMI
is not well-defined. With any parameters (V ,R,G), the GMI
can be calculated via (8), however, they may not be optimal
in the sense of GMI-maximization.

We next illustrate Theorem 1 with two examples.
Example 1: Extended Zero-Forcing filter (EZF).We extend

the zero-Forcing filter [50] to only partly invert the channel
so that a trellis-search is necessary after the EZF. In view of
the CS demodulator, we select the parameters in (4) as:

V= (I+G)(H†H)−1H†, and R=0,

and then optimize (8) over G. To satisfy the constraint of
having a trellis with |X |ν states, it must hold G= [G]ν . The
optimal G, in the sense of maximizing (8), is shown (later in
Theorem 2) to satisfy

[(I+G)−1]ν=N0[(H†H)−1]ν .

Utilizing Lemma 1, the GMI in (8) for the optimal G equals

IGMI = log
(
det(I+G)

)
+Tr

(
I−N0(H†H)−1(I+G)

)
= log

(
det(I+G)

)
.

Example 2: Truncated Matched filter (TMF). As previ-
ously mentioned, the MAP demodulator (5) can be written in
the form (4) by setting V=H†/N0, R=0, and G=H†H/N0.
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FIGURE 2. CS demodulator that maximizes the GMI with the tuple (x, ŷ).

The front-end in this case is a matched filter [51] and the
BCJR is implemented over the Ungerboeck model. To reach
a trellis with |X |ν states, we truncate G to its center 2ν+1
diagonals, i.e., we use the following parameters in (4):

V=H†/N0, R=0, and G= [H†H/N0]ν .

With these settings in TMF, the GMI in (8) equals

IGMI = log
(
det(I+[H†H/N0]ν)

)
−Tr

(
H†H

(
N0I+[H†H]ν

)−1[H†H]\ν
)
.

B. CONSTRAINTS ON THE PARAMETER R FOR CS
DEMODULATORS
As illustrated in Fig. 2, our approach to design a CS demod-
ulator consists of two steps:
• Construction of a signal ŷ = Vy − Rx̂ based on the
received signal y and a prior mean x̂;

• BCJR demodulation of ŷ operating on a reduced number
of states |X |ν .

This procedure is analogous to LMMSE-PIC which first
subtracts the interference followed by applying a Wiener
filter, and then concludes by the BCJR that operates on a diag-
onal G. The statistical behavior of (x, ŷ) can be superior to
that of the original (x, y), as the former tuple corresponds to a
statistically different channel. As shown in Example 3 below,
the GMI obtained with tuple (x, ŷ) with a perfect feedback x̂
can be infinitely large, which exceeds the channel capacity
with the original tuple (x, y). Therefore, the computed value
of GMI may have little relevance for the performance of
the transceiver system. In order for GMI to have bearing on
performance, it is critical to put constraints on IC matrix R.
Example 3: Let the system model be

y = x+ n.

and assume a perfect feedback, i.e., x̂ = x. The demodulator
parameters are taken as V = 0, R = −(1+β)I , andG = βI ,
where β is an arbitrary value. Then, we have

ŷ = Vy− Rx̂ = (1+β)x,

and the GMI in (8) for the tuple (x, ŷ) equals

IGMI(V ,R,G) = K
(
1+log(1+β)

)
.

In order tomaximize theGMI, the demodulator will choose
β → ∞ to make IGMI infinite. This is because, except for
using the feedback information for IC, the demodulator uses
the prior mean x̂ as a signal energy via R. A demodulator
equipped with these parameters will have significant error

propagation and does not have much operational meaning
for an iterative receiver. Thus, we conclude that unless con-
straints are put on R, the GMI value is not relevant. Three
typical shapes of R are specified in Fig. 3. All three have in
common that rather than adding signal energy, the rationale
of R should be to remove interference. Therefore, at the very
minimum the diagonal elements ofR should be constrained to
zeros, so that the demodulation of each symbol in x does not
rely on its own prior mean x̂. Such a constraint is perfectly
aligned with the operations of LMMSE-PIC, where x̂` is
not used for demodulation of x`. Further, the rationale of
the constraints we impose on R is to follow the principle of
extrinsic information: The BCJR module should not rely on
the prior information x̂` when demodulating x` (this requires
more than just the diagonal of R to be zero).
We point out the fact that the GMI can exceed the channel

capacity is a consequence of our choice not to include the
side-information as a prior distribution on x when evaluating
the GMI. If we did, then the GMI is decaying with increasing
quality of the side-information (due to themutual information
I (x, y|x̂) goes to 0 as x̂ becomes perfect). At last, we acknowl-
edge the fact that a permutation of the columns of H can
boost the performance of the CS demodulator whenever
0<ν<K−1 for MIMO channels. However, minimum-phase
conversions of ISI channels are not beneficial as we will solve
for the optimal front-end filter.

IV. PARAMETER OPTIMIZATION FOR THE MIMO CASE
In this section, we elaborate the parameter optimization
for MIMO channels. We introduce three different methods,
namely, Method I, II, and III. We start with the classical
Forney model (6) based demodulator, i.e., Method I, and then
extend the model to the Ungerboeck model (4), i.e., Method
II. As both Method I and Method II need gradient-based
approaches for optimizations over target response, by care-
fully examining the properties of the CS demodulator with
Ungerboeck model, we propose a suboptimal Method III
which has an explicit construction and all CS parameters are
in closed-forms.

A. METHOD I
In Method I, the CS demodulator is based on detection
model (6) and the following structures of the CS parameters
(W ,T ,F) are imposed:

• The K×N matrixW has no constraints.
• The K×K matrix F is lower-triangular where only the
main diagonal and the first ν (the memory-size of F)
lower diagonals are non-zero, i.e., F is banded within
diagonals [0, ν] (0 ≤ ν < K −1). Moreover, the main
diagonal of F is constrained to have positive values.

• The K×K matrix T is constrained to be zero wherever
F can take non-zero values.

The constraint on F is to shorten the memory of the trellis
in BCJR, while the purpose of the constraint on T is to cancel
the signal part that F cannot handle. From Theorem 1 and by
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FIGURE 3. Three different types of shape of matrix R, where ν is the memory-size of F or G, i.e., the
memory-size of the BCJR.

identifying V = F†W , R = F†T , and G = F†F, the GMI
in (8) of Method I equals

IGMI(W ,T ,F) = log
(
det(I+F†F)

)
−Tr(F†F)

+ 2R
{
Tr
(
F†(WH−TP)

)}
−Tr

(
(I+F†F)−1L1

)
(9)

where

L1 = F†W (N0I+HH†)W †F− 2R
{
F†WHPT†F

}
+F†TPT†F.

With the aforementioned constraints on F and T , the matrix
R=F†T has a form of shape (a) in Fig. 3. That is, all diagonal
elements are zero as well as the lower-triangular part of the
(ν+1)×(ν+1) small matrix at the right-bottom corner.
In order to optimize (9) over (W ,T ,F), we first introduce

an S×K 2 indication matrix � only consisting of ones and
zeros,4 having a single 1 in each row, and S equals the
number of elements in T that are allowed to be non-zero. Let
I(vec(T )) be a vector that contains the positions where the
vector vec(T ) is allowed to be non-zero. Then, the value of
the kth entry in I(vec(T )) gives the column where row k of�
is 1. That is, the S×1 vector�vec(T ) stacks the columns of T
on top of each other but with all elements that are constrained
to zero removed.

With such a definition of� and defining twoK×K matrices

M = H†(N0I+HH†)−1H−I, (10)

M̃ = P(I+M)P−P, (11)

the GMI for the optimal W and T is given in Proposition 1
with the proof in Appendix B.
Proposition 1: Defining an S×K 2 matrix

D = �
(
(PM∗)⊗IK

)
,

the optimalW maximizing the GMI in (9) is

Wopt = F−†(I+F†F+F†TP)H†(N0I+HH†)−1, (12)

4For instance, assuming T =

[
0 1
2 0

]
, then the indication matrix

�=

[
0 1 0 0
0 0 1 0

]
, and the vector �vec(T )=

[
2
1

]
.

and when P 6=0 the optimal T is given by

vec(Topt)=−�T(�(M̃∗⊗ (F(I+F†F)−1F†))�T )−1vec(F).
(13)

With the optimalW and T , the GMI reads,

IGMI(Wopt,Topt,F) =

{
I1(F), P=0,
I1(F)+ δ1(F), P 6=0,

(14)

where the functions I1(F) and δ1(F) are defined as

I1(F) = K+log
(
det(I+F†F)

)
+Tr

(
M(I+F†F)

)
, (15)

δ1(F) = −vec(F)†D†
(
�
(
M̃
∗
⊗
(
F(I+F†F)−1F†))

�T
)−1

Dvec(F). (16)
Remark 1: From the definitions in (10) and (11),M is the

negative of MSEmatrix and consequently, it holds that M̃�0.
Hence, δ1(F)≥0 represents theGMI increments from the soft-
feedback.

