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ABSTRACT In this paper, inspired by an inherent characteristic of human visual system capable of
recognizing salient regions from a complicated scene, we treat a defective region as a salient region in fabric
images. A novel fabric defect detection method, which is based on saliency metric for color dissimilarity
and positional aggregation, is proposed. In the method, the RGB color space of a given fabric image is first
converted into the CIE L*a*b color space for feature representation. Then, the color dissimilarity and the
positional distance between similar patches are jointly used to measure the defective values. To improve
the contrast between the defective region and the non-defective region, a multi-scale analysis scheme
performed on the pyramid images of the input fabric image is applied to calculate the defective values.
Finally, the obtained defect map image is further enhanced by a certain threshold regarding to the obtained
defective values. Thorough experimental results on several types of fabric images indicate the effectiveness
of the newly proposed method.

INDEX TERMS Color dissimilarity, defect map, fabric defect detection (FDD), K-nearest neighbor (KNN),
multi-scale.

I. INTRODUCTION
In textile industry, it is crucial to control the quality of fabric
products. Traditionally, the fabric defect detection (FDD) is
conducted by manual manner. However, the manual methods
are fundamentally high cost and low efficiency [1]. In partic-
ular, it has been shown that manual detection methods only
can achieve forty percent to sixty percent of detection rate [2];
moreover, the accuracy of this kind is prone to be influenced
by emotional and subjective factors of workers [3]. Therefore,
to gear up the high quality demand of fabric products, it is
necessary to develop an automatic approach to FDD based
on machine vision and image processing technology.

Since the 1970s, the automatic FDD techniques have
gained great attention and many approaches have been pro-
posed in the research field from different perspectives [4], [5].
Generally speaking, the existing FDD approaches can be
roughly divided into three categories, i.e., statistic-based
methods, spectrum-based methods, and model-based meth-
ods [6]–[8].

The statistical approaches typically extract statistical fea-
tures of fabric images by using different statistics, and
the obtained feature parameters are used to distinguish
non-defective regions from defective regions [9]. For exam-
ple, Liu et al. [10] utilized edge detection and projection
profile analysis for fabric defects detection; Reddy et al. [11]
applied gray level co-occurrence matrix and binary pattern
schemes to establish automated similarity identification and
defect detection model; Çelik et al. [12] proposed to use lin-
ear filtering and morphological operations to detected fabric
defect. In [13] a fuzzy inductive reasoning based on image
histogram statistic variables is designed for defect detection.
This kind of methods can efficiently locate larger defect
areaswhich are obviously different from the background [14].
Nevertheless, they fail to detect small defects or the defects
similar to the background [15].

In contrast, the model-based methods usually train a
special-purpose model to estimate the textural feature param-
eters of fabric images. For example, Zhang et al. [16]
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employed a multi-resolution Markov Random Field to seg-
ment jacquard warp-knitted fabric in the wavelet domain;
Bu et al. [17] presented a defect detection method by
using auto-regressive spectral analysis and support vec-
tor data description; Wang et al. [18] adopted the fractal
model to predict the permeability of stain fabric. Due to
the model-dependence of these methods, their detection per-
formance highly relies on the selected model parameters.
Moreover, the presumed model is insufficient to describe
complicated textural structures of fabric images. In addi-
tional, learning model parameters is time-consuming, which
limits their potential applications in practice [19].

Unlike the two aforementioned types of methods, the spec-
trum methods carry out fabric defect analysis in the spec-
trum domain based on the spectrogram. For example,
Malek et al. [20] utilized fast Fourier transform (FFT) and
cross-correlation to examine the structure regularity features
of fabric images for defect detection; Kuo et al. [21] utilized
the wavelet packets and the neural classifier for classifying
non-defective and defective fabric images; Jing et al. [22]
developed a genetic algorithm to design an optimal Gabor
filter to match the texture information of non-defective fab-
ric image and applied the obtained optimal Gabor filter to
accomplish defect detection. Although these methods have
been shown particularly effective for the repeat textures and
unpatterned fabric images based upon time-frequency anal-
ysis and multi-scale analysis, the results are greatly affected
by the suitable selection of frequency-domain filters and the
proper configuration of related parameters [23].

