
Received July 10, 2018, accepted August 18, 2018, date of publication August 31, 2018, date of current version September 21, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2868233

Novel Distance Estimation Methods Using
‘‘Stochastic Learning on the Line’’ Strategies
JESSICA HAVELOCK1, B. JOHN OOMMEN 1,2, (Fellow, IEEE),
AND OLE-CHRISTOFFER GRANMO3
1School of Computer Science, Carleton University, Ottawa, ON K1S 5B6, Canada
2Department of Information and Communication Technology, University of Agder, 4630 Kristiansand, Norway
3Centre for Artificial Intelligence Research, Department of Information and Communication Technology, University of Agder, 4630 Kristiansand, Norway

Corresponding author: B. John Oommen (oommen@scs.carleton.ca)

ABSTRACT In this paper, we consider the problem of Distance Estimation (DE) when the inputs are
the x and y coordinates (or equivalently, the latitudinal and longitudinal positions) of the points under
consideration. The aim of the problem is to yield an accurate value for the real (road) distance between the
points specified by the latter coordinates.1 This problem has, typically, been tackled by utilizing parametric
functions called the ‘‘Distance Estimation Functions’’ (DEFs). The parameters are learned from the training
data (i.e., the true road distances) between a subset of the points under consideration. We propose to use
LearningAutomata (LA)-based strategies to solve the problem. In particular, we resort to the adaptive tertiary
search (ATS) strategy, proposed by Oommen et al., to affect the learning. By utilizing the information
provided in the coordinates of the nodes and the true distances from this subset, we propose a scheme to
estimate the inter-nodal distances. In this regard, we use the ATS strategy to calculate the best parameters for
the DEF. Traditionally, the parameters of the DEF are determined by minimizing an appropriate ‘‘Goodness-
of-Fit’’ (GoF) function. As opposed to this, the ATS uses the current estimate of the distances, the feedback
from the Environment, and the set of known distances, to determine the unknown parameters of the DEF.
While the goodness-of-fit functions can be used to show that the results are competitive, our research shows
that they are rather not necessary to compute the parameters themselves. The results that we have obtained
using artificial and real-life data sets demonstrate the power of the scheme, and also validate our hypothesis
that we can completely move away from the GoF-based paradigm that has been used for four decades.
Based on the latter results, the paper also suggests a completely novel method by which we can extend
the traditionally-studied DE problem where the road distances were, typically, estimated using only the x
and y coordinates (or equivalently, the latitudinal and longitudinal positions). In such a generalized model,
we hypothesize that one can also provide to the system the additional z coordinate, that represents the
height or elevation of the subset of nodes and of the cities whose inter-city distance is to be estimated.
The results for this generalized model are currently being compiled into a companion paper.

INDEX TERMS Road distance estimation, estimating real-life distances, learning automata, adaptive tertiary
search, stochastic point location.

I. INTRODUCTION
There are many well-studied problems whose solutions
depend upon the distances between points in the Cartesian
plain or in a geographic region. The traveling salesman prob-

1This is a typical problem encountered in a Geographic Information
System (GIS), or in a GPS. However, unlike the traditional systems where all
the inter-city distances are assumed to be stored, in our setting, the distance
between any pair of cities is assumed to be computed by merely having
access to a small subset of known inter-city distances.

lem, and vehicle scheduling problems are common exam-
ples of real-life scenarios that rely on distance information.
The input to these Distance Estimation (DE) problems are,
typically, the start and end locations in the form of x and y
co-ordinates of the locations in the Cartesian plain, or the
latitude and longitude in the geographic region. To determine
the direct distance (i.e. as the bird flies), that must be traveled
between a pair of known locations, is trivial. However, deter-
mining the actual ‘‘road distances’’ (the physical distance to
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be traveled on the ‘‘roads’’ built in the community) for an
area, is more challenging. These road distances (also synony-
mously known as traveling distances, or ‘‘true’’ distances),
can depend on the network, the terrain, the geographical
impediments like rivers or canyons, and of course, the direct
distance between the respective points – which serves as a
lower bound for the ‘‘true’’ distances. The problem of DE
involves finding the best estimator for the true distances.
This problem has been studied for over three decades, and its
solutions have been put to use in many practical applications,
such as in developing vehicle scheduling software,2 vehicle
routing, and in the partitioning of districts for firefighters [8],
[9], [26]. Indeed, as alluded to earlier, this is a central issue
in designing GISs and GPSs.

To initiate discussions, we first informally formulate the
DE problem. Consider a table of distances in which the
points or cities are listed in the column and row headings.
The table is, typically, populated with the corresponding
inter-point distances. However, consider the scenario, which
more truly resembles the real world, where only a small
subset of these distances is actually known to any given
precision. The goal of DE is to approximate the missing
distances. DE is especially useful when the distances are hard
to measure, because the problem space has limited physical
access to computing the exact true distances, or when the
measurements are difficult to obtain. The ability of DE to
produce useful estimates in these difficult situations makes it
beneficial for both research and practical purposes. Further,
it is unarguably infeasible to store the actual distances when
the number of villages/cities, specified by the size of the table,
is in the thousands or tens of thousands.

From an abstract perspective, the fact that DE is used for
approximating distances in road networks, does not mean that
it is limited in its applications. The most obvious application
is in modelling travel times. Thus, DE has been used by
companies to schedule deliveries [8]. A more ‘‘academic’’
problem, seen in the use of DE in modeling travel times,
involves location and transportation problems (the traveling
salesman problem) in geographical areas where the distances
are almost entirely unknown. DE has also been useful in
resolving location analysis and optimization problems. Thus,
it has found direct applications in urban planning. For exam-
ple, in Turkey, DE has been used to determine the optimal
locations for fire stations [9]. Otherwise, road distance esti-
mation has been applied in road network simulations to take
into account network impedance, for tasks such as OEM
picking-up routing [22].

In general, whenever a problem requires the knowledge of
all the distances between all possible points in the domain,
the invocation of DE can be highly advantageous. DE can
also be used in in sailing and under-water navigation, where
the distance to be traversed has to also consider rocks and

2Two common vehicle scheduling software packages, ROADNET and
TRUCKSTOPS 2, use DE methods when determining the distances between
the suppliers and the customers [8].

islands, and possibly, ocean currents. Indeed, while in the
simplest setting these estimated distances are geographical
distances, in a more general case, for example, dealing with
chemical structures, these estimated distances may be far
more abstract ‘‘navigational’’ distances required to change
the structure from one configuration to another.3

A. LEGACY METHODS: DISTANCE ESTIMATION
FUNCTIONS
Any system that consists of inter-connected points, like a road
network, can utilize DE to model and estimate the inter-point
distances. To achieve this, historically, one typically resorts
to Distance Estimating Functions (DEFs). These functions
can take on any form, but the ideal ones are those that are
simultaneously good estimators, and that are also character-
ized by low computational requirements. Love and Morris
first introduced the concept of using simple parametric func-
tions that employ the x and y co-ordinates for approximat-
ing distances [16]. The first DEFs were based on common
norms, most of which are still used. All these DEFs involved
parameters whose values are obtained by a ‘‘training’’ phase
in order for them to best fit the data of the system being
characterized. Consequently, some distances in the system
must be known a priori, and they are used to ‘‘learn’’ the
parameters associated with the DEFs. The accuracy of the
estimations depends on the DEF, the system and the available
data.

For over four decades, DEFs have been applied in DE
and the methods utilized have been extensively tested and
modified [4], [5], [16]–[18], [35], [36]. Over the years, new
DEFs have been proposed, based on other distance measures
[7], [30]. These new DEFs have been derived as a conse-
quence of applying more complex principles. For example,
some researchers have proposed using aweighted linear com-
bination of two more primitive DEFs [7], [30]. Another novel
idea for a DEF is to use a nonparametric method [1]. DEFs
have further been used in business models, including in the
modeling of service systems, and in operational and strategic
decision processes [6].