Before maximization the GMI, we state Theorem 2 that
deals with a general maximization problem.
Theorem 2: Define a scalar function I with respect to a

K×K matrix G as

I (G) = K+log
(
det(I+G)

)
+Tr

(
M(I+G)

)
(17)

where G satisfies G= [G]ν . Then, the optimal G maximizing
I is the unique solution that satisfies

[(I+Gopt)−1]ν = −[M]ν . (18)

With Gopt, the maximal I equals

I (Gopt) = log
(
det(I+Gopt)

)
. (19)

Proof: Taking the first order differential of I with
respect to G and noticing that G is banded within diagonals
[−ν, ν], yields (18) after some manipulations. The existence
and uniqueness of such an optimal solution for (18) is proved
in [52, Th. 2] and also illustrated in [18, Proposition 2].
By Lemma 1 and (18), it holds that Tr

(
[I+Gopt]−1M

)
=−K ,

and then (19) follows.
Optimizing over F in (14) when P 6= 0 is difficult and

cannot be carried out in closed-form. In Appendix C we show
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by an example that (14) is in general non-concave. Therefore,
a gradient based numerical optimization procedure is utilized
to search for the optimal F. In the ith iteration, we construct

F(i)
= F(i−1)

+∇F∗ IGMI
(
Wopt,Topt,F(i−1))

where ∇F∗ IGMI(Wopt,Topt,F) is the conjugate gradient of
the GMI with respect to (the non-zero part of) F, which is
derived in Appendix D.

If replacing F†F by G, (15) has the same form as (17)
when P=0, and Gopt is in closed-form shown in Theorem 2.
If Gopt � 0, then the optimal F is equal to its Cholesky
decomposition. Whenever it is not, a gradient based numer-
ical optimization is utilized to optimize (15), and Gopt from
Theorem 2 is used to initialize the starting point of F, which
has been observed to be reliable.

Next we establish a connection between the front-end filter
W and IC matrix T in Method I.
Proposition 2: For P 6= 0, and with the optimal W and

T , the matrix F†(WoptH − Topt) is banded within diagonals
[−ν,K−1].

Proof: Noting that�T�vec(Topt)=vec(Topt) and using
��T

=I , from (13) and (76) it holds that

�
(
M̃
∗
⊗
(
F(I+F†F)−1F†))�T�vec(Topt)

= �vec
(
F(I+F†F)−1F†ToptM̃

)
−�vec(FMP), (20)

which shows that the elements of the matrix

1=F(I+F†F)−1F†ToptM̃+FMP

are zeros wherever T can be non-zero. Hence 1 is banded
within diagonals [0, ν]. On the other hand, with the optimal
W in (12), and M , M̃ defined in (10) and (11), respectively,
we have

F†(WoptH−Topt)−(I+F†F)= (I+F†F)F−11P−1. (21)

By noting that F−1 is lower-triangular, I +F†F is banded
within diagonals [−ν, ν] and P is diagonal. Utilizing
Lemma 2, the r.h.s of (21) is banded within diagonals
[−ν,K−1]. Therefore, F†(WoptH−Topt) is banded within
diagonals [−ν,K−1].
Proposition 2 reveals an interesting and somewhat sur-

prising fact that although the BCJR only has a memory-
size ν, the interference outside the memory-size shall not
be perfectly canceled with the optimal CS demodulator in
Method I. As will be shown later, such a property also
holds for the other two designs of CS demodulator, namely,
Method II and III.

B. METHOD II
Method II origins from Ungerboeck’s 1974 paper [47]. Dif-
ferent from Method I, an Ungerboeck detection model (4)
instead of the Forney model (6) is applied. The Ungerboeck
model has been extensively discussed in [48], [49], and [53].
The system model (4) has the following constraints:
• The K×N matrix V has no constraints.

• The K×K matrix G is Hermitian and satisfies G= [G]ν
and I+G�0, where ν is the memory-size of G.

• The K×K matrix R can have specified shapes, but at a
minimum the main diagonal is constrained to zeros.

Instead of (W ,T ,F), in Method II we optimize (V ,R,G)
for (8). The same definition of an indication matrix� is used
as in Method I, but now � corresponds to R instead of T .
We continue to let S denote the number of elements that are
allowed to be non-zero in R. That is, the S×1 vector�vec(R)
stacks the columns of R on top of each other and with all
elements that are constrained to zeros removed.

InMethod II, we have Proposition 3 showing the GMI with
optimal V and R, with the proof given in Appendix E.
Proposition 3: Define an S × 1 vector d = �vec(MP),

the optimal V for the GMI in (8) is

Vopt = (I + G+ RP)H†(HH†
+ N0I)−1, (22)

and when P 6=0 the optimal R is given by

vec(Ropt) = −�T (�(M̃∗⊗(I + G)−1)�T )−1d. (23)

With the optimal V and R, the GMI in (8) equals

IGMI(Vopt,Ropt,G) =

{
I2(G), P=0,
I2(G)+ δ2(G), P 6=0,

(24)

where the functions I2(G) and δ2(G) are defined as

I2(G) = K+log
(
det(I+G)

)
+Tr

(
M(I+G)

)
, (25)

δ2(G) = −d†
(
�
(
M̃
∗
⊗(I+G)−1

)
�T )−1d. (26)

Similar to δ1(F) in Method I, δ2(G)≥0 represents the GMI
increments from the feedback. Further, when P 6=0, the opti-
mization over G in (24) also uses a gradient based numerical
optimization, and the gradient of IGMI(Vopt,Ropt,G) with
respect to (the non-zero part of) G is provided in Appendix F.
The closed-from G from Theorem 2 can be used as the
starting point. However, different from Method I, the opti-
mization procedure in this case is concave whose proof is in
Appendix G.

Although the optimal R is solved in closed-form in (23),
we shall specify the constraint (reflected by�) on it. We con-
sider two types of R in Method II. Firstly, as we are interested
in the comparison between Method I and II, we consider the
shape (a) in Fig. 3, which has the same shape as for R=F†T
in Method I. Secondly, we consider a band-shaped R with
memory-size νR, where shape (b) and (c) in Fig. 3 are typical
cases with νR = 0 and νR = ν, respectively. With shape
(b), we only limit the diagonal elements of R to be zero and
intend to eliminate the interference as much as possible. With
shape (c), we limit R to have the opposite form of G, that
is, the elements of R are constrained to be zero wherever G
is non-zero. The intention is to only cancel the interference
that the BCJR represented by G cannot handle. Shape (c) is
based on the same idea as Method I, but now operates on the
Ungerboeck model.

The connection between the optimal front-end filter V and
IC matrix R in Method II is established in Proposition 4.
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Proposition 4: For P 6=0 and the optimal V and R,

[VoptH]\(ν+νR) = [Ropt]\(ν+νR). (27)

That is, the elements of VoptH and Ropt are equal outside the
center 2(ν+νR)+1 diagonals for any G that is banded within
diagonals [−ν, ν], where νR = 0 for R with both shapes (a)
and (b), and νR=ν for R with shape (c), respectively.

Proof: Following the similar steps in the proof of Propo-
sition 2, (23) can be rewritten as

�vec
(
(I + G)−1RoptM̃

)
= −�vec(MP). (28)

It shows that the elements of

1= (I + G)−1RoptM̃P−1+M

are zeros whereverR can be non-zero. On the other hand, with
the optimal V in (22) we have

VoptH−Ropt−(I+G)= (I+G)1. (29)

As I+G is banded within diagonals [−ν, ν], using Lemma 2
and with the three shapes5 of R in Fig. 3, it can be shown
that the r.h.s of (29) is banded within diagonals [−(ν + νR),
ν + νR], where νR = 0 for the shape (a) and (b), and νR = ν
for the shape (c). Therefore, VoptH−Ropt on the l.h.s of (29)
is banded within diagonals [−(ν + νR), ν + νR].
The same as Proposition 2 for Method I, Proposi-

tion 4 shows that the signal part not considered in G (the
BCJR) shall not be perfectly canceled inside the center 2(ν+
νR)+1 diagonals, instead of the center 2ν+1 diagonals where
G is constrained to be non-zero. With LMMSE-PIC, we have
ν = νR = 0 and Proposition 4 is natural and frequently
used. However, when νR>0, a more general property is now
revealed that VoptH and R are only equal outside the center
2(ν+νR)+1 diagonals.

C. METHOD III
So far we have discussed two types of CS demodulators based
on Forney and Ungerboeck detection models. One disadvan-
tage is that both methods need numerical optimizations to
obtain the optimal target responses. Next we construct a third
CS demodulator that has closed-form solutions for all CS
parameters, whose GMI is slightly suboptimal.

Method III relies on the same operations as Method II with
P=0. By inserting Vopt in (22) back into (4) and setting R=
0, the CS demodulator actually operates on the mismatched
function

p̃(y|x)= exp
(
2R{x†Vopty}−x†Gx

)
= exp

(
2R
{
x†(I+G)x̌

}
−x†Gx

)
(30)

where

x̌=H†(HH†
+N0I)−1y

is the LMMSE estimate of x. As can be seen from (30),
the BCJR is based on x̌. With soft-feedback we can therefore

5The case that R with shape (a) is slightly different, but it can be verified
straightforwardly.

replace x̌ by LMMSE-PIC estimates x̃. That is, instead of (30)
we now operate on

p̃(y|x, x̃) = exp
(
2R
{
x†(I+G)x̃

}
−x†Gx

)
(31)

whereG has the same banded-shape as the first two methods,
but optimized according to x̃.

