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ABSTRACT This paper proposes a new design of a triple-band dual-polarized indoor base station antenna
for mobile communication systems serving the 2G, 3G, 4G, and the new sub-6 GHz 5G applications. The
design consists of two orthogonal dipole antennas to provide dual polarization. Each dipole consists of three
different radiator types—elliptical dipole, bowtie dipole, and cat-ear shaped arms for different bands. The
proposed antenna offers three broad bands with the fractional bandwidths of 31.3% (0.7–0.96 GHz), 55.3%
(1.7–3 GHz), and 14% (3.3–3.8 GHz) which can be controlled independently. The design also offers stable
radiation patterns within the desired frequency bands, high polarization purity and, a simple feeding structure
with a compact size and low profile which make this new design an ideal candidate for indoor mobile base
stations serving the 2G, 3G, 4G, and the new sub-6GHz 5G applications.

INDEX TERMS Base station antenna, crossed dipoles, dual-polarization antenna, triple-band antenna.

I. INTRODUCTION
As telecommunication vendors look to introduce 5G mobile
communication systems from 2019, base station and mobile
antennas need to evolve to fulfil the new sub-6 GHz 5G fre-
quency bands in addition to the existing 2G, 3G and 4G bands
(0.7-0.96 GHz and 1.7-2.7 GHz). In 2016, the European
Commission (EC) announced its spectrum plan for 5G trials
covering the bands from 3.4 to 3.8 GHz. In 2017, the Chinese
Ministry of Industry and Information Technology (MIIT)
officially declared that 3.3-3.4 (indoor only), 3.4 -3.6 and
4.8-5 GHz bands are allocated for 5G services [1]. For base
station antennas, diversity in space and/or polarization has
been used to improve the signal-to-noise ratio (SNR) and
system performance [2]. Base station antennas should main-
tain good impedance matching within the entire frequency
bands of interest, a stable radiation pattern and also a high
polarization purity (PP) simultaneously [3]. For indoor base
stations where the available spaces to install antennas are lim-
ited, it is favorable to have a single antenna element covering
the frequency bands of interest rather than multi antennas for
multi bands. Many attempts have been done to satisfy the
2G, 3G and 4G applications by a single antenna covering

the frequency bands from 0.7 to 0.96 GHz (B1) and from
1.7 to 2.7 GHz (B2). In [4], dual-polarized performance was
achieved for both bands (B1 and B2) but the impedance band-
widths (BW) were insufficient (0.86 – 096 GHz for B1 and
1.7-1.9 for B2). In [5], the BWs were improved but only a
single polarization was provided which makes the design not
suitable for base station applications. There are many other
designed. For example, in [6]–[8], BWs were much improved
either by using irregular shorted patches as in [6] or dual-
band dipoles as in [7] and [8]. Unfortunately, these reported
designs again are single polarization. In [9], a dual-band dual-
polarized antenna was presented but the BWs are not wide
enough for 2G, 3G and, 4G communication systems. Due
to the introduction of 5G, single-polarized dual-band indoor
base station antennas were reported to cover B2 and the new
sub-6 GHz 5G frequency band from 3.3 to 3.8 GHz (B3).
In [10], a single-polarized dual-band folded dipole antenna
was designed to operate across 2.3-2.5 GHz and 3.1-4.2 GHz.
In [11] and [12], single antennas were produced to cover most
of the frequencies in B2 and B3 simultaneously, from 1.8 to
3.77 GHz in [11] and from 2.4 to 3.6 GHz in [12]. Recently,
an E-shaped triple-band patch antenna was presented in [13]
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to cover B1, B2 and B3 simultaneously. The main draw-
backs of this design are that the BWs are not sufficient
(0.92-0.96 GHz, 1.9-2.2 GHz and, 3.4-3.8 GHz) and it is
single polarization.

This paper proposes a novel design of a dual-polarized
triple-band antenna for 2G, 3G, 4G and, sub-6 GHz
5G indoor base stations covering the frequency bands from
0.7-0.96 GHz, 1.7-2.7 GHz and, 3.3-3.8 GHz simultaneously.
The design consists of two cross dipoles. Each dipole may
be considered as a combination of three different types of
radiator (typically one type for each band); elliptical dipole
(type 1), bowtie dipole (type 2) and cat-ear shaped arms
(type 3). As each radiator parameters can be controlled indi-
vidually, the three bands (B1, B2 and, B3) can be tuned
independently to achieve excellent triple broad performance.