A new strategy by which DE has been improved, has been
by modifying and adapting the basic method involved in the
DE itself. Brimberg et al. proposed a way of improving DE
by rotating the co-ordinate axes [8]. This was done so as
to minimize the rotational bias of a co-ordinate system, and
to thus improve the accuracy of the estimate. Others have
tried a multi-regional approach to DE. The latter approaches
divide the original region into smaller sub-regions, and each
sub-region has its own trained parameters. One example
of such a multi-regional approach to DE was presented by
Fildes and Westwood [10]. The scheme estimated the dis-
tances based on the sub-regions that lay between the two
points. The sub-regions themselves determined the weighting
of the parameters used in the DEF, which, in turn, was

3In the interest of being focused, we shall concentrate here on the tradi-
tional problem of using DE for estimating ‘‘road’’ distances.
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based on the proportion of the Euclidian distance that lay
in each sub-region. Another multi-regional approach used
Vector Quantization (VQ) [3], [26]. This strategy utilized
the points learned by the VQ to represent closed groups of
points. The parameters that were used for inter-regional and
intra-regional distance estimation themselves were obtained
by training using the VQ points. Besides invoking methods
that have involved DEFs, Alpaydin et al. suggested apply-
ing neural networks and a non-parametric method to tackle
DE [1]. They compared these two methods with the voting
and stacking of typical DEF-based DE methods. The overall
leader was the one which used the stacking of simple DEFs.

B. OUR PROPOSED APPROACH
In this paper, we will contribute to the field of DE by applying
a newmethod for determining the DEF. This method is called
the Adaptive Tertiary Search (ATS) which was derived by
Oommen and Raghunath [28]. To date, it has been applied
to two problems, namely, the continuous Stochastic Point
Location problem [28], and the problem of parameter learn-
ing from a stochastic teacher or a stochastic compulsive
liar [29]. Both of these problems work within a stochastic
domain analogous to that of DE. The ability of the ATS to
perform ε-optimally in these stochastic domains renders it
an ideal search strategy which can be used in DE. The ATS
is a search method that uses Learning Automata (LA) to
perform a stochastic search ‘‘on a line’’ to determine or locate
the parameter sought for. As explained presently, the most
‘‘daring’’ step that we have taken is that we have completely
moved away from invoking Goodness-of-Fit (GoF) criteria
for the DEFs, thus proposing a marked departure from the
methods that have been used for more than four decades.

LA [21] are autonomous or self-operating machines that
have the ability to learn in stochastic environments. They are
typically used to determine information and make decisions
in environments that have incomplete knowledge [38]. They
are able to learn in these environments because the search
for the information is actually preformed in a probability
space and not the action space itself [34]. The probability
space alluded to is traversed intelligently through the learning
process. Typically, the process of learning for human beings
requires some form of inference from experience, and a
mechanism of decision making. In the case of LA, the expe-
rience, or input, usually comes in the form of a sequence of
responses from the environment that the LA is interacting
with and which it can observe. For an LA, the mechanism of
decisionmaking depends on its structure and the environment
it is in.

Put in a nutshell, the strategy we propose for using the
ATS to solve DE is as follows: At any given time instant,
the system has certain values for the parameters which char-
acterize the DEF in question. With this as a premise, as per
the LA’s inference philosophy, the ATS searches a bounded
interval by comparing the current estimate to the feedback
from the environment, where the latter is presented in terms
of pairs of points and their corresponding known distances.

After comparing the current estimate with the latter, a new
smaller search interval for the parameters of the DEF is
inferred. The search interval is continually decreased until it
reaches a small-enough size.

It is crucial to emphasize the following: Apart from the
convergence phenomena, the rationale and goal for using
the ATS is to improve the accuracy of the DEFs by totally
removing any dependencies on the GoF functions.

C. OUTLINE OF THE PAPER
This paper starts with an overview of topics related to the
field of DE. The objective of this section is to briefly present
the reader with relevant background information and with
a collection of existing research, in a well-organized fash-
ion. Section III deals with the ATS and Section IV explains
the adaptations required in order for the ATS to operate
in a DE domain. Thereafter, in Section IV-D, we explain
the analysis of the two-dimensional ATS, and explains its
use in DE. The adapted ATS and the environments that are
defined are then tested in the subsequent section, Section V.
This includes the testing procedure, the test results and a
discussion for the results obtained for the two-dimensional
ATS. In two dimensions, the intention is to demonstrate that
the ATS operates ε-optimally in the domain of DE, and
that it produces competitive results. To perform the tests,
we shall utilize three types of data sets, namely, noiseless,
noisy and those from the real world. The first set demonstrates
that the behavior of the ATS in the ideal DE environment
is flawless. The second is used to show that the ATS can
function in a noisy DE environment. The experiments for
the real world data measure how the ATS can function in a
practical application. In order to demonstrate that the ATS
produces competitive parameters for the DEF, for the purpose
of comparison, we have invoked a hill-climbing search. This
is quite realistic, because in the literature, the parameters were
either found by a linear regression or a hill-climbing search
[7], [8], [36]. As a result, the parameters found by means of
such a hill-climbing search proved, unequivocally, that it is
a natural method of showing that the ATS’s parameters are
competitive. Section VI concludes the paper.

D. CONTRIBUTIONS OF THE PAPER
The following list highlights the three primary contributions
of this paper:

1) The first contribution of this paper is the extension of
the ATS so as to involve determining multiple parame-
ters simultaneously, and utilizing this strategy in DE.

2) The second contribution involves the improvements to
the field of DE itself by virtue of the use of the ATS.
We argue that the application of the ATS eliminates the
dependence on Goodness-Of-Fit functions, and show
that it improves the overall performance by reducing
errors caused by overtraining.

3) The third contribution is the ‘‘proof of the pudding’’ of
these results in DE, where we submitted experimental
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results for artificial noiseless data, artificial noisy data,
and for real-life data. The results that we have obtained
are, truly, conclusive.

4) Our final contribution lies in the fact that we have sug-
gested how we can use the same concepts for 3D DE.
The details of these results, where we show that the
3D DE problem for estimating distances over certain
types of ‘‘hilly’’ terrains is solvable, are currently being
compiled for a separate publication.

II. DISTANCE ESTIMATION: CORE CONCEPTS
A. FORMALIZING DISTANCE ESTIMATION
The distance4 between two points or objects is a measure of
how much they differ. This difference may be with respect
to their geographical locations or in their physical structures.
For example, in Figure 1, the blue path represents the true path
(the ‘‘road’’ path) and the red line is the direct path (as the bird
flies) between Carleton University and Ottawa University in
Ottawa, Canada, and the goal of the DE problem is to estimate
the length of the blue path as accurately as possible. For
this study, we will consider the ‘‘direct’’ distance between
the two objects to be the shortest path between their point
representations. The length of the shortest path depends not
only on the location of the points but also on the space (or
area) in which they lie. The shortest path must be passable,
implying that one should be able to reach all the intermediate
points when moving from one extreme point to the other.

FIGURE 1. The blue path represents the true path (the ‘‘road’’ path) and
the red line is the direct path (as the bird flies) between Carleton
University and Ottawa University in Ottawa, Canada.

As opposed to this, there are many ways of determining
the true distance between points. The simplest strategy is to

4The entire section describing DE, DEFs and Goodness-of-Fit functions
is included in the interest of completeness. It can be abridged or even deleted
if recommended by the Referees.

maintain a table or database of the points and their known dis-
tances. Such databases often contain all the distances between
large intersections for a single city, or between many (or all)
the cities in a large region. These databases are difficult to
use if one is to employ multiple databases so as to determine
the overall true distance. Combining these databases can
also result in errors due to the changes caused by different
coordinates systems or by the points fromwhich the distances
are measured [36]. For example, in 1982, the Province of
Ontario published all the distances between large intersec-
tions throughout the province [36], which was complied in
a document referred to as the ‘‘Distance Table’’. While the
collection of this data is impressive, it is still difficult to calcu-
late the distance between two locations whose pertinent data
is not included. Rather, to obtain this, one must find all the
relevant distances between the intermediate intersections, and
thereafter, compute the overall true distances. This, in itself,
is not a problem when finding a single true distance, but it is
a challenge when one needs to determine a set of distances in
the region.

