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ABSTRACT Recently, cooperative spectrum sensing (CSS) in cognitive radio networks has been extensively
researched. However, most of the studiesmainly focus onmaximizing the spectral efficiencywhile the energy
consumption is generally ignored. However, since the secondary users (SUs) are usually battery-powered
devices, energy saving is very important. This paper studies the mean energy efficiency (EE) maximization
problem of the CSS system using the hybrid spectrum sharing (HSS) scheme. Specifically, the effects of
imperfect spectrum sensing and reporting channel errors on the EE are considered. Our goal is to maximize
the mean EE of SUs while maintaining the detection accuracy by jointly optimizing the sensing time and the
number of cooperative SUs, subject to the SUs’ average/peak transmission power constraints (ATPC/PTPC)
and minimum data rate constraint, and the average interference power constraint of primary user. To address
the non-convexity of the optimization problem, an energy-efficient iterative power allocation algorithm is
developed. Simulations compare the achievable mean EE under ATPC/PTPC with three hard combining
fusing rules using the HSS scheme and the opportunistic spectrum access (OSA) scheme, respectively; the
results show that our proposed HSS scheme can obtain higher mean EE than the conventional OSA scheme
and that the EE achieved under ATPC is better than that under PTPC. Moreover, among the three hard
combining fusing rules, the Majority rule has the best EE.

INDEX TERMS Cooperative spectrum sensing, energy efficiency, hybrid spectrum sharing, reporting
channel errors, power allocation.

I. INTRODUCTION
With the increasing demand for radio spectrum in wireless
communications, cognitive radio (CR) has been proposed
to increase the spectral efficiency (SE). CR systems allow
secondary users (SUs) (i.e., unlicensed users) to access the
licensed spectrum under the condition that the primary users
(PUs) (i.e., licensed users) are not present or the interfer-
ence caused to PU is tolerable [1]–[3]. Therefore, spec-
trum sensing is required to determine the presence of PU in
cognitive radio networks (CRNs). However, due to channel
impairments, multipath fading or hidden terminal problem,
the detection performance of spectrum sensing by a single
SU may be seriously deteriorated. To mitigate these nega-
tive effects, cooperative spectrum sensing (CSS) has been
proposed to improve the detection accuracy by combining
the sensing information from multiple SUs [4]–[6]. In CSS,

multiple SUs sense the channel status (i.e., idle or busy) inde-
pendently and then report their local hard or soft decisions
to the fusion center (FC). The FC will then make a global
hard or soft decision based on all the received decisions.
As the hard decisions cause less reporting overhead, we focus
on hard decision fusion rules in this paper. However, in CSS,
more SUs participating spectrum sensing will bring more
sensing, reporting and transmission energy consumption,
which can be detrimental to the CRNs as the SUs are mostly
powered by battery with limited energy. Hence, increasing
energy efficiency (EE) is also crucial for CR, which can not
only lower the network cost, but also extend the battery life
and reduce carbon dioxide emissions [7]–[9].

Currently, three spectrum access schemes have been devel-
oped for CR: (i) opportunistic spectrum access (OSA), where
the SUs firstly sense the channel status and then transmit
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only when the channel is detected to be idle. (ii) spectrum
sharing (SS), where the SUs can share the same spectrum
with the PUs, and sensing is not required as long as the quality
of service (QoS) of the PUs is ensured. (iii) hybrid spectrum
sharing (HSS), where the SUs first perform spectrum sensing
to determine the PU’s state and then adapt their transmission
power based on the sensing results. If the PU is detected to
be absent, the SU can access the primary band with a higher
transmit power. Otherwise, it will transmit at a lower power
to guarantee the QoS of the PU. According to [10] and [11],
this scheme is also termed as sensing-based spectrum sharing,
can achieve better performance than OSA and SS. Hence,
we consider HSS scheme in this paper.

Motivated by the above discussion, in this paper, we study
the mean EE maximization problem of SUs for CSS
CR system that operates under the HSS scheme.

A. RELATED WORK
In CRNs, since a single SU may not be able to reliably detect
the presence of PU, CSS has been extensively investigated in
existing works [12]–[21]. The sensing information combina-
tion can be performed in different manners, such as hard com-
bination rule (e.g., AND, OR, and k-out-of-N rule) [13]–[16],
soft combination rule [17]–[20], and weighted data based
fusion rule [21]. In [13], based on the k-out-of-N fusion
rule, the sensing time τ and the fusion parameter k were
jointly optimized to maximize the throughput of SUs for
single-channel CR. In [14], based on the OR fusion rule,
the throughput maximization for a multi-channel CR scenario
was studied and each SUmight have its own energy detection
threshold. In [15], the optimal number of SUs and the optimal
detection threshold were derived to minimize the total of
the global false alarm and missed detection probabilities.
The multiband CSS with imperfect reporting channels was
studied in [16], and the corresponding false alarm and missed
detection probabilities at the FC were derived in terms of the
reporting error probability. The effects of reporting channel
errors on the hard or soft CSS performance were analyzed
in [17]. While a new CSS scheme that could operate with-
out the dedicated reporting channels was proposed in [18].
In [19], the optimal linear combining weights and the optimal
transmit power allocation scheme for SUs were derived to
maximize the detection probability of soft combining CSS.

All the above works mainly focused on the detection per-
formance or the system throughput. However, CSS incurs
more energy consumption as there are more SUs participating
in spectrum sensing. Besides, most of the mobile devices in
CRNs are battery-powered, so EE is vital to the life time of
these terminals. Energy-efficient CSS has been extensively
studied in recent years [22]–[27]. In [24], the k-out-of-N
fusion rule was adopted to maximize the EE by jointly
optimizing k and energy detector threshold in the CRNs.
An iterative algorithm was proposed in [25] to solve the
EE maximization problem for CSS with AND rule by jointly
and individually optimizing transmit power, energy detector
threshold, sensing time and the number of cooperative users.