In recent years, many other sparse representation based
methods and deep learning-based methods are getting
popular for FDD. For example, Tong et al. [24] pre-
sented a nonlocal sparse representation approach for FDD;
Liu et al. [25] used sparse representation of main local
binary pattern for FDD; Li et al. [26] suggested a fisher
criterion-based deep learning algorithm for deformable pat-
terned FDD;Wang et al. [27] proposed a convolutional neural
network-based defect detection model for product quality
control, showing robust and fast performance; Ren et al. [28]
employed a generic deep-learning-based approach for auto-
mated surface inspection. Despite the promising results
obtained by the aforementioned methods, the detection per-
formance of them depends on the learning of a large number
of defective fabric images.

Up to now, many FDD methods for various applications
have been proposed from different viewpoints. However,
there is still much room to further improve the accuracy and
the efficiency of FDDwhen processing the fabric images with
complicated textures [29]. In recent years, simulating human
visual attention mechanism for visual information analysis
has gained much attention and shown great success in many
fields such as object detection [30], objection segmenta-
tion [31], and image compression [32]. The study shows
that human visual system (HVS) is able to quickly focus on
some salient goals and prioritize them in the observation of
a complex scene. With this inherent ability, human eyes can

quickly and accurately locate a salient region based on the
mechanism of visual attention [33], [34].

Roughly speaking, the current salient detection algorithms
can be divided into two categories [35], namely the bottom-up
and the top-downmethods. One of themost classic bottom-up
methods was proposed in [36], where intensity, color, and
orientation features are combined to generate the expected
saliency map. Following the Itti’s model, a variety of saliency
detection methods have been proposed in different aspects.
For example, Hou and Zhang [37] adopted spectral resid-
ual (SR) approach to saliency detection; Guan and Gao [38]
employed visual attention mechanism in the wavelet domain
to segment fabric defect regions; Liu et al. [39] developed
a FDD algorithm based on feature representation of local
binary pattern (LBP) and context-based local texture saliency
analysis, showing promising performance.

The success of saliency research and applications inspire
us to target defect detection via saliency analysis. The main
idea behind this method is twofold. One is that the colors of
the local defective regions in a fabric image visually differ
from those of the non-defective regions; the other is that the
defective regions are often grouped together within a small
region rather than spread throughout the whole image. The
fact prompts us that in contrast to the non-defective regions,
the defective regions are visually salient [40]. Based on
the above observation, we propose to integrate two features
of color dissimilarity and positional aggregation to achieve
FDD. Specifically, if the color distance between two local
image patches is large and inversely the positional distance
between them is small, the pixel can be seen as a potential
defective region. In summary, the contributions of the paper
are the following three aspects.

1) We elaborate on the fabric defect analysis in terms of
the insight of saliency detection, where the defective
value of a pixel is jointlymeasured by the color distance
and the positional distance.

2) We enhance the contrast the non-defective and defec-
tive regions by multi-scale dissimilarity analysis,
resulting in a reliable and robust result on FDD.

3) Extensive experiments carried out on different types of
fabric images indicate that the proposed method can
achieves state-of-art results by comparing with other
predecessors.

The rest of this paper is organized as follows. Section II
provides a brief overview of the proposed method.
In Section III we present the details of our method. Section IV
presents the experimental results and assesses the effective-
ness of our method in comparing with other state-of-the-
art competitors in literature. Final Section V concludes this
paper.

II. OVERVIEW OF THE PROPOSED METHOD
Figure 1 illustrates the flow chart of the proposed method.
The main steps are comprised of three parts: 1) dissimilarity
of color features, 2) similarity of positional distance, and
3) generation of the defect map.
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FIGURE 1. The flow chart of proposed FDD method.