For mathematical rigor, distance functions are traditionally
used to determine the real distances between points. These
distance functions are specific to the terrain or space under
consideration. For example, the distance between points on
an axis is the absolute value of the difference between their
coordinates. The distance between points on a ‘‘smooth’’
Cartesian plain is the Euclidian distance. Both of these dis-
tance functions report the true inter-point distance in their
respective spaces. However, determining the true distances
in a space that is non-uniform and unknown is much more
difficult. To determine the true distance between points in
a network or on a non-uniform or hilly terrain, one requires
additional information so as to obtain the ‘‘correct’’ distance
function. In fact, the problem of finding the distance function
that yields the true distance for all points in these more com-
plex spacesmay actually be both infeasible and unreasonable.
Rather, one may have to resort to the approximate prediction
of the true distance due to the complex computations involved
in exactly determining them, or due to the fact that the true
distance cannot be computed bymerely using the information
that is provided.

The prediction or DE, is typically done by determin-
ing or discovering the appropriate DEF. A DEF is a map-
ping from Rd × Rd to R, and returns the estimate of the
true distance. The inputs to the DEF are the locations of
the two points, and it produces an estimate of the distance
between them by incorporating the set of parameters into
the DEF. One observes that the set of parameters alluded to
must be learnt in order for the DEF to best represent the
space.
Definition 1: A Distance Estimation Function (DEF) is

defined as a function π (P1,P2|3) : Rd × Rd −→ R, where
P1 = 〈x1, x2, ..., xd 〉 and P2 = 〈y1, y2, ..., yd 〉 are points in
Rd , and3 is a set of parameters whose values characterize π ,
and which must be learnt using a set of training points with
known true inter-point distances.
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The set of parameters,3, is typically learnt by minimizing
a goodness-of-fit function, which, in turn, is used to measure
how well a network or region is represented by the DEF.

B. GOODNESS-OF-FIT
Central to the legacy methods of DE is the concept of
Goodness-of-Fit (GoF) functions. GoF functions are mea-
sures of how good a DEF estimates the true (but unknown)
distances. Several GoF functions have been consistently
utilized in the literature pertaining to the field of DE.
The simplest and most commonly-used one is the Absolute-
value Difference (AD) given by Eq. (1) [1], [3], [4], [8], [10],
[16]–[18], [26], [30], [35], which was originally proposed by
Love and Morris. It is given by the sum of the absolute values
of the differences between the estimated distances and the
actual distances, and is given as:

AD =
n−1∑
i=1

n∑
j=i+1

|A(Pi,Pj)− π (Pi,Pj|3)|, (1)

where A(Pi,Pj) is the actual distance between the
points Pi and Pj. Observe that this GoF measure, used
in [1], [3], [4], [8], [10], [16]–[18], [26], [30], and [35], leads
us to a natural way of minimizing the overall error of the DEF,
although larger distances are given more weight than smaller
ones [3], [8], [16], [26].

Although the AD is both a common and conveniently-
simple GoF function, it is not useful when comparing regions
with varying topographies or geographies. This is due to the
fact that it favors larger distances, and that it does not take into
account the relative values of these distances. To compare dif-
ferent regions and to also incorporate such relative quantities,
the Relative Absolute-value Difference (RAD) function given
in Eq. (2) is often recommended [4]:

RAD =

∑n−1
i=1

∑n
j=i+1 |A(Pi,Pj)− π (Pi,Pj|3)|∑n−1
i=1

∑n
j=i+1 A(Pi,Pj)

. (2)

The next and third most-common GoF function is the
Normalized Absolute-value Difference (NAD), given by
Eq. (3) [8], [19], [35]. Although like the AD, the NAD uses
the sum of the absolute values of the differences between
the distances, unlike the former, it however, normalizes these
differences with respect to their respective actual quantities.
This allows the errors for both large and small distances to
be weighted equally [8], [19]. Thus, while the AD measures

the overall error, the NAD quantifies the weighted percentage
error for each distance as follows:

NAD =
n−1∑
i=1

n∑
j=i+1

|A(Pi,Pj)− π (Pi,Pj|3)|
A(Pi,Pj)

. (3)

In spite of the advantage of the above indices, the
most commonly-used GoF function is the sum of
Square Deviation (SD) given by Eq. (4) [1], [3], [4], [8], [10],
[16]–[18], [26], [35].

SD =
n−1∑
i=1

n∑
j=i+1

(
A(Pi,Pj)− π (Pi,Pj|3)√

A(Pi,Pj))

)2

. (4)

This index was also proposed by Love and Morris, and has
useful properties such as its statistical significance and con-
tinuity. The SD is both continuous and differentiable with
respect to the parameter, 3. This allows the user to employ
a gradient decent search scheme to determine the ‘‘best’’
parameter3 [1], [3], [26], [35]. Although the SD favors larger
distances, it does not possess as large a bias as the AD does
[1], [8], [16].

C. DISTANCE ESTIMATION FUNCTIONS (DEFS)
In this section we shall present a brief overview of some of the
common DEFs and their properties, and proceed to compare
their relative performances.

1) Lp-BASED DEFs
The properties of norms are ideal for a DEF because they
are capable of yielding measurable and ‘‘usable’’ distances.
Consequently, the simplest way of creating a DEF, that also
possesses the properties of norms or metrics, is to use a well-
understood and established norm/metric. The most common
types of DEFs are those based on the family5 of Lp norms,
traditionally used for computing distances:

Lp(X ) =

(
n∑
i=1

(|xi|p
)1/p

. (5)

The various Lp norms have been used as stepping stones
to design DEFs, and some of the most common DEFs have,
indeed, been derived from the Lp norms as shown6 in Table 1

5The cases for p = 1, p = 2 and p = ∞ represent the Taxi-Cab, Euclidean
and Largest Absolute Value norms respectively. The Lp norms for other
values of p (p ∈ R) also have significance in DE.

6We apologize for the placement of the tables in the manuscript. It was
not dictated by us, but by the IEEE LaTex style files.

TABLE 1. List of DEFs related to various Lp norms and their corresponding parameters.
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(Eq. (6) to (11)), also initially suggested by Love and Morris
[16], [17]. The input to these functions are the co-ordinates
of the input vectors, X1 and X2. In practice, these DEFs are
first trained on the subset of the co-ordinates of the cities
and their known inter-point distances for the specific region
under consideration. This training is done so as to obtain the
‘‘best’’ parameters for the DEF given the training data. Once
the parameters have been determined, the DEF can then be
used for estimating distances in the same region.

Each of these DEFs has been extensively tested on differ-
ent data sets [1], [4], [8], [16]–[19], [26], [31], [35], [37].
In particular, Eq. (6) performed well7 over a small area,
usually described by the boundaries of a given city, but did not
perform well over larger areas [16]. Eq. (7) produced usable
results for both a network of roads from within a city and
which extended to other cities [16]. The Weighted Euclidean
DEF in Eq. (7) out-preformed the Lp DEF in Eq. (6); however,
both of these were out-performed by the Weighted Lp DEF
given by Eq. (8) [16].

The DEF described by Eq. (8) has an advantage over the
previous twoDEFs because it contains two learnt parameters.
As a result, this DEF is more flexible and better able to
adjust to the environment. The percentage improvement for
Eq. (8) over Eq. (7) has a large variation depending on the
geographical area being studied. In a study byBerens, the per-
centage improvement, based on the GoF criteria, ranged from
0% to 11.27% [1], [5]. Berens and Korling felt that the
additional calculation of multiple parameters could not be
justified. The difference in improvement must be viewed
against the backdrop of the considerations due to the envi-
ronment. Berens and Korling reported an AD improvement
of 0.12% and a SD improvement of 0.03% in Germany with
117 cities and 6786 distances [18]. Love and Morris reported
AD and SD improvements of 2.4% and 8.3% respectively in
Germany with 15 cities and 100 distances [18]. In the United
States, Love and Morris reported AD and SD improvements
of 10.55% and 34.63% respectively when using Eq. (8) over
Eq. (7). Some of the reasons that have attributed to the
large difference in improvement are the size of the network
tested, the road density, and the differences in the road struc-
tures. Berens and Korling stated that ‘‘The Federal Republic
of Germany is a comparatively small country, with a well
developed road network. Thus, there is hardly any room for
improvement in the accuracy by abandoning d1’’ (where d1 is
Eq. (8)). While improvements are small for a well-developed
area such as the Federal Republic of Germany, the Weighted
Lp DEF shows an improvement over the Weighted Euclidean
DEF, especially in more rural or less-developed road
networks.