In [26], the energy-efficient CSS and transmission in multi-
channel CRNs was designed. In [27], the EE maximization
problem for CSS in cognitive sensor networks was investi-
gated under the constraint on the detection performance.

However, works [24]–[27] assumed that the SU could
access the licensed spectrum only when the PU is detected
to be absent, known as the OSA scheme. On the other
hand, [28]–[31] assumed that the SU could coexist with
the PU as long as the interference caused to PU is tolerable,
known as the SS scheme. To further improve SE, HSS, which
can be seen as a hybrid scheme of OSA and SS, has drawn
considerable attention recently [32]–[35]. In HSS, the SUs
first sense the channel status and then initiate data transmis-
sion with two power levels according to the sensing results.
In [32], the ergodic throughput maximization of CR working
at the wideband HSS scheme and the wideband OSA scheme
were studied and compared by designing the optimal sens-
ing time and optimal transmit power. The problem of the
energy consumption minimization in CRNs under a multi-
band HSS scheme was investigated in [33] by designing the
power allocation strategy. In [34], an iterative power control
algorithmwas proposed to maximize the EE for a HSS cogni-
tive small cell network. In [35], energy-efficient power adap-
tation schemes were developed for HSS CR system under the
constraints of average/peak transmit power and average/peak
interference power with imperfect spectrum sensing. Never-
theless, in works [32]–[35], only single spectrum sensing was
considered and the proposed schemes could not be directly
applied in the cognitive cooperative communication.

B. MOTIVATION AND CONTRIBUTIONS
As mentioned above, there were few studies considering
the utilization of HSS scheme with CSS in CRNs under
imperfect reporting channels. Besides, the EE analysis and
comparison between the OSA scheme and the HSS scheme
under different power constraints were seldom investigated.
Motivated by these concerns, in this paper, we study the mean
EE maximization problem of CSS with imperfect reporting
channels using the HSS scheme. The effects of imperfect
spectrum sensing and reporting channel errors on the EE are
analyzed [34], [37]. The EEs of two spectrum access schemes
(HSS and OSA) under SUs’ average transmission power
constraints (ATPC) and peak transmission power constraints
(PTPC) are also analyzed. The main contributions of our
work are summarized as follows:
• First, we have considered a new energy-efficient
CSS scenario with imperfect reporting channels using
the HSS scheme for the first time. Specifically, we set
minimum data rate requirements for SUs to ensure their
QoS and impose an average interference power con-
straint (AIPC) on the primary receiver (PR) to protect
the PU from harmful interferences.We have then formu-
lated the mean EE maximization problem of SUs while
maintaining the detection accuracy by jointly optimizing
the sensing time and the number of cooperative SUs,
subject to SUs’ ATPC/PTPC and data rate constraint,
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and PU’s AIPC. The mean EE maximization problem
under this scenario has not considered before.

• Second, to address the non-convexity of the optimization
problem, based on the fractional programming theory
and Dinkelbach’s method [40], we have transformed
the optimization problem into an equivalent parameter-
ized concave problem, and an energy-efficient iterative
power allocation algorithm has been developed to obtain
the optimal transmission powers of SUs.

• Third, extensive numerical results have been presented
to compare and analyze the EEs of the proposed HSS
scheme and traditional OSA scheme under ATPC/PTPC
with three hard combining fusing rules. The impacts of
the detection accuracy and the reporting channel errors
on the EE have also been analyzed.

The rest of this paper is organized as follows. Section II
introduces the system model. Section III defines the EE
of SUs in the presence of imperfect spectrum sensing.
Section IV formulates the mean EE maximization problems
subject to the constraints of average/peak transmit power and
average interference power and the corresponding optimal
power allocation strategies are derived. Simulation results
and performance comparisons are provided in Section V.
Finally, the conclusions are drawn in Section VI.

Table 1 summarizes the acronyms that used in this paper.

TABLE 1. Acronyms used in the paper.

II. SYSTEM MODEL AND PRELIMINARIES
A. SYSTEM MODEL
As shown in Fig. l, we consider a centralized CRN composed
of one PU, K SUs and one FC. The sensing and reporting
channels are imperfect.

During the sensing period, K SUs independently perform
spectrum sensing to detect the PU’s state and make their own
binary decisions. Then, through dedicated reporting channels,
SUs will forward their local decisions to the FC. Finally,
according to specific fusion rules, the FC makes a global
decision to judge the presence of the PU. If the FC decides

FIGURE 1. System model.

that the PU is absent, at the moment of data transmission,
one of the SUs will transmit data with a higher power P0,
otherwise, the SU will transmit data with a lower
power P1 [10], [24]. In such a HSS scheme, the SUs take
full advantage of the idle and busy bands, thus the SE can be
improved.

The frame structure of CSS is shown in Fig. 2. The total
frame length is kept fixed and denoted by T and consists
of three parts: sensing time τ , reporting time Tr and data
transmission time Td . Intuitively, longer sensing time will
enhance the sensing performance, however, with a fixed
frame period, the data transmission time will be shorten.
Therefore, the sensing-throughput tradeoff problem was for-
mulated in [36], and it was proved that there indeed exists an
optimal sensing duration to maximize the throughput of SUs
while providing PU with its desired interference protection.

FIGURE 2. The frame structure of CSS.