The estimate x̃ is constructed as follows. As we prefer
to handle the interference through the trellis-search process,
the IC should not be present within the memory-size ν.
In other words, the signal vector after the IC that is used to
form the kth symbol of x̃ is denoted as

ỹk=y−
∑
n∈Ak

hnx̂n (32)

where

Ak=
{
0≤n≤K−1 :n /∈ [max(0, k−ν),min(k+ν,K−1)]

}
.

Denoting pn as the nth diagonal element of P, the Wiener-
filter coefficients [54] for the kth symbol are calculated as

ŵk = h
†
k (H

†CkH +N0I
)−1 (33)

where Ck is a diagonal whose nth diagonal element is

Ck (n) =

{
1− pn, k ∈ Ak ,

1, otherwise.
(34)

The estimate x̃ is then obtained through

x̃=
[
ŵ1ỹ1, ŵ2ỹ2, · · · , ŵK ỹK

]T
= Ŵy−Ĉx̂ (35)

where the coefficient matrix Ŵ and IC matrix Ĉ defined as

Ŵ = [ ŵT1 , ŵ
T
2 , · · · , ŵ

T
K ]T , (36)

Ĉ = [ŴH]\ν . (37)

Inserting x̃ in (35) back into (31), the detection model we
operate on is

p̃(y|x)=exp
(
2R
{
x†
(
(I+G)Ŵy−(I+G)Ĉx̂

)}
−x†Gx

)
.

(38)

Note that (38) is a also special case of (4), by identifying

V = (I+G)W̃ ,

R = (I+G)C̃.

The GMI in (8) in this case reads, after some manipulations,

IGMI(G)=K+log
(
det(I+G)

)
+Tr

(
M̂(I+G)

)
, (39)

with M̂ (the updatedM in Method II) defined as6

M̂ = ŴHPĈ
†
+ŴH−PĈ

†(
ŴHPĈ

†
+ ŴH−PĈ

†)†
−Ŵ (HH†

+N0I)Ŵ
†
−ĈPĈ

†
−I, (40)

6It can also be shown that M̂ is the negative of the updated MSE matrix,
i.e., M̂=−E

[
(x−x̃)(x−x̃)†

]
=−E

[
(x−Ŵy+Ĉx̂)(x−Ŵy+Ĉx̂)†

]
.
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FIGURE 4. An graphical overview of Method III with K =4 and ν=1.

The optimal G for (39) is then obtained from Theorem 2, and
the optimal GMI is

IGMI(Gopt) = log
(
det(I+Gopt)

)
.

An graphical overview of Method III for K = 4 and ν= 1
is illustrated in Fig. 4. For any G with memory-size ν, the IC
matrix (I + G)C̃ is zero along the main diagonal, which
guarantees that the extrinsic information will not be used for
current symbols in the IC process. In GMI sense, Method III
will not outperform Method II with R in shape (b), but it can
outperform the GMI of Method II with R in shape (c), as it
can be verified thatR in shape (c) has zeros at positions where
(I+G)Ĉ are also zeros.
Remark 2: Since ŴH − Ĉ = [ŴH]ν and by Lemma 2,

(I +G)(ŴH − Ĉ) is banded within diagonals [−2ν, 2ν].
Therefore, it holds that [(I+G)ŴH]\2ν= [(I+G)Ĉ]\2ν , and
Proposition 4 is also true for Method III where νR=ν.

V. PARAMETER OPTIMIZATION FOR THE ISI CASE
In this section, we extend the CS demodulators to the ISI case
with the block length K being sufficiently large and P=αI .
The formulas for the GMI in (8), (9), and (39) can be directly
applied to (1), but as the rate IGMI depends on K , we consider
an asymptotic rate

Ī = lim
K→∞

1
K
IGMI.

Ideally, in the ISI case the front-end matrix V and IC
matrix R corresponding to linear filtering operations with
infinite taps, but in practice they have finite tap-lengths.
Hence, we analyze the properties of V , R (and also W , T )
with finite numbers of taps and approximate them by band-
shaped Toeplitz matrices. Further, the trellis-representation
matrixG (andF), and channel matrixH are also band-shaped
Toeplitz matrices. Therefore, in the ISI case all matrices we
consider are assumed to be band-shaped Toeplitz matrices,

whose dimensions are sufficiently large such that the asymp-
totic properties can be analyzed. In [55] a complete theoretic
machinery for ISI channels is derived and a result is that as
K →∞ the linear convolution in (1) can be replaced by a
circular convolution.

In the following, we denote the Fourier series introduced
by a band-shaped Toeplitz matrix E with infinitely large
dimensions as E(ω), where E is constrained to zero outside
the middle 2NE+ 1 diagonals, and NE is referred to as the
tap-length of E(ω). The Fourier series E(ω) is defined as

E(ω)=
NE∑

k=−NE

ek exp(jkω)

and specified by a vector

e= [e−NE , . . . , e−1, e0, e1, . . . , eNE ]

where e0 is the element on the main diagonal and ek is the
element on kth lower (k>0) or upper (k<0) diagonal. As all
quantities are evaluated as K grows large, E(ω) approaches
the eigenvalue distribution of E (see [40], [56] for a precise
statement of this result).

We first state Theorem 3, which is an asymptotic version
of Theorem 2 for ISI channels.
Theorem 3: Assume two band-shaped Toeplitz matrices G

and M with infinitely large dimensions satisfying the condi-
tions: [G]\ν = 0, I+G� 0, and M ≺ 0, and define a scalar
function

Ī = 1+
1
2π

∫ π

−π

(
log(1+G(ω))+M (ω)(1+G(ω))

)
dω. (41)

Then, the optimal G(ω) that maximizes Ī is

Gopt(ω)=|u0+ûϕ(ω)|2−1,

where the 1×ν vector

ϕ(ω)= [exp(jω), exp(j2ω), . . . , exp(jνω)]T ,
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and

u0=
1√

τ
†
1τ
−1
2 τ 1−τ0

,

û=−u0τ
†
1τ
−1
2 . (42)

The real scalar τ0, ν×1 vector τ 1, and ν×ν matrix τ 2 are
defined as

τ0=
1
2π

∫ π

−π

M (ω)dω,

τ 1=
1
2π

∫ π

−π

M (ω)ϕ(ω)dω,

τ 2=
1
2π

∫ π

−π

M (ω)ϕ(ω)ϕ(ω)†dω,

respectively. Further, with Gopt(ω) the optimal Ī is

Ī = 2 log(u0). (43)
Proof: As I+G�0, we have 1+G(ω)=|U (ω)|2 where

U (ω)=u0+ûϕ(ω) and û= [u1, u2, . . . , uν]. Then, Ī in (41)
can be written as

Ī = 1+2 log(u0)+
1
2π

∫ π

−π

M (ω)
(
u20+2R{u0ûϕ(ω)}

+ ûϕ(ω)ϕ†(ω)û†
)
dω. (44)

Taking the first order derivatives with respect to both
u0 and û and optimizing them directly yields the opti-
mal solutions in (42). Inserting (42) back into (44) and
after some manipulations, the optimal asymptotic rate is
in (43).

A. METHOD I
The structures of (W ,T ,F) are the same as in
Sec. IV-A, except that now the matrices have infinite dimen-
sions. Applying Szegö’s eigenvalue distribution theorem [56]
to (9), the asymptotic rate equals

Ī
(
W (ω),T (ω),F(ω)

)
= lim

K→∞

1
K
IGMI(W ,T ,F)

=
1
2π

∫ π

−π

(
log
(
1+|F(ω)|2

)
−|F(ω)|2−

L1(ω)
1+|F(ω)|2

)
dω

+
1
π

∫ π

−π

R
{
F∗(ω)

(
W (ω)H (ω)−αT (ω)

)}
dω (45)

where

L1(ω) = |F(ω)W (ω)|2
(
N0+|H (ω)|2

)
+ α|F(ω)T (ω)|2

−2α|F(ω)|2R
{
H (ω)W (ω)T ∗(ω)

}
.