Although the Weighted Lp DEF yields good results, it is
out-performed by the kLps DEF in Eq. (9) [17] character-
ized by three parameters. The DEF has been shown to be
statistically stronger than the Weighted Lp DEF. Of all the

7In performing comparisons, there are essentially two main GoF criteria:
the AD given by Eq. (1), and the SD specified by Eq. (4).

DEFs listed in Table 1, Eq. (8) performed second-best in all
types of regions. It performed well in both rural and urban
networks, but was out-performed by Eq. (9) [16]. Eq. (9) was
the best estimator in urban settings [17]. However, the best
DEF for urban areas was the Elliptical DEF described in
Eq. (11), which performed well in networks that were not
highly developed but did not perform well otherwise [17].

In 2000, Uster and Love proposed using a Generalized
Weighted Lp DEF, given by Eq. (10). They reported that the
generalized Weighted Lp norm yields significant improve-
ments for areas with directional ‘‘non-linearity’’. However,
in areas with little directional ‘‘non-linearity’’, (i.e., when the
k’s are equal), the GeneralizedWeighted Lp has no significant
improvement over the Weighted Lp.
Overall, considering all the DEFs shown in Table 1, Eq. (9)

is the best-performing DEF and is the best estimator for the
generic situation [16], [17].

The general conclusion offered in the literature is that the
specific DEF should be chosen based on the properties of the
geographical area in question. Of course, as explained later,
a multi-regional approach for areas with different geographi-
cal features, is always superior.8

We now proceed with the specific contribution of
this paper, namely, the use of the the Adaptive Tertiary
Search (ATS) in DE.

III. THE ADAPTIVE TERTIARY SEARCH
The solution that we propose for DE is based on a scheme
relevant to the Stochastic Point Location (SPL) problem.
To formulate the SPL, we assume that there is a Learning
Mechanism (LM) whose task is to determine the optimal
value of some variable (or parameter), λ. We assume that
there is an optimal choice for λ - an unknown value, say
λ∗ ∈ [0, 1]. In the interest of completeness, we list the
available solutions to the SPL:

1) The first-reported SPL solution proposed the problem
itself, and then pioneered a solution operating in a
discretized space [24];

2) The Continuous Point Location with Adaptive Tertiary
Search (ATS) solution was a solution in which three LA
worked in parallel to resolve it [28];

3) The extension of the latter, namely the Continu-
ous Point Location with Adaptive d-ARY Search
(CPL-AdS), used ‘d’ LA in parallel [28], and
these could operate in truth-telling and deceptive
Environments;

4) The General CPL-AdS Methodology extended the
CPL-AdS to possess all the properties of the lat-
ter, but could also operate in non-stationary Environ-
ments [15];

5) The Hierarchical Stochastic Search on the Line (HSSL)
proposed that the LM moved to distant points in the

8The literature also reports various neural and Vector Quantization
schemes suitable for DE. Since we are using ATS and LA-based schemes
for learning the parameters of DEFs, these are not surveyed here.
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interval (modelled hierarchically), and specified by a
tree [40];

6) The Symmetrical Hierarchical Stochastic Search on the
Line (SHSSL) symmetrically enhanced the HSSL to
work in deceptive Environments [42];

7) The Adaptive Step Search (ASS) used historical infor-
mation within the last three steps to determine the
current step size [33].

8) The Thompson Sampling (TS)-guided Stochastic
Point Location (TS-SPL) scheme introduced the
first Bayesian representation of the SPL, that also
overviewed the complete search space at every time
instant [11], [12]. Based on the so-called Thompson
Sampling [14], both the location of λ∗ and the probabil-
ity of receiving correct feedback were simultaneously
learned, allowing TS-SPL to operate in both deceptive
and non-stationary Environments.

In this paper, we shall use the ATS [28] to solve the DE
problem, although any of the other-reported solutions could
have been used just as well. The advantage of the ATS is that
it is not a hill climbing search, and therefore overcomes the
problems of being dependent on a starting point and a step
size. In [28], the ATSwas applied to a stochastic environment,
and the ability of the ATS to function in such environments
makes it ideal for the DE problem.

As alluded to above, Oommen and Raghunath used the
ATS to determine λ∗, in a bounded interval within a resolution
of accuracy. In their work, the Oracle or Environment is
modeled as a ‘‘Stochastic Teacher’’ [28], implying that it
provides a correct response with a probability greater than
0.5 [29]. This Environment (the ‘‘Stochastic Teacher’’) for
the SPL problem provides feedback about the location of the
point in question, i.e., whether λ∗ is to the right or to the left
of the currently chosen λ(n).
To determine λ∗ within the resolution of accuracy, the orig-

inal search interval is divided into three equal and disjoint
subintervals, 1i, where i = 1...3. The subintervals are
searched using a two-action LA. The LA returns the λ(n),
the estimated position of λ∗ from that subinterval, Oi ∈
{Left,Right, Inside}. From these outputs, a new search inter-
val is obtained which is based on the decision table given
in Table 2. This is repeated until the search interval is smaller
than the resolution of accuracy. The search interval will
be reduced to yield the required resolution within a finite
number of epochs because the size of search interval is non-
increasing [28]. After the search interval has been sufficiently
reduced, the midpoint of the final search interval is returned
as the estimate for λ∗. The ATS algorithm can be seen in
Algorithm 1.

IV. ATS FOR DISTANCE ESTIMATION
The ATS proposed by Oommen and Raghunath [28] was
initially used to solve the SPL problem, and subsequently
for parameter learning when interacting with a stochastic
teacher/compulsive liar [28], [29]. For both of these prob-
lems, one had to determine only a single unknown parameter.

TABLE 2. Decision table.

Algorithm 1 ATS Algorithm
Input: The Resolution, ρ
Output: Estimate of λ∗

Method:
1: repeat
2: (11,12,13)← Getpartitions(1)
3: for j← 1 to 3 do
4: Get position of λ∗ from LAj
5: end for
6: 1← Get new search interval from Table 2
7: until Size of Interval < ρ
8: λ∗←Midpoint(1)

End Algorithm

Our aim is to utilize these core concepts in DE where one has
to learn/estimate many parameters simultaneously. In order to
adapt the ATS to find more than a single parameter, we must
specify the corresponding ‘‘Environment’’, and also both the
process of updating multiple search intervals and the issue of
how the set of LA interacts with it.

A. UPDATING SEARCH INTERVALS
Let us first consider the case where the DEF has two parame-
ters, say k and p. The strategy for our search will be to use the
ATS to determine the best value for k and p, say k∗ and p∗,
respectively. However, it is crucial that the order of updating
the search intervals in the k and p spaces is considered when
determining these multiple unknown parameters. If this is
not done correctly, it may result in the premature reduction
of a search interval. In the SPL problem, the subintervals
were first searched using the LA, after which the search
interval was updated. This order of executing the searching,
and the pruning of the intervals must also bemaintained while
searching for the two parameters, k and p, simultaneously.
In other words, all the subintervals must be searched before
any interval is updated. Each search interval must undergo
the same search process as in the case of the single-parameter
ATS. The only difference is that the search intervals must be
updated simultaneously. The order (or sequence) for achiev-
ing this is shown in Algorithm 2.

The set of LA operate in the samemanner as in [28], except
for how it deals with the additional parameters. When the
LA is learning information about how it should update the
value for k , it uses values of p from within its current search
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Algorithm 2 TwoDimensionalATS
Input: The Resolutions ρk and ρp
Output: Estimates of k∗and p∗

Method:
1: repeat
2: for j← 1 to 3 do
3: Execute LAj for k
4: Execute LAj for p
5: end for
6: GetNewInterval for k - From Table 2
7: GetNewInterval for p - From Table 2
8: until (Size_of_Interval(k) < ρk ) ∧ (Size_of_Interval(p)
< ρp)

9: k∗←Midpoint(FinalInterval(k))
10: p∗←Midpoint(FinalInterval(p))
End Algorithm

interval and vice versa. As a result, each LA operates with
the knowledge of the current search interval of all the other
parameters.