The paper is organized as follows: Section II describes the
proposed antenna configuration and its principle of opera-
tions, Section III discusses its performance and a sensitive
study of its parameters and finally, conclusions are presented
in Section IV.

II. THE PROPOSED ANTENNA DESIGN
A. ANTENNA CONFIGURATION
Fig. 1 illustrates the geometry of the proposed antenna.
Generally, we can describe the geometry as a pair of two
orthogonal crossed dipoles: dipole A and dipole B. Dipole A
consists of an elliptical-shaped dipole (type 1) placed on 45◦

with respect to Y-axis. The two elliptical arms of dipole A are
printed on opposite sides of an FR-4 substrate with relative
permittivity εr = 4.3, tangential loss of 0.025, thickness
of 1.6 mm and side length Ld. The two arms are fed through
a strip (printed on the substrate top layer) and a 50 � coaxial
cable. For practical implementation, a hole in the bottom arm
is drilled to insert the 50 � coaxial feed. The endpoints of
the elliptical dipole are extended to form a bowtie dipole
(type 2) which is placed orthogonally to the ellipse major
axis. Furthermore, a pair of cat-ears (type 3) are added to each
elliptical arm such that the major axes of the two cat-ears are
intersecting at the ellipse center and forming angles of ±45◦

with the ellipse major axis respectively. So, in summary,
we can describe dipole A as a combination of three different
types of radiators; type 1: elliptical dipole, type 2: bowtie
dipole and, type 3: cat-ear arms.

The second crossed dipole (dipole B) is a rotated replica
of dipole A with a relative angle of 90◦ around Z-axis. There
are two major differences between dipoles A and B. The first
difference is that the feeding strip of dipole B is modified.
One part of the strip is printed on the bottom layer of the
substrate, and then is connected to the top parts through two
vias to avoid intersecting with the feeding strip of dipole A.
Each via is fabricated by first drilling a hole through the
FR-4 substrate, then drawing a copper wire through the hole,
and finally by soldering the copper wire to the strip line on
both sides of the substrate. The second major difference is
that one of the cat-ears in the bottom layer is shifted to the top
layer to add a capacitive loading to the input impedance (Zin)

FIGURE 1. The geometry of the proposed antenna.

of dipole B to compensate the inductive effect introduced
by the vias as discussed in detail in the next section. Thus,
the distribution of the cat-ears at dipole B is asymmetric
(three on the top layer and one on the bottom layer) unlike
their symmetric distribution at dipole A (two on each side).
The substrate and dipoles are oriented in the XY plane as
shown in Fig. 1. The substrate is placed above two square
metallic ground reflectors to enable directional radiation,
a large reflector for the lower frequencies band B1 and a small
reflector for the higher frequencies bands B2 and B3. The
large reflector is placed at a height of H1 from the substrate,
with a side length Lg1 and four sidewalls of a height of Hw
while the small reflector is placed at a height of H2 from the
substrate and has a side length Lg2. The substrate and the two
metallic reflectors are concentric and their edges are parallel
to X and Y-axes. The optimized dimensions are determined
as follows (in mm):Ue= 29, Ve= 21.4, Lb= 54,Uc= 11.6,
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FIGURE 2. References and the proposed antenna designs.

Ld =150, H1 = 100, H2 = 30; Hw = 23, Lg1 = 220 and,
Lg2 = 80.

B. ANTENNA PRINCIPLES OF OPERATION
Two reference designs (antenna Ref 1 and antenna Ref 2) can
be employed to understand the working principle of the pro-
posed design as shown in Fig. 2. Initially, antenna Ref 1 was
designed based on the elliptical dipole (type 1) to cover B2 as
it has the widest BW among the three desired bands [14].
The ellipse major and minor axes (Ue and Ve) are selected
such that the shortest current path length from the feeding
point to the end point of the ellipse (Ue) equals to 0.25λB2H
while the longest current path length from the feeding point
to the end point of the ellipse (P) equals to 0.25λB2L (where
λB2H and λB2L are the free space wavelength at the highest
and lowest frequencies of B2 respectively and P is half of the
ellipse circumference). P is related to the axes lengths as:

P = π

√(Ue
2

)2
+
(Ve
2

)2
2

=
λB2L

4
(1)

It is worth noting that all current path lengths from the feed-
ing point to the ellipse end point ranging from the shortest
path Ue to the longest path P are equal to a quarter of the
wavelengths ranging from λB2H to λB2L respectively. Thus,
the dipole length may be considered as a half wavelength for
the all the frequencies within B2.