Denote yi(n) is the nth received signal sample at the ith
SU during the sensing period, the spectrum sensing problem
can be formulated as a binary hypothesis test: Hypothesis H0
(the PU is absent) and HypothesisH1 (the PU is present) [15]

H0 : yi(n) = wi(n) n = 1, 2, · · · ,N (1)

H1 : yi(n) = si(n)+ wi(n) n = 1, 2, · · · ,N (2)

where wi(n) is the circularly symmetric complex Gaussian
noise with zeromean and variance σ 2

n at the ith SU, si(n) is the
PU signal received at the ith SU. N is the number of samples,
N = τ fs, fs is the sampling frequency.
Energy detector is adopted at each SU to detect the primary

signal [15]. The test statistic of the received signal energy
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at SU i is given by

Y =
1
N

N∑
n=1

|yi(n)|2 (3)

Based on the test statistic, each SU makes its own deci-
sions. The local false alarm probability pif and detection
probability pid at the ith SU can be respectively approximated
as [36]

pif = Pr(Y > εi | H0) = Q
(( εi
σ 2
n
− 1

)√
τ fs
)

(4)

pid = Pr(Y > εi | H1) = Q
(( εi
σ 2
n
− γ − 1

)√ τ fs
2γ + 1

)
(5)

where i ∈ {1, 2, · · · ,K }, Q(x) = 1
√
2π

∫
∞

x e−
t2
2 dt , εi

is the energy detector threshold of the ith SU. γ is the
received average signal-to-noise ratio (SNR) of PU’s signal
measured at the SUs. For a target detection probability pd ,
the false alarm probability can be expressed as pf (τ ) =
Q
(√

2γ + 1Q−1(pd )+ γ
√
τ fs
)
, where Q−1(x) is the inverse

function of Q(x).

B. COOPERATIVE SPECTRUM SENSING
In this paper, we assume that the channels are block flat-
fading and the distances between SUs are much smaller than
the distance from any SU to the PU such that the SUs expe-
rience almost the same path loss, and the average SNR γ of
the PU’s signal received at the SUs are identical.

A CSS scheme generally performed in two successive
stages, namely, the sensing and reporting phases. In the sens-
ing phase, each SU individually performs spectrum sensing
and makes a binary decision di to determine the presence
of PU. If the PU is detected to be present, sets di = 1,
otherwise, sets di = 0. Then, in the reporting stage, all SUs
forward their one bit of the decision di to the FC. Finally,
the FCwill fuse all 1-bit decisions together according to logic
rule

D =
K∑
i=1

di

{
≥ k, H1,

< k, H0.
(6)

where k is the counting threshold ranging from 1 to K ,
(6) means that if the number of the SUs who supports H1
is greater than k , H1 would be drawn, otherwise H0 would be
drawn. In (6), it can be seen that the case of k = 1 corresponds
to the OR rule, the case of k = K corresponds to the AND
rule, and the case of k > K/2 corresponds to the Majority
rule [15], [36]. That is, for OR rule, the FC declares that the
PU is present when at least one local decision says that the
PU is present. For AND rule, the FC declares that the PU is
present when all the local decisions say that the PU is present.
For Majority rule, the FC declares that the PU is present if
half or more of the decisions say that the PU is present.

In practice, the reporting channels between the SUs and
the FC are always subject to the fading effects, it is impos-
sible for the FC to receive decisions from SUs without

any error. Hence, we consider reporting channel errors in the
system model, suppose the reporting channel error probabil-
ity between the ith SU and the FC is pie, then the effective
false alarm and detection probabilities of the ith SU at the
FC are respectively [37]:

pife = pif (1− p
i
e)+ (1− pif )p

i
e = f (pif , p

i
e) (7)

pide = pid (1− p
i
e)+ (1− pid )p

i
e = f (pid , p

i
e) (8)

where f is a function defined as f (a, b) = a(1−b)+ (1−a)b.
Assume a common energy detector threshold ε is used

across all the SUs and each SU experiences identical but inde-
pendent reporting channel fading, we have, pif = pf , pid = pd
and pie = pe, ∀i. Besides, let Sp ∈ {0(idle), 1(busy)} denotes
PU’s actual state, Sfc ∈ {0(idle), 1(busy)} denotes the final
decision at the FC, Qfe = Pr{Sfc = 1 | Sp = 0} and
Qde = Pr{Sfc = 1 | Sp = 1} are defined as the global
false alarm probability and the global detection probability,
respectively. Based on the above assumptions and analysis,
Qfe and Qde can be given by [37]

Qfe =
K∑
i=k

(
K
i

)
(pfe)i(1− pfe)K−i (9)

Qde =
K∑
i=k

(
K
i

)
(pde)i(1− pde)K−i (10)

where Qde denotes the probability that the FC correctly iden-
tifies a busy channel as the busy state, whereasQfe denotes the
probability that the FC falsely identifies a free channel as the
busy state. It is evident that a high Qde limits the interference
from SUs to the licensed users and a low Qfe means more
spectrum opportunities can be utilized by the SUs when they
are available.

In general, to protect the QoS of PU, the global detection
probability Qde should be above a certain threshold, say, 0.5.
Meanwhile, to guarantee the opportunistic spectrum access
of SUs, the global false alarm probabilityQfe should be under
a prescribed threshold, e.g. Qfe ≤ 0.5 [43].

III. ENERGY EFFICIENCY
Let 8H0 = Pr{Sp = 0} and 8H1 = Pr{Sp = 1} respectively
denote the probabilities that the PU is absent and present.
Since spectrum sensing is imperfect, four different scenarios
may occur, based on the PU’s actual state Sp and the FC’s
final decision Sfc, as shown in table 2:

TABLE 2. Possible scenarios and transmission power.