Note that, the Fourier series associated to M and M̃ in (10)
and (11) are

M (ω) =
|H (ω)|2

N0+|H (ω)|2
−1, (46)

M̃ (ω) = α2(M (ω)+ 1)−α. (47)

Further, define a (2NT−ν)×1 vector

φ(ω) =
[
exp

(
−jNTω

)
, . . . , exp

(
−j(ν+1)ω

)
,

exp
(
j(ν+1)ω

)
, . . . , exp

(
jNTω

)]T
, (48)

a (2NT−ν)×1 vector ε1, and a (2NT−ν)×(2NT−ν) Hermitian
matrix ε2 as

ε1=
α

2π

∫ π

−π

M (ω)F∗(ω)φ(ω)dω,

ε2=
1
2π

∫ π

−π

M̃ (ω)|F(ω)|2φ(ω)φ(ω)†

1+|F(ω)|2
dω, (49)

respectively, where NT is the tap-length of T (ω), and ν+1
is the band-size that matrix T is constrained to zero. Then,
we have Proposition 5 with its proof7 given in Appendix H.
Proposition 5: The optimal W (ω) for the asymptotic rate

in (45) is

Wopt(ω) =
H∗(ω)

F∗(ω)(N0+|H (ω)|2)

(
1+|F(ω)|2

+αF∗(ω)Topt(ω)
)
, (50)

and when 0<α≤1, the optimal T (ω) reads

Topt(ω) = −ε
†
1ε
−1
2 φ(ω). (51)

With the optimal W (ω) and T (ω), the asymptotic rate equals

Ī
(
Wopt(ω),Topt(ω),F(ω)

)
=

{
Ī1(F(ω)), α = 0,
Ī1(F(ω))+ δ̄1(F(ω)), 0 < α ≤ 1.

(52)

The functions Ī1(F(ω)) and δ̄1(F(ω)) are defined as,8

Ī1(F(ω)) = 1+
1
2π

∫ π

−π

(
log
(
1+|F(ω)|2

)
+M (ω)

(
1+|F(ω)|2

))
dω, (53)

δ̄1(F(ω)) = −ε
†
1ε
−1
2 ε1. (54)

In ISI case, Method I is not concave and an example is also
provided in Appendix C. Hence, a gradient based optimiza-
tion is used to optimize F(ω) with the optimal Gopt(ω) from
Theorem 3 utilized for initialization. The connection between
the optimal front-end filter W (ω) and the IC filter T (ω) in
Proposition 2 also holds for ISI channels. An asymptotic
version of Proposition 2 is stated in Proposition 6.
Proposition 6: When 0 < α ≤ 1, ak = bk holds for k <
−(ν+1), where

ak =
1
2π

∫ π

−π

F∗(ω)Wopt(ω)H (ω)exp
(
−jkω

)
dω,

bk =
1
2π

∫ π

−π

F∗(ω)Topt(ω)exp
(
−jkω

)
dω.

7Note that, Proposition 5 is the same as [33, Th. 1] that has been derived
for hard feedback symbols.

8Similar to MIMO channels, δ̄1(F(ω)) in (54) is only defined for α 6= 0
which represents the rate increment with soft-information. The same holds
for Method II.
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Proof: As shown in Appendix H, the optimal t̃ in (90)
satisfies

t̃optε2 = −ε
†
1.

With the definitions of ε1, ε2 in (49), this is equivalent to

1
2π

∫ π

−π

M̃ (ω)|F(ω)|2Topt(ω)φ(ω)†

1+ |F(ω)|2
dω

= −
α

2π

∫ π

−π

F(ω)M (ω)φ(ω)†dω. (55)

On the other hand, withWopt in (50) andM (ω), M̃ (ω) defined
in (46) and (47), we have

1
2π

∫ π

−π

(F∗(ω)Wopt(ω)H (ω)−F∗(ω)Topt

−
(
1+|F(ω)|2

))
exp

(
−jkω

)
dω

=
1
2π

∫ π

−π

(M̃ (ω)F∗(ω)Topt(ω)
α

+
(
1+|F(ω)|2

)
M (ω)

)
exp

(
−jkω

)
dω. (56)

Transforming (55) and (56) back into matrix forms, we have
that (20) and (21) hold. Following the same arguments as in
the proof of Proposition 2,F†(WoptH−Ropt) is banded within
diagonals [−ν,K−1]. Therefore, we have

1
2π

∫ π

−π

(
F∗(ω)Wopt(ω)H (ω)

−F∗(ω)Topt(ω)
)
exp

(
−jkω

)
dω=0

whenever k<−(ν+1), which proves Proposition 6.

B. METHOD II
The matrices (V ,R,G) have the same constraints as in Sec.
IV-B while the dimensions of these matrices are infinitely
large. However, as the shape (a) of R in Fig. 3 is not mean-
ingful when N ,K → ∞, it is not considered for ISI case.
Applying Szegö’s eigenvalue distribution theorem to (8),
the asymptotic rate of Method II reads

Ī (V (ω),R(ω),G(ω))

= lim
K→∞

1
K
IGMI(V ,R,G)

=
1
2π

∫ π

−π

(
log
(
1+G(ω)

)
−G(ω)−

L2(ω)
1+G(ω)

)
dω

+
1
π

∫ π

−π

R
{(
V (ω)H (ω)−αR(ω)

)}
dω (57)

where

L2(ω) = |V (ω)|2
(
N0+|H (ω)|2

)
+α|R(ω)|2−2αR

{
H (ω)V (ω)R∗(ω)

}
. (58)

Define a 2(NR−νR)×1 vector

ψ(ω) =
[
exp

(
−jNRω

)
, . . . , exp

(
−j(νR+1)ω

)
,

exp
(
j(νR+1)ω

)
, . . . , exp

(
jNRω

)]T
, (59)

a 2(NR−νR)×1 vector ζ 1, and a 2(NR−νR)×2(NR−νR)
Hermitian matrix ζ 2 as

ζ 1=
α

2π

∫ π

−π

M (ω)ψ(ω)dω,

ζ 2=
1
2π

∫ π

−π

M̃ (ω)ψ(ω)ψ(ω)†

1+G(ω)
dω, (60)

where NR denotes the tap-length of Ropt(ω), and 2νR+1 is the
band-size that R is constrained to zero, and M (ω) and M̃ (ω)
are in (46) and (47), respectively. Then, we have Proposition 7
with the proof in Appendix I, where we also show that R(ω) is
real and correspondingly, matrix R has Hermitian symmetry.

Proposition 7: The optimal V (ω) for (57) is

Vopt(ω) =
H∗(ω)

N0+|H (ω)|2
(
1+G(ω)+αRopt(ω)

)
, (61)

and when 0<α≤1 the optimal R(ω) reads

Ropt(ω) = −ζ
†
1ζ
−1
2 ψ(ω). (62)

With the optimal V (ω) and R(ω), the asymptotic rate equals

Ī
(
Vopt(ω),Ropt(ω),G(ω)

)
=

{
Ī2(G(ω)), α = 0,
Ī2(G(ω))+ δ̄2(G(ω)), 0 < α ≤ 1.

(63)

The functions Ī1(G(ω)) and δ̄2(G(ω)) are defined as

Ī2(G(ω)) = 1+
1
2π

∫ π

−π

(
log
(
1+G(ω)

)
+M (ω)

(
1+G(ω)

))
dω, (64)

δ̄2(G(ω)) = −ζ
†
1ζ
−1
2 ζ 1. (65)

When 0<α≤1, it still needs a gradient based optimization
to find the optimalG(ω) for (64), and the closed-form solution
in Theorem 3 is utilized as the starting point. Similar to the
MIMO case, the asymptotic rate Ī (Vopt(ω),Ropt(ω),G(ω)) is
concave with respect to G(ω), which is shown in Appendix J.
Proposition 8: When 0 < α ≤ 1 it holds that ak = bk for
|k|>ν+νR, where

ak =
1
2π

∫ π

−π

Vopt(ω)H (ω)exp
(
−jkω

)
dω, (66)

bk =
1
2π

∫ π

−π

Ropt(ω)exp
(
−jkω

)
dω. (67)

The connection of the optimal V (ω) and R(ω) stated in
Proposition 8 is an asymptotic version of Proposition 4, and
the proof follows the similar approach as Proposition 6 which
is omitted. We show an example in Fig. 5 to illustrate Propo-
sition 8 with Method II and ν = νR = 1. The Proakis-C [57]
channel is tested at an SNR of 10 dB and α equals 0.1, 0.4
and 0.8, respectively. As νR = 1, bk as defined in (67) is
constrained to zero for 0 ≤ k ≤ 1. As can be seen, ak as
defined in (66) equals bk only for |k|> 2, and when |k| = 2,
ak and bk are not identical. This shows that with the optimal
V (ω) and R(ω), the signal part along the second upper and
lower diagonals that is not considered in G(ω) shall not be

VOLUME 6, 2018 48349



S. Hu, F. Rusek: On the Design of CS Demodulators for Iterative Receivers in Linear Vector Channels

FIGURE 5. Comparison between ak and bk for Method II under Proakis-C
channel h= [ 0.227 0.46 0.688 0.46 0.227 ].

perfectly canceled out. This behavior cannot be seen in [32]
which treats LMMSE-PIC for ISI channels due to ν=νR=0.

C. METHOD III
In Method III, from (39) the asymptotic rate reads

Ī (G(ω)) = lim
K→∞

1
K
IGMI(G)

= 1+
1
2π

∫ π

−π

(
log
(
1+G(ω)

)
+M̂ (ω)(1+G(ω))

)
dω

(68)

where according to (40) it holds that

M̂ (ω) = 2R
{
αŴ (ω)H (ω)Ĉ∗(ω)+Ŵ (ω)H (ω)−αĈ∗(ω)

}
−

|Ŵ (ω)|2

N0+|H (ω)|2
−α|Ĉ(ω)|2−1.