This process of searching for multiple parameters can be
done in parallel by assuming that for each learning loop,
the other parameter’s value is either the maximum or the
minimum of its current search interval. This is a conse-
quence of the monotonicity of the DEFs, as discussed in
Section IV-C.

We shall now describe in greater detail the various modules
of the system.

B. THE CORRESPONDING LA
Each LA is provided with two inputs, namely the parameter
that it is searching for, and all the search intervals. Each
LA is required to yield as its output the relative location
of the parameter in question. It does this by producing a
decision (Left, Right or Inside) based on its final belief after
communicating with its specific Environment.

The LA starts out with a uniform belief, 50% for both
‘‘Left’’ and ‘‘Right’’. It then makes a decision based on its
current belief. If the decision is ‘‘Left’’, then the LA picks a
point in the left half of the interval at random; otherwise (i.e.,
the decision is ‘‘Right’’) the point is chosen from the right
half of the interval. Once the decision is made, the LA asks
the Environment for a response. The LA uses a Linear Reward
Inaction (LRI ) update scheme, and so the current belief is only
updated if the Environment’s response is positive.

The LA and the Environment repeat this loop for a large
number, say N∞, iterations. After they are done communi-
cating, the LA produces its output as per Algorithm 3. If the
LA’s belief of ‘‘Right’’ is greater than 1− ε, the parameter in
question is to the right side of the current search interval, and
so its output is ‘‘Right’’. Conversely, if the belief of ‘‘Left’’ is
greater than 1−ε, the LA’s final decision is ‘‘Left’’. If neither
of these cases emerge, the LA does not have a belief greater
than 1 − ε that the parameter is to the ‘‘Right’’ or ‘‘Left’’,

Algorithm 3 The LA Algorithm
Input: Parameter to be determined, Search interval, θR, N∞.
Notation: pL and pR are the probabilities of choosing the left
and right sub-intervals respectively.

Output: Decision ∈ {Left, Right, or Inside}
Method:
1: for i = 1 to N∞ do
2: CurrentAction← ChooseAction
3: Feedback ← GetEnvironmentsRe-

sponse(CurrentAction) - From either Algorithms 4 or 5

4: if Feedback == Agree then
5: if CurrentAction == Left then
6: pR = pR ∗ (1− θR)
7: pL = 1− pR
8: end if
9: if CurrentAction == Right then
10: pL = pL ∗ (1− θR)
11: pR = 1− pL
12: end if
13: end if
14: end for
15: if pR > 1− ε then
16: Return Right
17: else if pL > 1− ε then
18: Return Left
19: else
20: Return Inside
21: end if
End Algorithm

and in this case, the LA decides that the parameter’s optimal
value is ‘‘Inside’’ the present interval. The entire algorithm is
formally given in Algorithm 3, where θR (0� θR < 1) is the
(LRI ) learning coefficient.

C. THE CORRESPONDING ENVIRONMENT
Each LA requires feedback from a specific Environment. This
feedback informs the LA if it has made the correct decision,
i.e., choosing the right or left half of the subinterval. It is
easy to obtain this answer because it only involves a single
parameter at a time. To further explain this, consider the DEF
in Eq. (8) which can be simplified into two equations, Eq. (12)
and Eq. (13) as below:

F(k, p) = k · F1(X1,X2, p), and where, (12)

F1(X1,X2, p) =

(
d∑
i=1

|x1i − x2i|p
)1/p

. (13)

Although nothing specific can be said about the mono-
tonicity characteristics of F(k, p), we see from Eq. (12) that
by virtue of the fact that it is always positive and that it can
be factored, it is monotonically increasing with k for any
fixed value, p. Similarly, from Eq. (13), since F1(X1,X2, p)
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is not a function of k , it is monotonically decreasing with p
for any fixed value of k . These properties allow the Oracle
to respond according to Algorithm 4 when finding k , and
for the corresponding LA to move in the desired direction
(i.e., ‘‘Left’’ or ‘‘Right’’) in the space that only involves
the single parameter k . The contrary monotonicity properties
allow the Oracle to respond according to Algorithm 5 when
determining p, and for the corresponding LA to move in the
desired direction (i.e., ‘‘Left’’ or ‘‘Right’’) in the space that
involves only p.

Algorithm 4 EnvironmentResponse(k)
Input: Training Distances; Action chosen by the LA, and the
current intervals of k and p.
Notation: The evaluation of F(k, p) is done at a point kr
randomly chosen from the interval under consideration, and
with p being at either the maximum or minimum value in its
region.

Output: Decision ∈ {Agree, Disagree} as far as the parame-
ter k is concerned.

Method:
1: if ((Choice == Left) ∧ (F(kr , pMax) ≥ TrueDistance))

then
2: return Agree
3: else if ((Choice == Right) ∧ (F(kr , pMin) ≤ TrueDis-

tance)) then
4: return Agree
5: else
6: return Disagree
7: end if

End Algorithm

We now consider how we can optimally take advantage of
the above-mentioned monotonicity properties. This is done
by the DEF using either the Max or Min values of the other
parameter while it evaluates the estimated distance between
the points under consideration. Whether the evaluation is
done with the Max or Min point itself depends on the choice
that the LA ismaking. The two possible cases for Algorithm 4
are listed below:

1) If k has to be decreased, the value of p must be chosen
so as to minimize the decrease in k so that it is achieved
in a conservative manner. Thus, if the parameter k is
chosen from the left half of the search interval, its value
in the DEF is chosen randomly from the left-half of
k’s region, but with p being at its largest value, pMax .
If under these settings, the estimated distance based on
the DEF is larger than or equal to the true distance,
the Environment provides the corresponding LA with
a Reward.

2) If the parameter k is chosen from the right half of the
search interval, its value in the DEF is chosen randomly
from the right-half of k’s region but with p being at its
smallest value, pMin. Again, if under the latter settings,
the estimated distance based on the DEF is smaller

Algorithm 5 EnvironmentResponse(p)
Input: Training Distances; Action chosen by the LA, and the
current intervals of k and p.
Notation: The evaluation of F(k, p) is done at a point pr
randomly chosen from the interval under consideration, and
with k being at either the maximum or minimum value in its
region.

Output: Decision ∈ {Agree, Disagree} as far as the parame-
ter p is concerned.

Method:
1: if ((Choice == Right) ∧ (F(kMin, pr ) ≥ TrueDistance))

then
2: return Agree
3: else if ((Choice == Right) ∧ (F(kMax , pr ) ≤ TrueDis-

tance)) then
4: return Agree
5: else
6: return Disagree
7: end if

End Algorithm

than or equal to the true distance, and the Environment
provides the corresponding LA with a Reward.

The analogous two possible cases for Algorithm 5 are the
following:

1) If p has to be decreased, the value of k must be chosen
so as to minimize the decrease in p so that it is achieved
in a conservative manner. If p is chosen from the left
half of the search interval, its value in the DEF is chosen
randomly from the left-half of p’s region, but with k
being at its largest value, kMax . If under these settings,
the estimated distance based on the DEF is smaller
than or equal to the true distance, the Environment
provides the corresponding LA with a Reward.

2) If the parameter p is chosen from the right half of the
search interval, its value in the DEF is chosen randomly
from the right-half of p’s region but with k being at
its smallest value, kMin. Again, if under the latter set-
tings, the estimated distance based on the DEF is larger
than or equal to the true distance, the Environment
provides the corresponding LA with a Reward.

In both the above cases, the Environment otherwise yields
a negative or Penalty response.

D. THE ε-OPTIMALITY OF THE MULTI-PARAMETER ATS
We now consider the ε-optimality of the Multi-parameter
ATS. The proof of the scheme relies heavily on the proof of
the corresponding single-parameter ATS which was earlier
rigorously proven in [28]. Consequently, to avoid repetition,
we shall merely cite the results from [28] wherever they are
needed, and not re-iterate the fine details of the proofs of the
assertions here.