S1 {Sp = 0, Sfc = 0}: In this scenario, the PU’s idle
state is correctly decided by the FC with the probability
8H0 (1−Qfe). Then, in the data transmission stage, one of the
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SUs will adopt a higher power P0 to transmit data. The total
average energy consumption Etot within a frame includes the
energy consumed during the local sensing, local result report-
ing and data transmission by all the SUs as well as the circuit
power Pc, and can be given by kPsτ + kP0Tr +P0Td +PcT ,
where Ps denote the sensing power, Td = T − τ − kTr .
S2 {Sp = 0, Sfc = 1}: In this case, the PU’s idle state is

falsely decided by the FC as the busy state with the proba-
bility 8H0Qfe. Then, in the data transmission stage, one of
the SUs will adopt a lower power P1 for data transmission.
The energy consumption is kPsτ + kP1Tr + P1Td + PcT .
S3 {Sp = 1, Sfc = 0}: This scenario denotes that the PU’s

busy state is falsely decided by the FC as idle with the
probability 8H1 (1 − Qde). Then, in the data transmission
stage, one of the SUs will adopt a higher power P0 to transmit
data. The energy consumption is the same as S1.

S4 {Sp = 1, Sfc = 1}: This is the case where the PU’s
busy state is correctly decided by the FC with the probabil-
ity 8H1Qde. Then, in the data transmission stage, one of the
SUs will adopt a lower power P1 for data transmission. The
energy consumption is the same as S2.

In scenarios S1 and S4, the FC makes correct decisions,
while the second scenario S2 is false alarm, and the third
scenario S3 is mis-detection. Let θ0, θ1, w0, and w1 respec-
tively denote the above mentioned four probabilities: θ0 =
8H0 (1 − Qfe), θ1 = 8H0Qfe, w0 = 8H1 (1 − Qde), and
w1 = 8H1Qde, define ϕ0 and ϕ1 as the probability that the
PU is deemed to be inactive and active by the FC, respectively.
Then we get:

ϕ0 = θ0 + w0 (11)
ϕ1 = θ1 + w1 (12)

In addition, ρ0 and ρ1 indicate the probability that an
occupied channel is deemed available or occupied by the FC
and can be expressed as

ρ0 = Pr{Sp = 1 | Sfc = 0} =
w0

θ0 + w0
(13)

ρ1 = Pr{Sp = 1 | Sfc = 1} =
w1

θ1 + w1
(14)

Based on the above analysis, Etot can be given by

Etot =kPsτ+ (kTr + Td )E{ϕ0P0+ϕ1P1}+PcT (15)

The achievable average throughput Rtot is defined as the
average successfully transmitted data by all the SUs in one
frame. Rtot can be approximated by [25], [35]:

Rtot = R0+R1 (16)

where

R0= Tdϕ0E
{
log2 (1+

gssP0
ρ0σ 2

s +σ
2
n
)
}

(17)

R1= Tdϕ1E
{
log2 (1+

gssP1
ρ1σ 2

s +σ
2
n
)
}

(18)

where k is the number of cooperative SUs, R0 and R1
respectively denote the achievable data rate of SUs when

Sfc = 0 or Sfc = 1, gss denotes the instantaneous channel
power gain from secondary transmitter (ST) to secondary
receiver, E{·} is the expectation operation with respect to the
channel power gains, σ 2

s is the variance of the received fading
signal of PU.

The mean EE of SUs is defined as the ratio of the achieved
average throughput to the total power consumption in a time
slot, and can be expressed as

EE=
Rtot
Etot

(19)

Based on this definition, it can be seen that EE is a com-
prehensive metric to assess the system performance, since the
throughput, the overall energy consumption and the global
detection accuracy are all inherently considered in the metric.
Hence, it attains a balance between the different facets of the
system performance.

IV. ENERGY-EFFICIENT POWER ALLOCATION STRATEGY
Since the priority of a CRN is to protect the QoS of PUs,
the design of the power allocation strategies of SUs should
consider the interference caused to PUs for protect the PUs’
normal communication. In [38], it was proved that imposing
an AIPC on the primary link could not only better protect PU
communication but also provide SU with the higher capacity
than imposing a peak interference power constraint. Hence,
we consider AIPC in this paper. In addition, two types of
power constrains of the SUs are usually applied [39]. One
is the ATPC to keep the long-term power budget of SUs,
the other is the PTPC which is related to the nonlinearity of
power amplifiers. PTPC ismore rigorous thanATPC and their
impacts on the EE are separately studied below.

A. AVERAGE TRANSMIT POWER CONSTRAINT AND
AVERAGE INTERFERENCE POWER CONSTRAINT
In this subsection, we study the optimal power allocation
strategy to maximize the mean EE of HSS CR under the
ATPC at the ST and the AIPC at the primary receiver (PR).

Under the condition that the primary communication is
protected, our goal is to maximize the mean EE while main-
taining the detection accuracy by jointly optimizing the sens-
ing duration and the number of cooperative SUs, subject
to the constraints of SUs’ average transmit power and date
rate, and PU’s average tolerable interference power. Thus,
the optimization problem is formulated as follows:

P1 : max
τ,k,P0,P1

EE(τ, k,P0,P1) =
Rtot (τ, k,P0,P1)
Etot (τ, k,P0,P1)

(20)

s.t. Qde ≥ Q̄de (20a)

Qfe ≤ Q̄fex (20b)

0 ≤ τ ≤ T − kTr (20c)

0 ≤ k ≤ K (20d)

TdE{ϕ0P0 + ϕ1P1} ≤ Pav (20e)

TdE{[w0P0 + w1P1]gsp} ≤ Iav (20f)

Rtot ≥ Rmin (20g)

P0 ≥ 0, P1 ≥ 0 (20h)
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where Q̄de is the minimum detection probability that the
FC needs to achieve to protect the PU, Q̄fe is the upper
limit of the false alarm probability, Pav is the maximum
average transmission power limit of the SUs, Iav is the max-
imum average interference power that the PU can tolerate,
Rmin denotes the minimum data rate demands of SUs, gsp is
the channel power gain from ST to PR.