Replacing M (ω) by M̂ (ω), the optimal G(ω) and asymptotic
rate Ī follow from Theorem 3.
Remark 3: Proposition 8 also holds for Method III with

νR=ν, due to the fact that [(I+G)(ŴH−Ĉ)]\2ν=0.

VI. SNR ASYMPTOTICS
In this section, we analyze asymptotic properties of the elabo-
rated CS demodulators, and show that as N0 goes to 0 and∞,
Method II and III are asymptotically equivalent. As Method I
is inferior to Method II in GMI sense, we limit the analysis to
Method II and III, and start with the analysis for the MIMO
case.

The following limits can be verified straightforwardly:

lim
N0→0

M/N0 = −(H†H)−1,

lim
N0→∞

N0(I+M) = H†H . (69)

Further, it also holds that

lim
N0→0

M̃ = P2
− P,

lim
N0→∞

M̃ = −P. (70)

As M̃ should be invertible from the definition of δ2(G) in (26),
we restrict that P≺I .
Lemma 3: When N0→0 and∞, the optimal G for (24) in

Method II satisfies (18), and the following limits hold,

lim
N0→0

[
(N0(I+Gopt))−1

]
ν
= [(H†H)−1]ν, (71)

lim
N0→∞

[
N0Gopt

]
ν
= [H†H]ν . (72)

Proof: When P = 0, from Theorem 2 the optimal G
for (24) satisfies (18). From (69), when N0→ 0 it holds that
M → 0, and when N0→∞ we have M →−I . Therefore,
by the definition of � it holds that

lim
N0→0,∞

d = �vec(MP) = 0.

This implies that the gradient dG(δ2) (showing in (85) in
Appendix F) converges to zero. Hence the differentials of
IGMI(Vopt,Ropt,G) in (24) with P 6= 0 converges to the
those with P = 0. From (18) and (69), the limit (71)
follows.

Next, since

lim
N0→∞

[
N0

(
I−(I+Gopt)−1

)]
ν
= lim

N0→∞
[N0(I+M)]ν

= [H†H]ν, (73)

which shows that I−(I + Gopt)−1→09 as N0→∞. By the
matrix inversion lemma [58], I − (I + Gopt)−1 → Gopt as
N0→∞, and combining it with (73) proves (72).
Lemma 4: In Method II, with the optimal G, when N0→0

the GMI increment δ2(G) in (26) converges to zero with speed
O(1/N0),10 andwhenN0→∞ it converges to zero with speed
O(N 2

0 ), respectively.
Proof: As N0→0, from (69) we have

lim
N0→0

d/N0 = lim
N0→0

�vec(MP/N0)

= −�vec
(
(H†H)−1P

)
.

Based on (70) and Lemma 3, the below equalities hold,

δ2(Gopt) = N0
d†

N0

(
�
(
M̃
∗
⊗
(I+Gopt)−1

N0

)
�T
)−1 d

N0
= O(N0).

On the other hand, as N0→∞, and by the definition of �,
from (69) we also have

lim
N0→∞

N0d = lim
N0→∞

�vec(N0MP)

= lim
N0→∞

�vec
(
N0(I+M)P

)
= �vec(H†HP).

9A matrix A → B or a vector a → b means the non-zero elements of
A−B or a−b converges to zero.

10Two scalars A and B as functions of a variable n converging to each other
with speed O(n) means that there exists a constant C such that lim

n→∞
n|A −

B|<C .
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Again utilizing (70) and Lemma 3, the below equalities hold,

δ2(Gopt) =
1

N 2
0

(N0d†)
(
�
(
M̃
∗
⊗(I+Gopt)−1

)
�T )−1(N0d)

= O(1/N 2
0 ).

Therefore, Lemma 4 holds.
Lemma 5: When both N0→0 and∞, the optimal GMI in

Method III is independent of P and converges to the optimal
GMI with P = 0. Further, (71) and (72) also hold for
Method III.

The proof is given in Appendix K. Combining
Lemmas 3-5, and using the fact thatMethod III andMethod II
are equivalent with P=0, we have the following Theorem 4.
Theorem 4: Assume that P ≺ I , when N0 → 0 and ∞,

the optimal GMI in Method III converges to the optimal GMI
in Method III with P = 0. Further, the optimal GMI in
Method II also converges to the same, with speed O(1/N0)
as SNR increase, and O(N 2

0 ) as SNR decreases, respectively.
The optimal G for both methods has the limits (71) and (72).

From Theorem 4 we know that, except for the case where
one of the elements in the diagonal matrix P is 1, the soft-
feedback information becomes asymptotically insignificant
for the design of the CS parameters. The reason is that, when
N0→0, x̂ is overwhelmed by the noise, while whenN0→∞,
the optimal front-end filter will null out x̂ since the receiver
can perfectly reconstruct the transmitted symbols without the
side-information.
Remark 4: When N0→0 and∞, the optimal CS demodu-

lator is the EZF demodulator defined in Example 1, and the
TMF defined in Example 2, respectively.

With ISI channels, as the same constraint
P = αI≺I shall hold, we make the restriction that α<1. The
asymptotic properties for ISI channels are presented in Corol-
lary 1, which is an asymptotic version of Theorem 4 when
the channel matrix H and CS parameters are band-shaped
Toeplitz matrices with infinite dimensions. The detailed proof
follows the same analysis as for the MIMO case and is
omitted.
Corollary 1: Assume that 0 ≤ α < 1, when N0 → 0 and
∞, the optimal GMI in Method III converges to the optimal
GMI in Method III with α = 0. Further, the optimal GMI in
Method II also converges to the same, with speed O(1/N0)
as SNR increase, and O(N 2

0 ) as SNR decreases, respectively.
The optimalG for both methods has the following asymptotic
properties hold for |k|≤ν:

lim
N0→0

∫ π

−π

1
N0(1+ Gopt(ω))

exp(−jkω)dω

=

∫ π

−π

1
|H (ω)|2

exp(−jkω)dω,

lim
N0→∞

∫ π

−π

N0Gopt(ω) exp(−jkω)dω

=

∫ π

−π

|H (ω)|2 exp(−jkω)dω.

VII. NUMERICAL RESULTS
In this section, we provide numerical results to elaborate
the behaviors of CS demodulators in an iterative detection
and decoding receiver designs. In the considered MIMO
channels, all channel elements are assumed to be indepen-
dent and identically distributed (i.i.d.) complex-valued Gaus-
sian variables with zero-means and unit-variance. Further,
the transmit-power at each transmit-antenna is normalized to
unity. For the ISI case, we use the typical Proakis-C channel
as in Fig. 5.

A. GMI EVALUATION
We first evaluate the GMI under 5×5 MIMO channels with
memory-size ν = 1 for all CS demodulators. We simulate
10000 channel realizations for each SNR point. The GMIs are
comparedwith those of the static CS demodulator [18], which
is equivalent toMethod II with P=0. The channel capacity is
also presented for comparisons. The results of GMI are shown
in Fig. 6. As the quality of soft-information improves beyond
P=0, Method II with νR=0 performs the best among all CS
demodulators, as it has the most degrees of freedom (DoF)
in designing R. Method II with νR = ν is the worst among
Method I and II, whileMethod I is slightly worse thanMethod
II withR of shape (a) in Fig. 3. This is because although the IC
matrix R is of shape (a) in both cases, R in Method II is more
general than in Method I, since the latter one is constrained
to R = F†T . Further, the GMI of Method III is inferior to
Method II as expected.

The results show consistent GMI increments for all CS
demodulators when the feedback quality improves. When P
increases from P = 0 to the ideal case P = I , the channel
capacity becomes inferior to the GMI as the pair (x, ŷ) is
superior to (x, y) for information-transfer.

B. SNR ASYMPTOTIC OF THE GMI
Next, we evaluate the asymptotic properties described in
Theorem 4 under 5×5 MIMO channels. As shown in Fig. 7,
the GMIs of both Method II and III converge to that of
Method III with P=0. In addition, the GMI converges to the
EZF in Example 1 at high SNR, and the TMF in Example 2 at
low SNR, respectively, which are aligned with the limits in
Theorem 4.

C. EXIT CHARTS OF CS DEMODULATORS
In order to predict the dynamics of iterative receivers,
we extrinsic information transfer (EXIT) charts [41], [59]
to analyse iterative receivers. The demodulators and the
decoder measure the output extrinsic information IE based
on a sequence of observations y and a priori mutual
information IA.
In Fig. 8, we evaluate the EXIT charts for CS demodulators

under 4 × 6 MIMO channels with ν = 2 for F and G at
an SNR of 10 dB. With Method II, we test different values
of νR. As can be seen, when νR > ν, the demodulation-
performance is inferior to νR ≤ ν. This is because, the
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FIGURE 6. GMI of the CS demodulators under 5×5 MIMO i.i.d. complex-valued Gaussian channels with ν=1.