To prove that the team of LA described above operate
ε-optimal, we will first show that the Environment that
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we have defined above provides the correct response
with p > 0.5.
Lemma 1: The Environment defined above provides the

correct response with p > 0.5 whenever the training data has
an accuracy greater than 50%.

Proof:We shall first prove the claim when we are deal-
ing with the parameter k and when p is maintained constant.
The proof for the alternate case when we are dealing with
the parameter p and when k is maintained constant follows
almost identical arguments.

Let us start with an arbitrary learning loop for the param-
eter k . Let k ′ be the randomly chosen value for k for this
loop, and let the current search interval for k be denoted as
1k = [A,B]. Note that the DEF, F(k, p) is monotonically
increasing with respect to k . Now, with respect to the current
interval for p, let pMax be the value of p that minimizes9

F(·, ·), in this region, and let pMin be the value that maximizes
it. We specify below the probability of the defined Environ-
ment producing an error. To do this, we consider twomutually
exclusive and exhaustive cases, namely when k∗ is be to the
left of the current interval, and when k∗ is to the right of the
current interval.
Case 1: Let k∗ be to the left of the current interval, and

Tdist be the true distance provided by the points under con-
sideration in the training data.

We now partition 1k into three mutually exclusive and
exhaustive parts as 1k = P1 ∪ P2 ∪ P3, where:

P1 = [A, k1] - such that ∀k ∈ [A, k1], F(k, pMax) <

Tdist or F(k, pMin) > Tdist ,
P2 = [k1, k2] - such that ∀k ∈ [k1, k2], F(k, pMax) > Tdist
and F(k, pMin) < Tdist ,
P3 = [k2,B] - such that ∀k ∈ [k2,B], F(k, pMax) <

Tdist or F(k, pMin) > Tdist .
These partitions fully divide the search interval due to the
monotonicity properties of F(·, ·). Consequently:

Pr(error) = Pr(error|k ′ ∈ P1)Pr(k ′ ∈ P1)

+Pr(error|k ′ ∈ P2)Pr(k ′ ∈ P2)

+Pr(error|k ′ ∈ P3)Pr(k ′ ∈ P3)

By considering the P2 term more clearly, we see that:

Pr(error|k ′ ∈ P2)Pr(k1 ≤ k ′ ≤ k2)

< Pr(error|k ′ ∈ P2, k ′ < kmid )Pr(k1 ≤ k ′ ≤ kmid )

+Pr(error|k ′ ∈ P2, k ′ < kmid )Pr(kmid ≤ k ′ ≤ k2)

= (1)Pr(k1 ≤ k ′ ≤ kmid )+ (0)Pr(kmid ≤ k ′ ≤ k2)

= Pr(k1 ≤ k ′ ≤ kmid ).

We now observe that k∗ is to the left and that the Environment
would thus always provides a negative response. Since the
error in the intervals [A, k1] and [k2,B] come entirely from
the data:

Pr(error|k ′ ∈ [A, k1]) < 0.5, and
Pr(error|k ′ ∈ [k1,B]) < 0.5.

9The reader must remember that F(k, p) is monotonically decreasingwith
respect to p.

This renders the probability of the Environment returning
an error to be:

Pr(error) < (0.5)Pr(A ≤ k ′ ≤ k1) + Pr(k1 ≤
k ′ ≤ kmid )+ (0.5)Pr(k2 ≤ k ′ ≤ B)

We now let x = k1−A
B−A , and y =

B−k2
B−A . Then:

Pr(error) < (0.5)x + 0.5− x + (0.5)y Let x > y,

since k∗ is to the left of the interval

H⇒ Pr(error) < (0.5)x + 0.5− x + (0.5)x

H⇒ Pr(error) < 0.5

Similarly, if k∗ were to the right of the current interval,
Pr(error) < 0.5.
Combining these assertions, we see that the Environment

provides the correct response with p > 0.5, if x > y. Hence
the result!
Lemma 2: Using the LRI schemewith a parameter θ which

is arbitrarily close to zero, the following is true:

• If λ∗ is left of 1j
k , then Pr(Oj = Left)→ 1

• If λ∗ is right of 1j
k , then Pr(Oj = Right)→ 1

• If λ∗ is inside 1j
k , then Pr(Oj = Left, Right or Center)

→ 1.
Proof: The proof is identical to the one found in [28] and

is thus omitted.
Lemma 3: Using the LRI schemewith a parameter θ which

is arbitrarily close to zero, the following is true:

• If (Oj = Left) then Pr(λ∗ being left or inside of1j
k )→ 1

• If (Oj = Right) then Pr(λ∗ being right or inside of 1j
k )

→ 1
• If (Oj = Inside) then Pr(λ∗ being Inside of 1j

k )→ 1.
Proof: The proof is identical to the one found in [28] and

is thus omitted.
Lemma 4: If the algorithm uses the LRI same scheme at

all levels of the recursion and a parameter θ arbitrarily close
to zero, the LA converge at every level with a probability as
close to unity as desired.

Proof: The proof follows from the above, and is due
to the ε-optimality of the LA used in every level of the
scheme.
Theorem 1: The set of decision rules given in Table 2 is

complete.
Proof: Again, the proof is identical to the one found

in [28] and is thus omitted.
The final theorem about the entire scheme follows.
Theorem 2: The unknown λ∗ is always contained in the

subinterval encountered in the subsequent invocation of the
algorithm and thus the algorithm finally converges to a value
arbitrarily close to λ∗, assuming the following conditions:
• The algorithm uses the LRI same scheme at all levels of
the recursion.

• The parameter θ is arbitrarily close to zero.
• The parameter N∞ is sufficiently large.
Proof: The proof of this theorem, which is true for every

level of the LA, is identical to the one found in [28] and is
thus omitted. This concludes the proofs of the algorithms.
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V. TESTING AND RESULTS: 2-DIMENSIONAL
ENVIRONMENTS
In this section, we present the results for the 2-dimensional
DE using the ATS. We show that this method of estimation
works for three different DEFs where, as mentioned, the first
two DEFs, Eq. (6) and Eq. (7) each contained only a single
parameter that must be determined, either k or p respectively.
The last DEF, Eq. (8), contained two parameters, k and p.
To compare the results we used four GoF measures. The first
three, RAD, NAD, and SD were presented in Section II-B,
in Eq. (2), Eq. (3) and Eq. (4) respectively. The last GoF mea-
sure was the Expected Percent (EP) error for each distance in
the region under consideration. The EP error was given by
Eq. (14):

EP =
1
n

n−1∑
i=1

n∑
j=i+1

|A(Pi,Pj)− π (Pi,Pj|3)|
A(Pi,Pj)

. (14)

The SD and NAD GoF functions were useful for compar-
ing the results against the methods reported in the literature
as they are some of the most commonly-used GoF functions;
however, the RAD and the EP were useful when looking at
the values by themselves. The RAD is, in fact, the percentage
error for the entire region. The EP also has a useful physical
meaning: It is the expected error for an estimated distance in
the region in question.

A. RESULTS FOR THE NOISELESS DATA
1) EXPERIMENTAL SETUP
The first type of data was noiseless. This set of noiseless
data was constructed by randomly generating points in the
region and it employed known values of k and p to gener-
ate the ‘‘true’’ distances from the DEF being tested. These
known values which were used to create the data sets will be
called the ‘‘Actual Values’’. The consequence of creating the
noiseless data in this manner is that the inter-city distances
perfectly fit the DEF. The primary purpose of this data set
was to show that under ideal conditions, the ATS can always
determine the optimal parameter.
Each DEF was tested on three sets of noiseless data. The

first set had 29 points, the second had 75, and the third had
100 points.We show below examples of runs for theWeighted
EuclideanDEF and theWeighted Lp DEF,where the accuracy
was reported over 100 runs of each data set. Each LA’s reward
parameter (θR) was set to 0.02. We used an ε value of 0.1 and
N∞ = 2, 500. These values were chosen through preliminary
testing and lie within the generally excepted range of values
use for these types of LA. We emphaszie that the algorithm
was not overly sensitive to these values because the decisions
of the LAs were only used to update the search interval and
not the final parameter. As a result, only requiring a ‘‘belief’’
of 90% helped the convergence times, since the LRI LA
converge slowly as the probability approach the absorbing
barriers, zero and unity.