Constraints (20a) and (20b) set the global detection
probability and the global false alarm probability, respec-
tively. Constraints (20c) and (20d) are effective ranges of
the spectrum sensing time and number of cooperative SUs,
respectively. Constraint (20e) restricts the SUs’ maximum
average transmit power for keep the long-term power budget
of the SUs. Constraint (20f) specifies that the interference
caused to the PU cannot exceed its threshold for protect
the primary transmission. Constraint (20g) sets the SUs’
minimum data rate requirements. Constraint (20h) is the non-
negative transmit power constraints of SUs.

Problem P1 can achieve the maximum when con-
straint (20a) is at equality for any given pair of k and τ .
A similar conclusion is also proposed in [25] and [26]. For
any given pair of k and τ , the energy detection threshold ε
that is able to satisfy Qde = Q̄de can be determined
by

ε(τ, k) = σ 2
n

[√
2γ + 1
τ fs

Q−1(
p̄de(k)− pe
1− 2pe

)+ γ + 1

]
(21)

substituting (21) into (4), (7) and (9), the effective false alarm
probability pfe and the global false alarm probability Qfe can
be derived. When k = K , With Qde = Q̄de,Qfe ≤ Q̄fe,

we have τ ≥ τ1, where τ1 =
(Q−1(φ)−√2γ+1Q−1(ψ)

γ
√
fs

)2, φ =
k
√
Q̄fe−pe
1−2pe

, and ψ =
k
√
Q̄de−pe
1−2pe

. In general, constraints (20a)

and (20b) can be satisfied at the same time, andQde is chosen
to be close to but less than 1, especially in low SNR. For the
SNR of −20 dB, we set Q̄de = 0.9 to ensure the detection
performance.

Note that in Problem P1, constraints (20e), (20f) and (20g)
are composed of products of the data transmission time
T − τ − kTr , the transmit powers P0 and P1, and the global
detection probability Qde (or the global false alarm proba-
bility Qfe). Both Qde and Qfe are determined by the sensing
duration τ , the number of cooperative SUs k and the report-
ing error probability pe. Due to the complicated coupling
among the optimization variables, Problem P1 is non-convex,
we cannot use the convex optimization techniques to acquire
the optimal sensing time. However, since τ lies within the
interval (0,T − kTr ), it can be easily obtained by using the
exhaustive searching method [32], [33].

Besides, considering the imperfect reporting channels,
the analysis of CSS is more complex. When the number
of cooperative SUs k is small, the advantage of CSS is
not significant. When the k is large, the energy consumption
increases and the adverse effects on the throughput may
be accumulated due to the errors in reporting local results.

Thus, there exists an optimal k to maximize the EE of
SUs in CRN. No closed-form solution for k is available in
this optimization problem. However, since k is an integer
within the interval [1,K ], the exhaustive searching method
can be used to get the optimal k , which can be expressed
as [13], [26]

k∗ = argmax
k

EE(τ, k,P0,P1) (22)

Therefore, in the following, we mainly investigate the opti-
mal power allocation strategy that maximizes the mean EE
with specific k and τ .

Given the k and τ , Problem P1 can be reformulated as

P2 : max
P0,P1

EE(P0,P1) =
Rtot (P0,P1)
Etot (P0,P1)

s.t. (20e)-(20h) (23)

Problem P2 is quasi-concave because Rtot (P0,P1) is con-
cave with regard to the transmission powers and Etot (P0,P1)
is an affine function [41]. We use fractional program-
ming to transform Problem P2 into a convex one and
reformulate P2 as P3:

P3 : max
P0,P1

F(η) = Rtot (P0,P1)− ηEtot (P0,P1)

s.t. (20e)-(20h) (24)

where η is a nonnegative parameter. The relation between
P2 and P3 is given in Lemma1, and the detailed proof is
provided in [40].
Lemma 1: η∗ and P∗0,P

∗

1 are respectively the optimal
mean EE and the optimal transmission powers of P2 if and
only if

P∗0,P
∗

1 = arg max
P0,P1
{Rtot (P0,P1)−η∗Etot (P0,P1)|P0,P1∈S}

(25)

F(η∗) = F(η∗,P∗0,P
∗

1) = 0 (26)

where S is the feasible zone of P0,P1 in P2. From Lemma 1,
we can see that at the optimal η∗, P2 and P3 have the same
solution. Thus, by searching the optimal power of P3 for a
given η and then update η until (26) is satisfied, P2 can be
solved and its optimal EE is equal to η∗. Since F(η) is a
concave function of P0 and P1 with a fixed η, the optimal
power can be obtained by forming the Lagrangian function
of P3 as

L(P0,P1, η, µ, ν, ξ ) = Rtot (P0,P1)− ηEtot (P0,P1)

−µ
(
TdE{ϕ0P0 + ϕ1P1} − Pav

)
− ν

(
TdE{(w0P0 + w1P1)gsp} − Iav

)
+ ξ

(
Rtot − Rmin

)
(27)

where µ, ν, and ξ are the nonnegative Lagrange mul-
tipliers related to (20e), (20f), and (20g), respectively.
According to the Karush-Kuhn-Tucker (KKT) conditions,
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letting ∂L
∂P0
= 0, ∂L

∂P1
= 0, the optimal values of P0 and P1

are derived as

P∗0 =
[ ϕ0(1+ξ )(
(η+µ)ϕ0+νw0gsp

)
ln 2
−
ρ0σ

2
s+σ

2
n

gss

]+
(28)

P∗1 =
[ ϕ1(1+ξ )(
(η+ µ)ϕ1 + νw1gsp

)
ln 2
−
ρ1σ

2
s +σ

2
n

gss

]+
(29)

where [x]+ = max{x, 0}. To obtain the optimal Lagrange
multipliers µ, ν, and ξ , we utilize the sub-gradient
method [42] to iteratively update µ, ν, and ξ in the sub-
gradient direction with a suitable step size s until convergence
as follows

µ(n+1)
=

[
µ(n)
−s
(
Pav−TdE{ϕ0P0 + ϕ1P1}

)]+
(30)

ν(n+1)=
[
ν(n)−s

(
Iav−TdE{[w0P0 + w1P1]gsp}

)]+
(31)

ξ (n+1)=
[
ξ (n)−s

(
Rtot−Rmin

)]+
(32)

where n refers to the iteration index. When s is constant,
the sub-gradient method is guaranteed to converge to the
optimal value.