FIGURE 7. SNR asymptotic under 5×5 MIMO i.i.d. complex-valued
Gaussian channels with ν=1.

interference outside memory-size ν and inside memory-size
νR is neither considered in the IC nor in the BCJR. Moreover,
with νR ≤ ν the CS demodulators with Method II performs
quite close to each other as well as Method I and III. For
Method II with νR < ν, the interference inside memory-size
ν and outside νR are considered both in the IC and BCJR
processes. However, an interesting observation is that, with
a larger input IA, Method II with νR= 0 is inferior to νR= 1
and νR = 2. Therefore, a conservative and robust approach

FIGURE 8. EXIT charts under 4×6 i.i.d. complex-valued Gaussian MIMO
channels with ν=2 and different values of νR.

with Method II is to set νR = ν such that the interference
is either removed in IC or dealt with in BCJR, to get rid of
potential error-propagation caused by redundant processing
of the same signal part.

In Fig. 9, we show the iterative detection and decoding
trajectories for CS demodulators under Proakis-C channel
with ν = 2 and at an SNR of 10 dB. We use a (7, 5)-
convolutional code [24] with a coded block-length K=2004,
and a random permutation is applied to the coded-bits. As can
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FIGURE 9. Iterative detection and decoding trajectories under Proakis-C
channel at an SNR of 10 dB. The outer code is a (7, 5)-convolutional code
with generator polynomials g0(D)=1+D2 and g1(D)=1+D+D2. The black
curve represents the decoder and the dashed lines are the iterative
detection and decoding trajectories for LMMSE-PIC, Method III and II,
respectively.

FIGURE 10. BLER performance of the LMMSE-PIC, Method I, II, and III,
and MAP under Proakis-C channel with QPSK modulation.

be seen, the CS demodulators with Method II and III are
superior to the LMMSE-PIC demodulator, and the iterative
detection and decoding trajectories are well aligned with the
EXIT charts.

D. LINK PERFORMANCE
We next turn to link-level simulations with turbo codes [60]
where the outer-decoder uses 8 internal iterations. A single
code-block over all transmit symbols is used. At each SNR
point 20000 data-blocks are simulated and the block-error-
ratio (BLER) is measured. In all simulations, maximal three
global iterations are used between the demodulators. The tap-
length of both the front-end fitler and IC filter are set to 8L,
and νR=ν for Method II.

In Fig. 10, we evaluate the BLER under Proakis-C chan-
nel with QPSK symbols and ν = 2 for all CS demodula-
tors. A (1064, 1600) turbo code is used. Note that, at the
first iteration when there is no soft-information, Method II
and III are overlapped with each other. With CS demodu-
lators, the gap to the MAP demodulator is less than 1 dB,

FIGURE 11. BLER performance of the LMMSE-PIC, Method II, and III, and
MAP under 4×6 MIMO channels with QPSK modulation.

while the LMMSE-PIC has a gap to the MAP that is
up to 10 dB. Moreover, Method II performs slightly better
than Method I, and Method III is slightly inferior to both
methods. However, Method III has the advantage of less
computational complexity than the others since all parameters
are in closed-forms.

In Fig. 11, we evaluate the BLER under 4×6 MIMO chan-
nels with QPSK symbols and ν=3 for all CS demodulators.
A (1064,1800)-turbo code is used. As N <K , the LMMSE-
PIC fails [61] at the first iteration due to the lack of sufficient
receive diversity. However, the CS demodulators with ν = 3
significantly improve the performance andwith less than 1 dB
gap to the MAP at 10% BLER. Further, the CS demodulators
with ν = 1 after three iterations is less than 2 dB away from
the MAP. More interestingly, with less complexity, Method
III performs close to Method II.

Finally we remark that for the sake of complexity savings,
the CS parameters do not need to be updated through all
iterations. Once the feedback information quality is good
enough and the changes inP orα are small, the CS parameters
can be kept unchanged in successive iterations.

VIII. SUMMARY
In this paper we have considered the design of CS demodula-
tors for linear vector channels that use a trellis-representation
of the received signal, in combination with interference can-
cellation (IC) of the signal part that is not appropriately mod-
eled by the trellis. In order to reach a trellis-representation,
a linear filter is applied as front-end. It is an extension of
the well studied CS demodulators to iterative receivers and a
generalization of the LMMSE-PIC demodulator to cooperate
with trellis-search in turbo equalization.

We have analyzed the properties of three different methods
for designing optimal CS demodulators, as all of them may
come across as natural CS demodulators. In the used frame-
work, there are three parameters that need to be optimized: the
front-end filter, the IC filter, and the target response. Based on
maximizing the GMI, the first two are solved in closed-forms,
while the third one needs numerical optimizations and simple
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gradient based approaches have been shown to perform well.
In particular, in Method III we have constructed all three CS
parameters explicitly at a cost of small GMI losses.

Numerical results have been provided to illustrate the
behaviors of the proposed CS demodulators. In general,
Method II based on the Ungerboeck model is superior to
Method I based on the Forney model. Method II has the
advantage over Method I that the optimization procedure is
concave. Further, the suboptimal Method III performs close
to Method I and II. An interesting result is that the IC of the
CS demodulators should not perfectly cancel the effective
channel outside the memory-size ν, a property that cannot
be seen in the LMMSE-PIC demodulator as ν = 0. More-
over, we have also analyzed asymptotic properties of the
CS demodulators and showed that Method III converges to
Method II asymptotically when the noise power goes either
zero or infinity.

APPENDIX A
DERIVATION OF THE GMI
By making the eigenvalue decomposition Q3Q†

= G and
letting s = Q†x. As x is assumed to be zero mean complex
Gaussian random vector with covariance matrix I , we can
write p̃(y|x) in (4) as

p̃(y|x) = exp
(
2R
{
s†d

}
−s†3s

)
, (74)

where d=Q†(Vy−Rx̂).We can now evaluate

p̃(y) =
∫
p̃(y|x)p(x)dx

=
1
πK

∫
exp

(
2R
{
s†d

}
−s†3s

)
exp

(
−s†s)ds

=

N∏
k=1

1
1+λk

exp
(
|dk |2

1+λk

)
,

where λk is the kth diagonal element of 3 and dk is the kth
entry of d . Taking the average over y gives

−Ep(y)[log(p̃(y))] = log
(
det(I+G)

)
−Tr

(
L(I+G)−1

)
where the matrix L=E[Qdd†Q†] is given by

L = V (N0I+HH†)V†
−VHPR†

−RPH†V†
+RPR†.

On the other hand, we have

−Ep(y,x)
[
log(p̃(y|x))

]
= Tr(G)−2R

{
Tr(VH−RP)

}
.

Combining the two expectations, the GMI reads

IGMI(V ,R,G)

= log
(
det(I+G)

)
− Tr

(
L(I+G)−1

)
− Tr(G)

+2R
{
Tr(VH−RP)

}
= log

(
det(I+G)

)
−Tr(G)+2R

{
Tr(VH−RP)

}
−Tr

(
(I+G)−1

(
V [HH†

+N0I]V†

−2R
{
VHPR†}

+RPR†)).

APPENDIX B
THE PROOF OF PROPOSITION 1
As the formula of GMI in (9) is quadratic in W and no
constraints apply toW , taking the gradient of IGMI(W ,T ,F)
with respect to W and setting it to zero, the optimal W is
then in (12). Inserting Wopt back into (9) yields, after some
manipulations,

IGMI(Wopt,T ,F)

=K+log
(
det(I+F†F)

)
+Tr

(
T†F(I+F†F)−1F†TM̃

)
+Tr

(
M(I+F†F)

)
+2R

{
Tr
(
PMF†T

)}
. (75)

where M and M̃ are defined in (10) and (11), respectively.
When P=0, (75) equals

I1(F) = K+log
(
det(I+F†F)

)
+Tr

(
M(I+F†F)

)
.

In this case, there is no soft-information available and the
matrix T is not included in the formula. When P 6= 0,
the terms of IGMI in (75) related to T are

f (T )=Tr
(
T†F(I+F†F)−1F†TM̃

)
+2R

{
Tr
(
PMF†T

)}
.

Let tk denote the kth column of T , but with all elements in
rows [k,min(k+ν,K−1)] removed, and define the column
vector t = [tT0 , t

T
1 , . . . , t

T
K−1]

T . Then, by the definition of
indication matrix �, we have

t = �vec(T ).

Similarly, let zk denote the kth column of the matrix FMP
with all elements in rows [k,min(k+ν,K−1)] removed, and
define a row vector z= [ zT0 , z

T
1 , . . . , z

T
K−1 ]

T . Then, we have

z=�vec(FMP)=�
(
(PM∗)⊗IK

)
vec(F).

Finally, defining a Hermitian matrix

B̂1 = �
(
M̃
∗
⊗
(
F(I+F†F)−1F†))�T ,

and with that we can rewrite f (T ) as

f (T )= t†B̂1t+2R{z†t}.

Taking the gradient of f (T ) with respect to t and setting it to
zero yields

topt = −B̂
−1
1 z. (76)

Transferring topt back into Topt gives the optimal T in (13),
and inserting it back into f (T ) gives

f (Topt) = −z†B̂
−1
1 z.