1) Dissimilarity of color features: We first build the
pyramid images of the input fabric image and then
transform them into the CIE L*a*b color space. Next
each color channel is divided into patches and the
corresponding patches are concatenated together for
feature representation. Finally the Euclidean distance is
computed tomeasure the dissimilarity of color features.

2) Similarity of positional distance: We calculate the
Euclidean distance between two given patches to mea-
sure the positional similarity.

3) Generation of defect map: The color dissimilarity and
the positional distance of similar neighbors are jointly
used to compute the defective values and generate the
defect map.

III. THE PROPOSED DEFECT DETECTION METHOD
In this paper, the four principles of context-aware saliency
detection suggested in [41] are followed up to accomplish
the task of defect detection. The major idea behind the
proposed method is that the region different from fabric
background texture should obtain higher defective possibil-
ity while the regions frequently occurring should be effec-
tively suppressed. Furthermore, the defective pixels should
be grouped together and not be spread all over the image.
In the following section, we will detail the proposed defect
detection method from three parts. In the first subsection,
the CIE L*a*b color feature to represent local image patches
is presented. Next how to generate the defect map for defect
detection is described in the second subsection. Finally,
we summarize the proposed method.

A. REPRESENTATION OF COLOR FEATURES
One of the most key problems of the FDD is how to rep-
resent the feature of fabric images. In the research field of
FDD, textural feature, intensity feature, orientation feature,
and color feature, are widely used to characterize the dif-
ference between non-defective pixels and defective pixels.

Considering that the color feature shows higher robustness
and less dependence on the size and orientation of the images
than other features, in this paper we utilize color features of
fabric images to compare the dissimilarity of image patches.

Since the CIE L*a*b color space is based on HVS,
it has been shown powerful representation ability of visual
information and widely used in various image analysis
tasks [42]–[44]. In this paper we also follow the same
research direction and use the CIE L*a*b color space to rep-
resent local image patches. To represent the features of local
image patches, we first convert a color fabric image from the
RGB space to the CIE L*a*b color space. Next three channels
are respectively divided into a set of 7 × 7 local patches.
Finally, the extracted local patches in three components are
concatenated together into a 147-dimensional feature vector
for defect analysis. To improve the computational efficiency,
we use the principal component analysis (PCA) to reduce
the dimension of the original color features to represent each
image patch, where 95 percent of energy is preserved. It is
experimentally shown that the reduced features can signifi-
cantly improve the computational efficiency without degrad-
ing the defect detection accuracy. Figure 2 demonstrates the
major steps of feature representation in the proposed method.

Let pi and pj be the features at the i-th and j-th positions in
the image to be detected. The color similarity between pi and
pj is measured by the Euclidean distance dcolor (pi,pj), which
is denoted as below:

dcolor (pi,pj) =
∥∥color(pi)− color(pj)∥∥22 , (1)

where color(pi) is the color feature vector of the i-th patch
and color(pj) is the color feature vector of the j-th patch,
respectively. Note that the i-th pixel is possibly defective
when dcolor (pi,pj) is higher than others. In practice, to eval-
uate the defective possibility of a pixel, there is no need
to compare it with all other image patches. For each image
patch pi, we only select K nearest neighbors {pk}Kk=1 from
the obtained feature set. In our experiment, we empirically set
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FIGURE 2. Illustration of feature representation.

K = 64 and normalize the Euclidean distance dcolor (pi,pj)
to the range [0, 1] by all the pixel values divided by 255.

B. SIMILARITY OF POSITIONAL DISTANCE
Besides the dissimilarity of color feature, we also take the
positional distance of patches into account. According to the
basic principle of human visual attention, the defective region
may be salient and appear within one or a few small ranges.
That is to say, the non-defective region tends to occur many
times throughout the image; while the defective regions are
typically grouped together within a relatively smaller range.
Thus, we can say that a patch pi is a possible defective
region if its similar neighbors are near enough. By contrast,
a patch pi does not belong to a defective region when its
similar patches are far away from it. In this paper, we denote
ddistance

(
pi,pj

)
as the positional distance between the i-th

patch and the j-th patch, respectively. For the positional dis-
tance between two similar patches, we normalize it by the
larger dimension of the width and height of the input fabric
image.