In antenna Ref 2, a bowtie dipole with a total length of 2Lb
(type 2) is combined with the elliptical dipole. Each arm of
the bowtie dipole is connected to one of the endpoints of the
elliptical dipole and forming 90◦ with respect to the ellipse
major axis. The dimension Lb was initially selected such that

FIGURE 3. Effect of the cat-ear arm position on Zin of dipole B across B3.

the dipoles total length (2Ue+2Lb) equals to 0.5λ0B1 (where
λ0B1 is the free space wavelength of the central frequency
of B1 0.83 GHz). Thus, B1 and B2 are fully covered by a
combinational design of type 1 and type 2.

Furthermore, in the proposed design, the cat-ear arms
(type 3) are combined to the antenna Ref 2. The major axes
of the cat-ear arms form angles of ±45◦ with the ellipse
major axis respectively. Thus, each pair lies on one of two
perpendicular axes (X-axis and Y-axis). The dimension Uc
was initially selected such that the total length of each pair of
cat-ear arms (2Uc) is 0.25λ0B3 (where λ0B3 is the free space
wavelength of the central frequency of B3 3.55 GHz). So,
the triple-band performance is achieved.

As mentioned in the previous section, in dipole B (which
has two vias through the feeding strip), one of the cat-ear
arms should be shifted from the bottom layer to the top layer
to create a capacitive loading and compensate the inductive
effect of the vias. For better understanding of this matter,
Fig. 3 shows three cases of different positions of the cat-
ear arms at dipole B. Case (1) is the initial case where both
cat-ear arms are in the bottom layer of the substrate. So,
B3 is not fully covered with VSWR ≤ 2 (the fully complete
(purple) circle in the middle of the Smith chart) due to the
inductive effect of the vias especially at the stop frequency
of B3 (note that the higher the frequency, the more sensitive
Zin to any inductance change). In case (2), both cat-ear
arms are shifted to the top layer of the substrate to add two
parallel capacitive loadings between them and the elliptical
arm. Thus, Zin across B3 becomes too capacitive especially
at the start frequency of B3 (note that the lower the frequency,
the more sensitive Zin to any capacitive change). Case (3) is
the proposed design where one of the cat-ear arms is printed
on the bottom layer while the other is shifted to the top layer.
In this case, B3 is fully covered with VSWR ≤ 2. It is worth
noting that the vias do not have any significant effect on the
impedance matching across B1 and B2 as their reactance is
too small at these bands.

Fig 4 shows the current distribution across the dipole at
the central frequency of each band. It can be seen that at B1,
the current flows from the feeding point to the terminal points
through bowtie and elliptical dipoles which indicates that
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FIGURE 4. The current distributions at the central frequency of
(a) B1 (b) B2 (c) B3.

TABLE 1. Contributions of the three radiator types to the radiation.

these two radiator types (1 and 2) are the radiators across B1.
On the other hand, the current distribution at B2 is highly
dense around the elliptical dipole while there is a small
current density across the bowtie and cat-ears. Furthermore,
at B3, the current density is high at the cat-ears with small
current density across the elliptical and bowtie dipoles.

Table 1 summaries the contributions of each type of the
three radiator types to the radiation across each band. It is
evident from table 1 that B1 and B3 can be tuned indepen-
dently by controlling the dimensions of the bowtie and cat-
ears respectively. More illustrations will be presented in the
next section.

III. THE PROPOSED ANTENNA RESULTS
To validate the proposed design, a prototype was fabricated
and tested as shown in Fig. 5. The simulation was accom-
plished by using CST microwave studio. Measured results

TABLE 2. The HPBWs, PP and gains of the proposed antenna.

FIGURE 5. A prototype of the proposed antenna (a) side view (b) top view
(c) during measurements.

FIGURE 6. Simulated and measured reflection coefficients.

FIGURE 7. Simulated and measured port-to-port isolations.

of S-parameters, gain, and radiation patterns were obtained
by using a Vector Network Analyzer (VNA) and an anechoic
chamber.
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FIGURE 8. Simulated and measured co- and cross-polarized radiation patterns in (a) H-plane (b) V-plane.