Thus, with the optimal W and T and when P 6= 0 the GMI
equals

IGMI(Wopt,Topt,F)

= K+log
(
det(I+F†F)

)
+Tr

(
M(I+F†F)

)
− vec(F)†D†

(
�
(
M̃
∗
⊗
(
F(I+F†F)−1F†))�T

)−1
Dvec(F).

where

D=�
(
(PM∗)⊗IK

)
.
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FIGURE 12. Non-concaveness of Method I under 5×5 MIMO channel (left
figure) and Proakis-C ISI channel (right figure).

APPENDIX C
NON-CONCAVITY EXAMPLES OF METHOD I
We give two examples to demonstrate the non-concavity of
Method I for both MIMO and ISI cases by assuming that
P = I and α = 1, respectively. The memory-size is ν = 1
and the noise power N0 equals 1 in both cases. A 5×5 MIMO
channel and the Proakis-C ISI channel are used.
Example 4: MIMO case:

H =


2 0 −3 5 4
−5 2 −1 0 2
2 −4 3 3 3
−1 −5 −4 1 2
0 −2 0 5 5

,

F1 =


4.94 4.45 0 0 0
0 0.21 3.85 0 0
0 0 5.56 1.76 0
0 0 0 0.61 7.10
0 0 0 0 2.79

,

F2=


2.03 6.17 0 0 0
0 5.22 3.56 0 0
0 0 7.43 0.73 0
0 0 0 4.98 4.32
0 0 0 0 10.11

.
Example 5: ISI case:

h =
[
0.227 0.460 0.688 0.460 0.227

]
,

f 1 =
[
0.1606 0.9009

]
, f 2 =

[
0.2230 0.2035

]
.

The IGMI(Wopt,Topt,F) in (14) as a function F is plotted
on the left of Fig. 12, while the Ī (Wopt(ω),Topt(ω),F(ω))
in (52) as a function of F(ω) is plotted on the right.
If IGMI(Wopt,Topt,F) and Ī (Wopt(ω),Topt(ω),F(ω)) are con-
cave or convex, the blue curves lie above or below the black
curves, which clearly does not hold in the examples.

APPENDIX D
THE GRADIENT IN METHOD I FOR THE MIMO CASE
In this section we derive the first order differential of the
GMI given in (14) with respect to F. In order to utilize the
differential with respect to a matrix, we use the α-differential

as defined in [62]. Assume a matrix YN ,K with dimension
N × K and a matrix XM ,S with dimension M × S, define
dXY as the α-differential of Y with respect to X . Further,
defining y` and x` as [ y1, y2, · · · , yNK ] = vec(Y )T and
[ x1, x2, · · · , xMS ] = vec(X)T , the α-differential dXY
is

dXY =
∂vec(Y )
∂vec(X)T

=



∂y1
∂x1

∂y1
∂x2

· · ·
∂y1
∂xMS

∂y2
∂x1

∂y2
∂x2

· · ·
∂y2
∂xMS

...
...

...
...

∂yNK
∂x1

∂yNK
∂x2

· · ·
∂yNK
∂xMS


.

The reason for adopting the α-differential is because it
keeps both the chain rule and the product rule. We intro-
duce an NK × NK permutation matrix ZN ,K , which satis-
fies the condition vec(YT ) = ZN ,Kvec(Y ). It is easy to
verify that Z−1N ,K = ZK ,N . In addition, when N = 1 or
K=1, Y is a vector and it holds that vec(YT ) = vec(Y ),
hence, we have ZN ,1 = IN and Z1,K = IK . Furthermore,
by definition it holds that dF(F) = dF(vec(F)) = I , and
dF(F†)=dF

(
vec(F†)

)
=0.

We start by reviewing a few properties [62], [63] of α-
differential below that will be used later, where both matrices
X and Y are functions of F and the dimensions are specified
by subscripts associated to them:

dF(X−1K ,K ) = −(X
−T
K ,K ⊗ X−1K ,K )dFXK ,K

dF(YN ,KXK ,S ) = (XT
K ,S ⊗ IN )dFYN ,K
+ (IS ⊗ YN ,K )dFXK ,S

dF(log(det(XK ,K ))) = vec(X−TK ,K )
T dFXK ,K

dF(YN ,K ⊗ XM ,S ) = (IK ⊗ ZS,N ⊗ IM )

× (INK ⊗ vec(X)dFYN ,K
+ (IK ⊗ ZS,N ⊗ IM )

× (vec(Y )⊗ IMS )dFXM ,S .

The α-differential of I1(F) with respect to F is

dF(I1) = vec((I+F†F)−T )T (IK⊗F†)+vec(F∗MT )T

= vec(FM+F(I+F†F)−†)†. (77)

Defining a K×K matrix B= F(I+F†F)−1F† and an S×S
matrix5=

(
�(M̃

∗
⊗B)�T )−1, the α-differential of δ1(F) with

respect to F is

dF(δ1) = −vec(F)†D†
(
(vec(F)TDT )⊗IS

)
dF(5)

−vec(F)†D†5D, (78)

where

dF(5) = −(5T
⊗5)dF(�(M̃

∗
⊗B)�T )

= −
(
(5T�)⊗ (5�)

)
(IK ⊗ ZK ,K ⊗ IK )

· (vec(M̃∗)⊗ IK2 )dFB (79)
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and

dF(B) = dF
(
I−(I+FF†)−1

)
=
(
(I+FF†)−T

)
⊗
(
(I+FF†)−1

)
dF(I+FF†)

=
(
(I+FF†)−T

)
⊗
(
(I+FF†)−1

)
(F∗⊗IK )

=
(
F∗(I+FF†)−T )⊗(I−B). (80)

Then, defining a K×K matrix

F̃= (I+F†F)−1F†

and a K 4
×K 2 matrix

9 = (IK⊗ZK ,K⊗IK )
(
vec(M̃∗)⊗IK2

)
, (81)

and by combing (77)-(81), we finally have when P 6=0 that

dF
(
IGMI(Wopt,T2pt,F)

)
= dF(I1)+dF(δ1)

= vec
(
FM+F̃

†)†
−vec(F)†D†5D

+ vec(F)†D†((�T5Dvec(F))T⊗
(
5�)

)
9
(
F̃
T
⊗(I−B)

)
.

APPENDIX E
THE PROOF OF PROPOSITION 3
As the formula of GMI in (8) is quadratic in V and no
constraints apply to V , taking the gradient of IGMI(V ,R,G)
with respect to V and setting it to zero, yields the optimal
V in (22). Inserting Vopt back into (8) gives, after some
manipulations,

IGMI(Vopt,R,G)

= K+log
(
det(I+G)

)
+2R

{
Tr(PMR)

}
+Tr

(
M(I+G)

)
+Tr

(
(I+G)−1RM̃R†). (82)

When P=0, (82) equals

I2(G) = K+log
(
det(I+G)

)
+Tr

(
M(I+G)

)
.

Further, when P 6= 0 the terms of IGMI(Vopt,R,G) in (82)
related to R are

g(R)= 2R
{
Tr(PMR)

}
+Tr

(
(I+G)−1RM̃R†).

Let rk denote the kth column of R, with all elements in rows
[max(0, k−νR),min(k+νR,K−1)] removed, and define the
column vector r = [ rT0 , r

T
1 , . . . , r

T
K−1 ]

T . Then, we have

r=�vec(R).

Further, let dk denote the kth column of the matrixMP with
all elements in rows [max(0, k − νR),min(k + νR,K − 1)]
removed, and define the vector d = [ dT0 , d

T
1 , . . . , d

T
K−1 ]

T .
From the definition of d , we have

d = �vec(MP).

Defining a Hermitian matrix B̂2 as

B̂2 = �
(
M̃
∗
⊗(I+G)−1

)
�T ,

we can write f (R) as

g(R) = r†B̂2r+ 2R{d†r}.

Therefore, the optimal r is

ropt=−B̂
−1
2 d. (83)

Transferring ropt back into Ropt gives the optimal R in (23),
and inserting it back into g(R) gives

g(Ropt)=−d†B̂
−1
2 d.

Thus, with the optimal V and R, when P 6=0 the GMI equals

IGMI(Vopt,Ropt,G) = K+log
(
det(I+G)

)
+Tr

(
M(I+G)

)
− d†

(
�
(
M̃
∗
⊗(I+G)−1

)
�T )−1d.

APPENDIX F
THE GRADIENT IN METHOD II FOR THE MIMO CASE
Taking the α-differential of I2(G) with respect to G yields

dG(I2) = vec((I+G)−1+M)†. (84)

Defining an S×S Hermitian matrix

8=
(
�
(
M̃
∗
⊗(I + G)−1

)
�T )−1

and taking the α-differential of δ2(G) with respect toG yields

dG(δ2) = −(dT⊗d†)dG(8)

= (dT⊗d†)(8T
⊗8)dG

(
�
(
M̃
∗
⊗(I + G)−1

)
�T )

=
(
(dT8T )⊗(d†8)

)
(�⊗�)dG

(
M̃
∗
⊗(I+G)−1

)
=
(
(dT8T�)⊗(d†8�)

)
9dG

(
(I+G)−1

)
= −

(
(dT8T�)⊗(d†8�)

)
9
(
(I+G)−T⊗(I+G)−1

)
(85)

where 9 is defined in (81). Combining (84) and (85),
we obtain

dG
(
IGMI(Vopt,Ropt,G)

)
= dG(I2)+dG(δ2)

= vec
(
(I+G)−1+M

)†
−
(
(dT8T�)⊗(d†8�)

)
9
(
(I+G)−T⊗(I+G)−1

)
.