By iterating Eqs. (28)-(32), the optimal transmission pow-
ers P∗0 and P∗1 are solved until F(η) ≤ δ2 is satisfied.
When F(η) = 0 in Eq. (26), the solution is optimal.
Otherwise, a δ2 optimal solution is achieved. To find the
optimal η∗ of P2, the fast converging Dinkelbach’s algorithm
is adopted to tackle the fractional programming problem [40].
Algorithm 1 describes the proposed energy-efficient iterative
power allocation algorithm.

In Algorithm 1, the optimal power allocation process for
P2 is divide into the outer iteration and the inner iteration.
The outer iteration is exploited to find the EE η(i), and the
inner iteration is used to acquire the powers P∗0 and P∗1 for a
fixed η(i).

B. PEAK TRANSMIT POWER CONSTRAINT AND AVERAGE
INTERFERENCE POWER CONSTRAINT
In this subsection, we consider the PTPC at the ST instead
of the ATPC for EE maximization, while the interference at
the PR still adopt the AIPC. PTPC restricts the instantaneous
transmit power of the ST. Therefore, compared to the ATPC,
PTPC corresponds to a stricter constraint.

Let Pk,0 and Pk,1 denote the peak transmit power limits
of P0 and P1, respectively, and substitute (20e) with PTPC,
then Problem P1 is rewritten as P4

P4 : max
τ,k,P0,P1

EE(τ, k,P0,P1) =
Rtot (τ, k,P0,P1)
Etot (τ, k,P0,P1)

(33)

s.t. P0(gss, gsp) ≤ Pk,0 (33a)

P1(gss, gsp) ≤ Pk,1 (33b)

(20a)-(20d), (20f)-20(h) (33c)

Similarly, according to the way to solve P1,
Problem P4 is first reformulated as P5 with fixed k and τ as

Algorithm 1 Energy-Efficient Iterative Power Allocation
Algorithm

1: given: the iteration index i = 0, j = 0,M = (T−kTr )
1τ

, 1τ
is the step-size of sensing time, and the error tolerances
δ1 > 0, δ2 > 0;

2: Initialization: Qde = Q̄de, η(0) = η0, µ(0)
= µ0, ν

(0)
=

ν0, ξ
(0)
= ξ0, s > 0;

3: for k = 1 : K do
4: for m = 1 : M do
5: τ = m1τ ;
6: repeat
7: calculate P∗0 and P∗1 using (28) and (29), respec-

tively;
8: update µ, ν, and ξ via sub-gradient method as

follows:
9: repeat
10: µ(j+1)

=
[
µ(j)

− s
(
Pav −

TdE{ϕ0P0 + ϕ1P1}
)]+;

11: ν(j+1) = [ν(j) − s
(
Iav −

TdE{[w0P0 + w1P1]gsp}
)
]+;

12: ξ (j+1) = [ξ (j) − s(Rtot − Rmin)]+;
13: j = j+ 1;
14: until |µ(j)(Pav − TdE{ϕ0P0 + ϕ1P1})| ≤ δ1,

|ν(j)
(
Iav − TdE{[w0P0 + w1P1]gsp}

)
| ≤ δ1, and

|ξ (j)(Rtot − Rmin)| ≤ δ1
15: η(i+1) =

Rtot (P∗0,P
∗

1)
Etot (P∗0,P

∗

1)
;

16: i = i+ 1;
17: until |F(η(i))| ≤ δ2
18: end for
19: end for
20: return η∗ = η(i).

follows

P5 : max
P0,P1

EE(P0,P1) =
Rtot (P0,P1)
Etot (P0,P1)

(34)

s.t. P0(gss, gsp) ≤ Pk,0 (34a)
P1(gss, gsp) ≤ Pk,1 (34b)
(20f)-20(h) (34c)

After transforming Problem P5 into an equivalent
parametrized concave form, according to the same steps as in
Subsection A, the optimal power allocation under the PTPC
and the AIPC are determined as follows

P∗0 =


Pk,0 gsp ≤ B0

ϕ0(1+ ξ )(
ηϕ0 + νw0gsp

)
ln 2
−
σ 2
n +ρ0σ

2
s

gss
B0<gsp<A0

0 gsp≥A0
(35)

P∗1 =


Pk,1 gsp ≤ B1

ϕ1(1+ ξ )(
ηϕ1 + νw1gsp

)
ln 2
−
σ 2
n + ρ1σ

2
s

gss
B1<gsp<A1

0 gsp≥A1
(36)
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where

Aj =
1
1j

[ ϕjgss(1+ ξ )
(ρjσ 2

s+ σ
2
n ) ln 2

− ηϕj

]
(37)

Bj =
1
1j

[ ϕjgss(1+ ξ )
(Pk,jgss + ρjσ 2

s+ σ
2
n ) ln 2

− ηϕj

]
(38)

and j ∈ {0, 1}, 10 = νw0, 11 = νw1.
Then, to maximize the EE, we modify Algorithm 1

by computing P∗0 and P∗1 respectively according to
Eqs. (35) and (36) and updating Lagrange multipliers ν
and ξ according to Eqs. (31) and (32).