C. GENERATION OF DEFECT MAP
In order to measure the defective value of a pixel, we combine
the color features and the distance information to define the
dissimilarity of two compared patches as follows.

d
(
pi,pj

)
=

dcolor
(
pi,pj

)
1+ c · ddistance

(
pi,pj

) (2)

where c = 3 is a constant coefficient to adjust the positional
distance, ddistance

(
pi,pj

)
is the Euclidean distance of the

patch pi and the patch pj. Based on Eq. (2), we can see that
the pixel i is a defective pixel when its color is highly different
from others and its positional distance is nearby enough.

To achieve a reliable result, intuitionally a given patch
should be compared with all other patches in the image.
Obviously, the way is computationally intensive. In the exper-
iment, we have found that it is sufficient enough to consider

the K most similar patches to measure the dissimilarity. The
strategy is based on the fact that when the K most similar
patches are significantly different from the given patch, all
other patches in the image are certainly different from the
patch. According to the above consideration, we apply the
dissimilarity metric in Eq. (2) to search the K most similar
patches and compute the defective value of the pixel i at scale
r as below:

sri = 1− exp

{
−

1
K

K∑
k=1

d(pri ,p
r
k )

}
, (3)

where sri is the defective value of the pixel i at scale r , p
r
k is

the k-th patch at scale r in the similar neighbors consisting of
the K (K = 64) most similar patches.

In fabric images, the non-defective pixels are likely to have
similar patches at multiple scales. By contrast, the defective
pixels only appear at a few scales rather than at all of the
scales. As a result, the similar patterns at multi-scales can
be considered to enhance the contrast between the defective
region and the non-defective region. This can be achieved
by searching similar neighbors from the pyramid images of
an input fabric image. When the multi-scale dissimilarity
analysis is made to calculate defective values, Eq. (3) is
reformulated as below:

sri =

[
1− exp

{
−

1
K

K∑
k=1

d
(
pri ,p

rk
k

)}]
, (4)

where prkk represents the similar patches at four scales rk =[
r, 4

5 r,
1
2 r,

3
10 r
]
. The procedure of generating defect map by

fusing the results of multiple scales is illustrated in Figure 3.
As shown in Figure 3, we first perform defect detection at
four different scales and then compute the mean of defective
values regarding these four scales. It is worth noticing that the
defective map sri at a lower scale is required to upscale to the
original size by Bicubic interpolation algorithm. The mean of
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FIGURE 3. Multi-scales defect detection.

defect values at the i-th pixel is defined as below:

ŝi =
1
M

∑
r∈R

sri , (5)

where R =
{
r, 4

5 r,
1
2 r,

3
10 r
}

and M = 4. In terms of
Eq. (5), the larger ŝi means the larger dissimilarity to the other
patches.

To achieve more obvious detection result, a better way
is to enhance higher defect values and suppress the lower
defect values. This can be mimicked by using the mechanism
of human visual attention proposed in [33]. According to
Lin’s method [34], the contrast of the defect values can be
strengthened by comparing them with a fixed threshold value
(0.8 in our paper), where the value larger than 80 percent of
the maximal value of the obtained defect map is regarded as
an attended local region. Then each pixel outside the attended
regions is reweighted in terms of the Euclidean distance to the
closest attended pixel, i.e.,

ŝi = s̄i
(
1− dfoci (i)

)
, (6)

where dfoci(i) is the distance between the pixel i and the
closest center of the attended pixel, which is normalized to
the range [0, 1].

D. SUMMARY OF THE PROPOSED ALGORITHM
In summary, the proposed defect detection algorithm for a
given fabric image is presented in Algorithm 1.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL DATASET
To validate the effectiveness of the proposed method, we use
130 fabric defect images collected from practical product

Algorithm 1 The Proposed FDD Algorithm

Input: A defect fabric image X.
Output: The final defective map.
1: Convert X from the RGB color space to the CIE L*a*b

color space.
2: Generate the pyramid images of three color channels at

four scales.
3: Divide the pyramid images into 7 × 7 patches with one

overlapping pixel.
4: Calculate the normalized Euclidean distance
dcolor (pi,pj) using Eq. (1).