FIGURE 9. The proposed antenna simulated and measured realized gains.

Fig. 6 shows a good agreement between the simulated
and measured reflection coefficients for both ports. For
VSWR ≤ 2, the fractional BWs are 31.3% (0.7-0.96 GHz),
55.3% (1.7 -3 GHz) and, 14% (3.3-3.8 GHz) for B1, B2 and,
B3 respectively. Fig. 7 shows that the measured port-to-port
isolation is better than 27 dB for B1 which meets the general
criteria for base station antennas (typically 25 dB) [15]. For
B2 and B3, isolations are better than 20 dB which ideally
should bemore than 25 dB (thus this is a possible drawback of
this design). This happens because of the high surface current
density formed at the feed point at B2 and B3 (see Fig. 4).

The simulated and measured co- and cross-polarized radi-
ation patterns at the start and stop frequencies of each band
in H-plane (XZ plane) and V-plane (YZ plane) are shown
in Fig. 8. It is apparent that the proposed antenna has a good
agreement in radiation pattern between the simulations and
the measurements. The radiation patterns may have some
distortions at B3. These distortions are due to the large
substrate aperture in terms of λ0B3 (2λ0B3 × 2λ0B3). But,
radiation patterns are still applicable for indoor base station
antenna usage across the three bands. The HPBWs and the

FIGURE 10. Effect of Lb on the reflection coefficient.

FIGURE 11. Effect of Uc on the reflection coefficient.

PP are illustrated in Table 2. Fig. 9 presents the proposed
antenna realized gains at B1, B2 and, B3 in simulation and
measurements.

The antenna has a stable gain across the entire bands. The
average realized gains are tabulated in Table 2. Table 3 dis-
plays a comparison between multi-band indoor base station
antennas performance and the proposed antenna.

For a fair comparison, the size of each antenna is nor-
malized to λL (where λL is the wavelength at the lowest
operating frequency). It is apparent that the proposed antenna
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TABLE 3. Comparison of several multi-band antennas to the proposed antenna.

can operate across the three bands simultaneously with broad
BWs and dual-polarized performance. It also has a relatively
small size. Note that the reported omnidirectional base station
antennas in [7] and [11] have low profiles as they do not have
reflectors.

As mentioned in the previous section, B1 and B3 can be
tuned independently by controlling the parameters of the
bowtie and cat-ear radiators (types 2 and 3) respectively. So,
to optimize the proposed antennaBW, it is necessary to under-
stand how these parameters affect the antenna performance.
Their effects are studied through simulations.

A. EFFECT OF THE BOWTIE DIPOLE LENGTH (TYPE 2)
The first parameter to be studied is the bowtie arm length
(Lb). As has been stated in Table 1, the bowtie dipoles con-
tribute to the radiation across B1 only with a very slight effect
on B2 and B3. Thus, B1 can be controlled independently
from B2 and B3 by changing the length Lb. As noticed
in Fig. 10, when the length Lb increases, B1 is shifted to lower
frequencies while B2 has almost no changes. It has slight
changes in B3 due to the coupling between the bowtie arm and
the closest cat-ear arm. Anyway, there is almost no change in
the BW across B3 due to this coupling. The optimum value
of Lb is found to be 54 mm to cover the whole B1 with
VSWR ≤ 2.

B. EFFECT OF THE CAT-EAR ARM LENGTH (TYPE 3)
The second parameter to be studied is the cat-ear arm
length Uc. Changing Uc does not result in any changes in
B1 and B2. Thus, B3 can be tuned by changing the dimension
Uc as shown in Fig. 11. The optimum value of Uc is found to
be 11.6 mm to fully cover B3.

IV. CONCLUSION
A novel triple-band dual-polarized antenna for mobile indoor
base station has been designed, optimized, fabricated and
measured. It covers the frequency bands from 0.7 to

0.96 GHz, from 1.7 to 3 GHz and, from 3.3 to 3.8 GHz
simultaneously with high PP. The proposed antenna consists
of a combination of three different types of radiators. Typi-
cally one type for each band. The multiband performance is
achieved by optimizing each type which is associated to each
band independently. Because of its multiband performance,
its dual polarization capabilities and small size, the proposed
antenna is an excellent candidate for mobile indoor base sta-
tion which operates over the new sub-6 GHz 5G applications
in addition to the exciting 2G, 3G and, 4G applications.
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