C. COMPLEXITY ANALYSIS
In this subsection, the complexity of the proposed algorithm
is discussed. Suppose I and J respectively represent the iter-
ation numbers of the outer loop (line 6 to 17 in Algorithm 1)
and the inner loop (line 9 to 14 in Algorithm 1), then the com-
plexity of the fractional programming and the sub-gradient
method can be expressed as O(IJ ). Note that we only need to
update three dual variables, i.e., µ, ν, and ξ for convergence.
Therefore, I and J can be small enough if the step size value,
the initial values of µ, ν, and ξ are set appropriately. The
complexity of searching the optimal k and the optimal τ
isO(KM ), so the total complexity of Algorithm 1 isO(KMIJ ).

V. SIMULATION RESULTS
In this section, simulation results are provided to evaluate
the performance of the proposed scheme. For comparison,
we include the conventional OSA scheme [32]. Unless oth-
erwise stated, we assume that the frame duration is fixed and
T = 100 ms, the reporting time Tr = 10 us, the sampling
frequency fs = 6 MHz, the number of SUs K = 10, and
the circuit power Pc = 0.1 W, sensing power Ps = 0.02 W,
the target detection probability Q̄de = 0.9, the reporting error
probability pe = 0.005, and σ 2

n = 0.2, σ 2
s = 1, the received

average SNR from the PU γ = −20 dB. We set the average
transmit power constraint Pav = −15 dB, the peak transmit
power constraints Pk,0 = Pk,1 = −15 dB, the average inter-
ference power constraint Iav = −20 dB, and the minimum
data rate constraint Rmin = 0.05 bits/Hz. Besides, the channel
idle probability8H0 and the channel busy probability8H1 are
assumed to be 0.7 and 0.3, respectively, which are reasonable
as the Federal Communications Commission reports that the
licensed spectrum is underutilized [2]. The step sizes µ, ν,
and ξ are set to be 0.1 and the tolerances δ1 and δ2 are set to
be 0.0001, respectively. The channel power gains are assumed
to be block faded and follow the exponential distribution with
unit mean.

Fig. 3 shows the mean EE versus the sensing time for
the proposed HSS and the conventional OSA scheme under
ATPC with different rules. We provide the single spectrum
sensing as a baseline to analyze the performance improve-
ment due to CSS. As shown in Fig. 3, as the sensing time
increases, the EE first increases and then drops. It is clear
from the figure that, for each rule, our proposed HSS scheme
can achieve better EE than the respective OSA scheme.

FIGURE 3. Achievable mean EE vs. the sensing time under ATPC.

FIGURE 4. Achievable mean EE vs. the sensing time under PTPC.

This is due to the fact that under the HSS, data transmission
is allowed even when the PU is detected to be active. It is
also observed that compared with the ‘OR’ and ‘AND’ rules,
the Majority rule has the best EE, these results illustrate the
superiority of the Majority rule and are similar to the results
in [36].

In Fig. 4, we plot the achievable mean EE versus the
sensing time for the proposed HSS and the conventional OSA
scheme under PTPCwith different rules. Compare Fig. 4 with
Fig. 3, we can discover that for each rule, the EEs achieved
under the ATPC are always higher than the EEs achieved
under the PTPC. This is because compared to the PTPC,
the ATPC is looser and its power allocation is more flexible.
Under ATPC, more power can be allocated by the transmitter
under good channel conditions. Besides, from Figs. 3 and 4,
it is noticed that when the sensing time is small, three
hard combining rules provide better performance, but as the
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FIGURE 5. Achievable mean EE vs. the sensing time with different 8H0
.

sensing time increases they are outperformed by the single
spectrum sensing. This is because long sensing time with
CSS decreases the data transmission time, consumes more
sensing energy, and results in the decline of EE.

Moreover, from Figs. 3 and 4, it is seen that, at first,
OR rule has a better EE than AND rule, however, as the
sensing time increases, it is exceeded by the curve of AND
rule. This is because when the sensing time is below 5.17 ms,
OR rule leads to a lower Qfe, but when the sensing time
increases to above 5.17 ms, AND rule will lead to a lowerQfe.
From the SUs’ perspective, a low false-alarm probability
means that more transmission opportunities can be utilized
by the SUs, thus improving the throughput and the EE of the
system.

Fig. 5 demonstrates the achievable mean EE versus the
sensing time for the proposed HSS scheme under ATPC and
PTPC of Majority rule with 8H0 = 0.6, 0.7, 0.8. As shown
in Fig. 5, the mean EE decreases with the decrease in 8H0 .
This is comprehensible as a lower8H0 implies a higher active
probability of the PU, and the spectrum is occupied by the
PU in most of the time. Therefore, there will be little chance
for the SU to transmit data with higher power P0, thus fewer
benefits can be obtained by SUs and the EE declines. We can
conclude from this observation that it is wasteful for SUs to
perform CSS when 8H0 is small. It is reasonable to assume
that 8H0 is not less than 0.5. We study the optimization
problem under this precondition.

Fig. 6 displays the mean EE versus the reporting error
probability pe for the proposedHSS scheme under ATPCwith
different rules. Obviously, as the pe increases, the mean EE
of the ‘OR’ and ‘AND’ rules significantly decreases, whereas
the mean EE of the Majority rule decreases slightly, indicat-
ing that compared to the ‘OR’ and ‘AND’ rules, the Majority
rule has the higher performance against reporting channel
errors.

Fig. 7 depicts the achievable mean EE versus the reporting
error probability pe for the proposed HSS scheme and the

FIGURE 6. Achievable mean EE vs. pe with different rules.

FIGURE 7. Achievable mean EE vs. pe with different Rmin.

conventional OSA scheme under ATPC of OR rule with
Rmin = 0.05, 0.12 bits/Hz. Similar to Figs. 3 and 4, under
the same Rmin, the HSS scheme always has a higher EE than
the traditional OSA scheme. This once again demonstrate the
superiority of our proposed HSS scheme. It is also seen that
with the increase in Rmin, the EE decreases. The reason is
that in order to meet the minimum rate requirement of SUs,
ST have to adopt a higher power to transmit data, thus con-
suming more energy and reducing the EE.