2) WEIGHTED EUCLIDEAN DEF
In this case, we examined the Weighted Euclidean DEF
(Eq. (7)), which has only a single parameter, k . The reason
for considering such a simple DEF was to demonstrate how
the ATS functions in the new Environment pertaining to
DE. Here we observed that the ATS always succeeded in
finding the optimal parameter for a DEF that contained only
a single parameter in a noiseless environment. As a result,
all the errors were zero with a standard deviation of zero
over 100 executions of the search. Figure 2 shows a pictorial
representation of the ATS in this environment.

FIGURE 2. The progress of the ATS scheme for a typical noiseless
environment for the DEF given by (Eq. (7)). Here, the blue lines represent
the current search interval, and the blue diamonds represent the current
estimate of k .

3) Lp DEF
We now consider the Lp DEF from Eq. (6). This DEF also
has a single parameter, and consequently, the typical ATS is
very similar to the one shown in Figure 2. The result was
identical as for the Weighted Euclidian DEF, and is omitted
in the interest of space. All the errors were exactly equal to
zero, because the ATS always converged to the actual value
of p.

4) WEIGHTED Lp DEF:
The final DEF that we studied was the Weighted Lp DEF
from Eq. (8). This DEF has two parameters, k and p, and
as a result, the ATS had to simultaneously search for both
the parameters in the joint space. Although this was easily
done, it did affect the minimum resolution. This is because
the reduction of the search interval for each parameter was
depended on the resolution of the search interval of the other
parameter. In the example for which the results are submitted,
the ATS for the Weighted Euclidian DEF, the resolution was
set to 0.0000001; however, for this ATS the resolutions for
k and p were set to 0.00001 and 0.001 respectively. Table 3
shows an example of a typical ATS for the Weighted Lp DEF
in a noiseless environment. The errors for this ATS were
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TABLE 3. Example run of the ATS with the Weighted Lp DEF on the
noiseless data.

almost (although not exactly) zero, which is due to the larger
resolutions that we had employed.

Figure 3 shows a pictorial representation of an ATS for
multiple parameters in a noiseless environment.

FIGURE 3. The progress of the ATS scheme for a typical noiseless
environment for the DEF given by (Eq. (8)). The blue and red lines
represent the current search intervals for the respective parameters, and
the diamonds represent the current estimates of the parameters.

We again emphasize that the errors in the example run are
typical for the ATS for the Weighted Lp DEF in a noiseless
environment. This is confirmed in Table 4, where we report
the average errors and standard deviation of 100 runs of the
ATS. It should be noted the ‘‘Actual’’ values were always
contained in the final search intervals. We also mention that
if the resolution was set to be too small, the ATS would
not be able to reduce the search interval to the required
size causing it to continue, until the process was manually
terminated. Thus, while we had set the resolution to be the
convergence requirement, one could alternately have used the
number of epochs as the convergence requirement. Under
these circumstances the resolution would vary from run to
run.

B. RESULTS FOR THE NOISY DATA
1) EXPERIMENTAL SETUP
We now consider the more realistic case of testing the ATS on
noisy data sets. The sets were constructed in the same manner
as the noiseless data sets, except that noise was added to the
true distances. Thus, to create the noisy data, an additional
term was added to each distance. This additional term was
proportional to the magnitude of the distance, where the
proportion was based on a Gaussian distribution as below:

Noise =
TrueDistance

10
∗ X (15)

where, X is a random Gaussian variable, N(0,1)

Due to the noise that was added to the distances,
the ‘‘Actual’’ values, that are used to construct the data, was
not necessarily the ‘‘Benchmark’’ values to predict the dis-
tances for the data set. For these noisy data sets, the ‘‘Bench-
mark’’ or optimal parameter was then found using a simple
hill-climbing search that minimized the SD error. This param-
eter was then compared to the ‘‘Estimated’’ values, in order
to verify the accuracy of the ATS’s estimate.

The Hill-climbing search that we applied started at the
values found by the ATS search. It should be noted that other
starting points were tested and produced the same results;
however, the search took longer to converge. Starting from the
values found by the ATS, the Hill-climbing search compared
its current value (say, λ) to the λ + ε and λ − ε, and moved
to the value that minimized the GoF function. This process
was repeated until the current value λ minimized the GoF
function. The Hill-climbing search had to calculate the value
of the GoF at every time step, and as a result, this search was
computationally, very expensive.

Each of the DEFs was trained on 70% of the data set,
and the testing was conducted on the remaining 30% . The
points in the training set were randomly chosen from the
whole data set. While we did not follow a rigorous cross-
validation process, we believe that the error obtained is a
good representation of the performance of the corresponding
scheme, and the only major difference can be seen in the
larger standard deviations. This was done for all three data
sets, where the first set had 29 points, the second had 75 and
the third had 100 points. One example of the ATS is presented
for the Weighted Euclidian DEF and the Weighted Lp DEF
for the data set of size 75. The overall characteristics of all
three DEFs were examined for the three different sets of noisy
data. These characteristics were determined by examining the
accuracy of each ATS over 100 runs. Observe that for each
of these 100 executions of the ATS, the noise and ‘‘Actual
values’’ change.

2) WEIGHTED EUCLIDIAN DEF
The errors of the ‘‘Benchmark’’ and ‘‘Estimated’’ values
shown in Table 5 were almost equal. While the ‘‘Bench-
mark’’ value performed better on the training data than
the ‘‘Estimated’’ value, the ‘‘Estimated’’ value performed
marginally better than the ‘‘Benchmark’’ value when applied
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TABLE 4. Results for 100 runs of the ATS with the Weighted Lp DEF on the noiseless data sets.

TABLE 5. Results for the typical run for the case when the dataset was
noisy and it used the Weighted DEF.

to the testing data. The difference between the errors in
both cases are ‘‘small’’; however, it is interesting that the
ATS performed better on the testing data than the optimally-
trained parameter.

Table 6 shows the average errors of 100 ATSs for the
Weighted Euclidian DEF on each of the noisy data sets.
The errors for the ‘‘Benchmark’’ value and ‘‘Estimated’’
values of k produce very similar errors; there was less than
0.1% difference between the ‘‘Benchmark’’ and ‘‘Estimated’’

values for both the RAD and the EP errors. These results
clearly demonstrate the success of the ATS for DE in a noisy
environment.

3) Lp DEF
We again ran the ATS 100 times on the Lp DEF which incor-
porated noisy data. The results are shown in Table 7. These
results are similar to those obtained for the Weighted Euclid-
ian DEFs, since both the ‘‘Benchmark’’ and ‘‘Estimated’’
values of k produced almost identical testing errors. The dif-
ference between the ‘‘Benchmark’’ and ‘‘Estimated’’ values
for both the RAD and the EP errors were less than 0.1%.

4) WEIGHTED Lp DEF
The ATS for the Weighted Lp DEF was performed on the
noisy data. Figure 4 shows a pictorial representation of an
ATS for multiple parameters in a noisy environment.

The average testing errors for 100 runs of the ATS using
the Weighted Lp DEF is shown in Table 8. The errors for
this norm were smaller than the errors for the other two
norms. This is an anticipated result because the Weighted Lp

DEF had two parameters, and this concurs with the results

TABLE 6. Results for 100 runs of the ATS with the Weighted Euclidian DEF on noisy data sets.

TABLE 7. Results for 100 runs of the ATS with the Lp DEF on the noisy data sets.
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TABLE 8. Results for 100 runs of the ATS with the Weighted Lp DEF on the noisy data sets.

TABLE 9. Results for 100 runs of the ATS with the Weighted Euclidian DEF on the real-worlds data sets.