APPENDIX G
THE CONCAVITY PROOF OF METHOD II FOR
THE MIMO CASE
When P=0, as log

(
det(I+G)

)
is concave [64] andTr

(
M(I+

G)
)
is linear in G, the function I2(G) in (25) is concave with

respect to G whenever I+G�0.
The concavity when P 6= 0 can be deduced from the

composition theorem in [64, Ch. 3.6]. For a positive-definite
matrix X , d†X−1d is convex and non-increasing (with respect
to the generalized inequality for positive-definite Hermitian
matrices, see [64], [65]) for any column vector d . Further-
more, since I+G � 0, (I+G)−1 is convex. Since M̃ ≺ 0
X = �

(
M̃
∗
⊗(I+G)−1

)
�T is concave inG. By the composition

theorem, d†
(
�
(
M̃
∗
⊗[I+G]−1

)
�T )−1d is convex, and δ2(G)

is then concave. Therefore, the function IGMI(Vopt,Ropt,G)
in (24) is concave with respect to G whenever I+G�0.
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APPENDIX H
THE PROOF OF PROPOSITION 5
The Fourier series associated to the Toeplitz matrixW is

W (ω) =
∞∑

k=−∞

wk exp(jkω) ,

and the differential of Ī (W (ω),T (ω),F(ω)) in (45) with
respect to wk (where ω is fixed) is

∂ Ī
∂wk
=−

1
2π

∫ π

−π

|F(ω)|2
(
N0+|H (ω)|2

)
W ∗(ω)

1+|F(ω)|2
exp(jkω) dω

+
1
π

∫ π

−π

(
F∗(ω)H (ω)+

α|F(ω)|2H (ω)T ∗(ω)
1+|F(ω)|2

)
× exp

(
jkω

)
dω.

(86)

Since (86) should equal zero for all k , the optimal W (ω) is
given in (50). InsertingWopt(ω) back into (45) yields

Ī (Wopt(ω),T (ω),F(ω))

= 1+
α

π

∫ π

−π

R
{
F∗(ω)T (ω)M (ω)

}
dω

+
1
2π

∫ π

−π

(
log
(
1+|F(ω)|2

)
+
M̃ (ω)|T (ω)F(ω)|2

1+|F(ω)|2
+M (ω)

(
1+|F(ω)|2

))
dω.

(87)

where M (ω) and M̃ (ω) are defined in (46) and (47),
respectively.

When α= 0, the GMI in (87) equals (53) while when 0<
α≤1, the terms related to T (ω) in (87) are

f (T (ω)) =
α

π

∫ π

−π

R
{
F∗(ω)T (ω)M (ω)

}
dω

+
1
2π

∫ π

−π

M̃ (ω)|T (ω)F(ω)|2

1+|F(ω)|2
dω. (88)

As the elements of the main diagonal and the first ν lower
diagonals of matrix T are constrained to zeros, we define the
vector t̃ that specifies the Toeplitz matrix T as

t̃= [ t−NT , . . . t−1, tν+1, . . . , tNT ],

and with φ(ω) defined in (48), the Fourier series T (ω) with a
finite tap-length NT is

T (ω) =
∑

−NT≤k≤NT,k /∈[0,ν]

tk exp
(
jkω

)
= t̃φ(ω). (89)

Further, with ε1, ε2 defined in (49), (88) can be rewritten as

f (T (ω))= t̃ε2 t̃
†
+2R

{
t̃ε1
}
.

Therefore, the optimal t̃ is

t̃opt = −ε
†
1ε
−1
2 . (90)

Inserting t̃opt back into (87)-(89), the optimal T (ω) is then
in (51), and Ī (W (ω),T (ω),F(ω)) with the optimalW (ω) and
T (ω) is given in (52) after some manipulations.

APPENDIX I
THE PROOF OF PROPOSITION 7
The Fourier series associated to the Toeplitz matrix V is

V (ω)=
∞∑

k=−∞

vk exp(jkω)

and the differential of Ī (V (ω),R(ω),G(ω)) in (57) with
respect to vk (where ω is fixed) is

∂ Ī
∂vk
=−

1
2π

∫ π

−π

(
N0+|H (ω)|2

)
V ∗(ω)

1+G(ω)
exp(jkω) dω

+
1
π

∫ π

−π

(
H (ω)+

αH (ω)R∗(ω)
1+G(ω)

)
exp

(
jkω

)
dω. (91)

Since (91) equals zero for all k , the optimal V (ω) is given
in (61). Putting Vopt(ω) in (61) back into (57) yields

Ī (Vopt(ω),R(ω),G(ω))

= 1+
α

π

∫ π

−π

R
{
M (ω)R(ω)

}
dω+

1
2π

∫ π

−π

(
log
(
1+G(ω)

)
+
M̃ (ω)|R(ω)|2

1+G(ω)
+M (ω)

(
1+G(ω)

))
dω. (92)

When α=0, the GMI in (92) equals (64), and when 0<α≤1,
the terms of Ī (Vopt(ω),R(ω),G(ω)) related to R(ω) in (92) are

g(R(ω)) =
α

π

∫ π

−π

R
{
M (ω)R(ω)

}
dω

+
1
2π

∫ π

−π

M̃ (ω)|R(ω)|2

1+G(ω)
dω. (93)

Defining the vector r̃ that specifies the Toeplitz matrix R as

r̃= [ r−NR , . . . , r−νR−1, rνR+1, . . . , rNR ],

and with ψ(ω) defined in (59), the Fourier series R(ω) with a
finite tap-length NR is

R(ω) =
∑

−NR≤k≤NR,k /∈[−νR,νR]

rk exp
(
jkω

)
= r̃ψ(ω) (94)

where 2νR+1 is the band-size that R is constrained to zero.
With ζ 1 and ζ 2 defined in (60), (93) can be written as

g(R(ω))= r̃ζ 2r̃
†
+2R

{
r̃ζ 1

}
.

Therefore, the optimal r̃ is

r̃opt=−ζ
†
1ζ
−1
2 . (95)

This shows that r̃opt has Hermitian symmetry, since G(ω),
M (ω), and M̃ (ω) are all real-valued and Ropt(ω) is thusly real-
valued. Putting r̃opt back into (92)-(94), the optimal R(ω) is
in (62) and Ī (V (ω),R(ω),G(ω)) with the optimal V (ω) and
R(ω) is in (63), respectively.
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APPENDIX J
THE CONCAVITY PROOF OF METHOD II WITH ISI
CHANNELS
In order to prove that Ī (Vopt(ω),Ropt(ω),G(ω)) in (63) is
concave with respect to G(ω), it is sufficient to prove that
ζ
†
1ζ
−1
2 ζ 1 is convex with respect to G(ω). For a positive-

definite matrix ζ 2, ζ
†
1ζ
−1
2 ζ 1 is convex and non-increasing

(with respect to a generalized inequality for positive-definite
Hermitian matrices) in G(ω) for any vector ζ 1 and with
arbitrary finite tap-length NR. As matrix M̃ ≺ 0, ζ 2 in (60)
is concave with respect to G(ω) under the constraint that
I+G � 0 is positive-definite. Hence, ζ †1ζ

−1
2 ζ 1 is convex in

G(ω) by the composition theorem [64].

APPENDIX K
THE PROOF OF LEMMA 5
From Theorem 2, the optimal G in Method III satisfies

[(I+Gopt)−1]ν= −[M̂]ν .

Note that, when P = 0 Method II and III are equivalent as
M̂ =M . Hence, in order to prove Lemma 4, it is sufficient
to show that [M̂]ν converges to [M]ν as N0→ 0 and ∞ in
Method III. When P≺I , Ck�0 in (34), and when N0→ 0,

H†(HCkH†
+N0I)−1H

= C−1k (H†H+N0C−1k )−1H†H

= C−1k
(
I − N0C−1k (H†H)−1

)
+O(N 2

0 ). (96)

Therefore, with Ŵ and Ĉ defined through (33)-(37) and
using (96), it holds that

ŴH = I − N0(H†H)−1 +O(N 2
0 ),

Ĉ = [ŴH]\ν = −N0[(H†H)−1]\ν +O(N 2
0 ). (97)

With (97) and M̂ in (40), it can be verified that

lim
N0→0

[M̂/N0]ν=−[(H†H)−1]ν .

On the other hand, when N0→∞, from (33)-(40) we have

N0Ŵ = H†(HCkH†/N0+I)−1 = H†
+O(1/N0),

N0Ĉ = [ŴH]\ν = [H†H]\ν +O(1/N0). (98)

With (98), it can be verified that

lim
N0→∞

[N0(I+M̂)]ν= [H†H]ν .

Therefore, from (69) it shows that [M̂]ν converges to [M]ν
when N0→0 and∞, which completes the proof.
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