Fig. 8 plots the achievable mean EE versus the number of
cooperative SUs for the proposed HSS scheme under ATPC
and PTPC of AND rule with pe = 0, 0.005. It is seen that the
EE first increases with the increase in the number of cooper-
ative SUs K , indicating that the improvement in sensing per-
formance exceeds the loss caused by less data transmission
time and larger energy consumption. However, EE decreases
asK further increases, because themore cooperative SUs lead
to the more energy consumption and the larger cooperation
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FIGURE 8. Achievable mean EE vs. K with different pe.

FIGURE 9. Achievable mean EE vs. Pav of Single and OR rule.

overhead, but the sensing performance cannot be improved
anymore, thus resulting in the declining EE. Hence, it is nec-
essary to balance the energy consumption against the number
of SUs when designing cooperative CR systems. Similar to
Figs. 3, 4, and 5, Fig. 8 shows that the ATPC has a better
performance than the PTPC, because the ATPC can provide
the more flexibility for the transmit power allocation of SUs
than the PTPC.

Fig. 9 illustrates the achievablemean EE versus the average
transmit power constraint Pav for the proposed HSS scheme.
We assume that the AIPC is Iav = −10dB. It can be seen that
the EE of OR rule with perfect reporting channel, pe = 0,
is the best, revealing that reporting channel errors indeed dete-
riorate the CSS performance and decrease the EE. It is also
shown that the maximum mean EE first increases with Pav
and then converges when Pav is larger than −10dB. This is
because a higher Pav enlarges the feasible domain of P1, but
when Pav becomes sufficiently looser than Iav, it becomes

FIGURE 10. Achievable mean EE vs. γ of Single and OR rule.

FIGURE 11. Achievable mean EE vs. Qde with different Rmin.

inactive and the transmission power depends on Iav rather
than Pav. Thus, the achievable EE remains unchanged.
Fig. 10 depicts the trend of the achievable mean EE ver-

sus γ for the proposed HSS scheme under ATPC of single
spectrum sensing and OR rule. Obviously, as γ increases,
the maximum mean EE becomes higher and finally con-
verges. The reason is that spectrum sensing can be more
accurate with a larger γ . It is also noticed that when γ is
low, the mean EE of OR rule is greater than that of single
spectrum sensing. However, as γ further increases, OR rule
will be surpassed by single spectrum sensing because in this
case, fewer users are required to participate in the spectrum
sensing to achieve the good sensing performance. This indi-
cates that CSS is more applicable in the poor SNR environ-
ment. Moreover, when the reporting channel condition is bad,
the cooperative sensing would be less advantageous.

Fig. 11 shows the achievable mean EE vs. the target detec-
tion probability Qde for the proposed HSS scheme under
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FIGURE 12. Achievable mean EE vs. Qde with different Pav .

the ATPC of Majority rule with different Rmin. Similar to the
results shown in Fig. 7, the EE decreases with the increase
in Rmin. The trend can be similarly interpreted by the fact
that a larger Rmin means the ST has to transmit data with a
higher power, thus consuming more energy and decreasing
the EE. It is also seen that the EE increases with Qde because
a larger Qde indicates that the SUs have more reliable coop-
erative sensing performance. Thus, the SUs will experience
less missed detection events, which increases the achiev-
able throughput. Meanwhile, as Qde increases, P0 under the
channel idle decision increases while P1 under the channel
busy decision decreases. That is, the achievable throughput
increases and the total transmission power slightly increases.
Hence, as the sensing performance is improved, the maxi-
mum achievable EE of SUs increases.

In Fig. 12, the achievable mean EE vs. the target detec-
tion probability Qde is compared between Majority rule and
OR rule for the proposed HSS scheme under ATPC with
Pav = −25,−15 dB, Iav = −20 dB. Again, it is observed
from the figure that a larger Qde results in a higher EE, this is
because a larger Qde makes the global detection performance
more accurate. Also, for both fusion rules, the EE under
Pav = −15 dB is higher than that under Pav = −25 dB,
which is due to the fact that a larger value of Pav leads to a
larger optimal power in (20).

VI. CONCLUSIONS
In this paper, we study the mean EE maximization problem
of hard decision based CSS system using the HSS scheme.
In particular, we consider imperfect spectrum sensing and
reporting channel errors in the system model. The mean EE
maximization problem is formulated by jointly optimizing
the sensing time and the number of cooperative SUs, subject
to the SUs’ ATPC/PTPC and data rate constraint, as well as
PU’s AIPC. Since the joint optimization problem is compli-
cated and non-convex, based on fractional programming the-
ory and Dinkelbach’s method, we transform the optimization

problem into an equivalent parameterized concave problem,
and an energy-efficient iterative power allocation algorithm
is proposed to solve the problem efficiently.

Simulation results validate the feasibility of the proposed
scheme. It is shown that under the same parameter settings,
the EE of our proposed HSS scheme always outperforms that
of the traditional OSA scheme, and the EE achieved under
the ATPC is always better than that under the PTPC. It is also
shown that the EE depends on global detection probability,
false alarm probability, channel idle probability, reporting
error probability, minimum data rate demands of SUs, and
the received average SNR of the primary signal. We can see
that the reporting channel errors indeed deteriorate the detec-
tion performance and lead to the decline of EE. Moreover,
compared with ‘OR’ and ‘AND’ rules, the Majority rule has
the best EE.

As our future works, we will account for the heterogeneity
of the SUs and the influence of imperfect channel state infor-
mation, andwe plan to incorporate soft combining-basedCSS
into our model.
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