FIGURE 4. The progress of the ATS scheme for a typical noiseless
environment for the Weighted Lp DEF. The blue and red lines represent
the current search interval for the respective parameters, and the
diamonds represent the current estimate of the parameters.

found in the literature [1], [5], [16], [18]. The errors for the
‘‘Estimated’’ values were are very close to the errors for the
‘‘Benchmark’’ values, where the RAD and EP errors were
within 0.2% of each other.

C. RESULTS FOR THE REAL-WORLD DATA SETS
1) EXPERIMENTAL SETUP
The final test for the ATS was done on real-world data sets,
since the ‘‘proof of the pudding is, indeed, in the eating’’. This
data consisted of three sets, which in turn involved 29, 97, and

561 cities each. The data sets involving 29 and 561 cities were
obtained from the MP-TESTDATA (the TSPLIB Symmetric
Traveling Salesman Problem Instances) [32]. The data set
with 29 points is titled ‘‘bays29.tsp’’. This data was col-
lected from cities in Bavaria, and records the inter-street
distances and the locations of the cities. The data set involving
561 points is titled ‘‘pa561.tsp’’ and also reports the inter-
street distance and the co-ordinates of the cities. The data
set with 97 cities was obtained using Turkish cities. The
co-ordinates were obtained from [3], [26], and the distances
were calculated using Google maps [13].

Observe that for data of this type, there are no ‘‘Known’’
values of k and p. This is because the data was not cre-
ated and therefore did not depend on any ‘‘Known’’ values.
The ‘‘Benchmark’’ values were again used for comparison,
and the same hill-climbing search was used to determine the
‘‘Benchmark’’ values.

2) WEIGHTED EUCLIDIAN DEF
Table 9 shows the result for the three data sets when the ATS
used theWeighted Euclidian DEF. The standard deviation for
the ‘‘Benchmark’’ values was always zero. This is because we
were not changing the data set for each run, as in the previous
two types of data. The reason for doing multiple runs on the
same data set was to see how the ATS behaved.

The ATS out-performed the hill-climbing for the data sets
of size 29, and 97. For the ‘‘bays29’’ data set, the ATS had
less than a 1% advantage for both the RAD and EP. When
tested on the data set from Turkey, the ATS out-performed
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TABLE 10. Results for 100 runs of the ATS with the Lp DEF on the real-world data sets.

TABLE 11. Results for 100 runs of the ATS with the Weighted Lp DEF on the real-world data sets.

the hill-climbing scheme by over 17% and 5% for the RAD
and EP respectively. For the larger data set, ‘‘pa561’’, the hill-
climbing did out-perform the ATS, but by less than 1% for
both the RAD and EP errors. The ATS was able to out-
perform the hill climbing because the errors reported here
are the testing error, and the hill-climbing was trained using
the errors from the training set.

The results of this test are encouraging because the ATS
was able to compete with the hill-climbing scheme, that
had only a single optimum. To better comprehend the per-
formance of the ATS, one could also possibly compare the
results of the hill-climbing scheme with the maximum and
minimum errors that the ATS yielded.

3) Lp DEF
Table 10 shows the results for 100 runs of the ATS search
using the Lp norm on the real-world data. Overall the errors
were extremely large, over 300% error for the RAD and
EP errors for the data set of size 29 and 561. This can be
attributed to two main reasons; first the Lp norm had very
limited predicting power, and second, both the ‘‘Estimated’’
values and ‘‘Benchmark’’ values were actually at the max-
imum value of the ATS search interval. Regardless of how
this maximum value was changed, both the ATS and the hill-
climbing converged to the largest value. It should be noted
that the change in the DEF decreased for larger values of p.
The Lp norm did a much better job of estimating the

distances for the Turkey data. This may be due to the type

of network and region under study. The errors are still high
but both the ATS and the hill-climbing search converged to
values within the search interval. The ATS out-performed the
simple hill-climbing search by about 5% for both the RAD
and the EP errors on the Turkish data.

4) WEIGHTED Lp DEF
When the ATS is used in conjunction with the Weighted
Lp DEF, the ATS out-performed the hill-climbing search,
as shown in results in Table 11. While the ATS and the hill-
climbing search performed very similarly, the ATS had a
slight improvement over the hill-climbing search.

Both the data set with 29 points and the data set with
97 points had a p value that is close to 2.0. As a result,
the Weighted Lp DEF had a similar performance to the
Weighted Euclidean DEF. For the data set with 561 points,
the ATS produced an average p value of about 1.2, whereas
the hill-climbing search’s p value was 1.74. This change in
p value resulted in a larger difference in the accuracy of
the estimation of the distances between the ATS using the
Weighted Lp DEF and the Weighted Euclidean DEF. Finally,
the ATS using the Weighted Lp DEF, out-performed the
previous two DEFs.

D. DISCUSSION
The ATS always converged close to the ‘‘actual’’ values for
all three DEFs when interacting with noiseless data sets.
The errors were either exactly zero or smaller than 10−9 %.
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In addition to these small errors, the ‘‘actual’’ values were
always contained in the final search interval. This indicated
that the ATS was well adapted to finding multiple parameters
in the ideal DE domain, and serves as an important baseline
for more realistic data sets. Another observation is that the
ATS converged very quickly, at every time step a search
interval was reduced. Overall, the ATS was able to always
accurately find the optimal parameters for noiseless data sets.

For the noisy data sets the benchmark values and esti-
mates values were very close, and resulted in similar errors
within 0.1%. The ATS did not reduce its search interval at
each iteration; however, it was able to reduce the search
interval to the desired accuracy with additional epochs. If the
number of learning loops per epochs (N∞) were increased,
it would have been more likely to reduce the search interval
at each epoch. The ATS was able to accurately determine the
parameters of all three DEFs in a noisy environment.

In the real world setting, the ATS was competitive with the
hill-climbing search. While the hill-climbing search always
found the same values, the ATS had small variance of the
values. Both the ATS and the hill-climb search produced
similar but large errors for the data sets of size 29 and 561
using the Lp DEF. These large errors are due to the predicting
abilities of the Lp DEF. The similarity between the ATS
and the hill-climbing search shows that the ATS is still a
competitive searchmethod. Overall the ATS found values that
were competitive with the standard hill clime method.

The most significant contribution of this work was that
the ATS did not require the use of GoF functions, which we
believe is a pioneering and novel contribution.

VI. CONCLUSIONS
A. THE ATS
In this paper, we considered the Distance Estimation (DE)
problem that has been studied for almost four decades.
It involves estimating the real-life distances between points
in the Cartesian plain or in a geographic region. The input to
these DE problems are, typically, the start and end locations
in the form of the x and y co-ordinates of the locations in
the Cartesian plain, or the latitude and longitude in the geo-
graphic region. Our solution departs from the legacy methods
in that we depart from the use of so-called ‘‘Goodness-
of-Fit’’ (GoF) functions. Rather, we have used the field of
Learning Automata (LA) and in particular, the Adaptive
Teriary Search (ATS) used to solve the Stochastic Point
Location (SPL) problem. This paper has made some major
contributions. Firstly, it extended the ATS application to
the DE problem. In this regard, we defined both the new
environments and the corresponding LA for this problem for
three simple DEFs. Using these newly-defined Environments
and LA, the ATS was shown to produce parameters compet-
itive to those obtained by the hill-climbing search for all of
these DEFs.

The second contribution that we made (with regards to
the ATS) was to successfully search for multiple parameters

simultaneously. To achieve this, we proposed an algorithm in
which the ATS could perform a search for multiple parame-
ters, while it still maintained the core foundations of the ATS
described. This search has been shown to produce both the
optimal parameters in an ideal (non-stochastic) environment,
and competitive parameters in a stochastic environment.
While we need the algorithm to only find two parameters
simultaneously, we believe that it can be extended to the
problem of determining more parameters by following the
same principles.

B. DISTANCE ESTIMATION
With regards to DE, the ATS was applied to the problem of
DE in order to find the parameters for three different DEFs.
The parameters that were determined have been shown to
be competitive with the parameters computed using a hill-
climbing search. The biggest advantage of the ATS over the
hill-climbing search is that it does not require a GoF function
to determine the parameter, while using DEFs to compare the
qualities of the parameters.
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