5: Calculate the normalized positional distance
ddistance

(
pi,pj)

)
.

6: Apply multi-scale dissimilarity analysis to calculate
defective values using Eq. (4).

7: Aggregate defective values at multi-scales using Eq. (5).
8: Enhance defective map using Eq. (6).

to compare the performance of different methods. The test
images cover a wide range of different defect types such as
hole defect, stain defect, thrum defect, warp defect, and weft
defects. Some fabric defect samples are listed in Figure 4.

B. EXPERIMENTAL CONFIGURATION
Given an RGB color fabric image, we first convert it into
the CIE L*a*b color space. Then each color component is
divided into 7× 7 image patches with one overlapping pixel
at the adjacent patches. The scale number r is set to 4 for
multiple scale analysis. All the experiments are conducted
on a PC with an Intel(R) Core processor 3.2GHz and 6GB
RAM memory. The algorithm is implemented on MATLAB
R2014a programming platform.
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FIGURE 4. Some typical fabric defect samples. (a) and (b) are stain; (c) is broken warp; (d) and (e) are loss; (f) is thrum; (g) is ribbon yarn; (h) is
harness balk; (i) are ribbon yarn; (j) and (k) are hole; (l) is loose crane.

FIGURE 5. Comparison of non-patterned fabric defective images. (a) and (b) are cotton ball; (c) is holes; (d) is stains. From the second left
column to the right column are non-patterned fabric defective images, the results of SR-based method [37], the results of Low-rank
representation [45], the results of GLSR-based method [46], and the results of proposed method, respectively.

C. EXPERIMENTAL RESULTS
In this subsection, we evaluate the effectiveness of the
proposed FDD algorithm by comparing with other three

state-of-art methods. The compared methods include
SR-based method [37], low-rank representation based
method [45], and the prior knowledge guided least squares
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FIGURE 6. Comparison of non-patterned gray fabric defective images. (a) is scratches; (b) is stains; (c) is belt yarn; (d) is cotton ball. From
the second left column to the right column are gray fabric defective images, the results of SR-based method [37], the results of low-rank
representation based method [45], the results of GLSR-based [46], and the results of proposed method, respectively.

regression (GLSR) based method [46]. The SR-based method
constructs the corresponding defect map by analyzing the
log-spectral of an input image in spectral domain. The
low-rank representation based method decomposes the data
matrix into two parts: a low-rank part and a sparse part. The
GLSR-based is also a low-rank based method, which learns
a simple and effective prior to guide least squares regression
for FDD. The obtained sparse part is regarded as the expected
defect region. To validate the defect detection capability for
different types of fabric images, we select three categories of
textural structures to perform our experiment, which they are
non-patterned, gray, and patterned fabric structures.

1) RESULTS ON NON-PATTERNED, GRAY,
AND PATTERNED FABRIC IMAGES
In Figure 5, we compare the defect detection results of four
representative non-patterned fabric images. Based on the
results in the figure, the SR-based method can locate the
position of defect region, but the obtained results are not con-
trastive enough. The low-rank representation based method
can effectively detect most defects. However, the method is
clumsy at locating insignificant defects in the non-patterned

fabrics and is prone to introducing lots of noticeable noisy
results. The GLSR-based method can detect mostly defects
of non-pattered and gray images, but not outstanding for
the pattered image. By contrast to the above competitors,
the newly proposed can successfully locate all the defect
regions, leading to the best results. The second experiment
is tested on a set of gray fabric images as shown in Figure 6.
As demonstrated in the figure, we can find that our method
also enables the best result among the compared approaches.
This is because that the defect region is fundamentally
salient from the perspective of visual attention mechanism,
so the proposed method can effectively target the defect
detection.

To further validate the effectiveness of the proposed
method, we carry out another experiment on patterned fabric
images with complicated textures and different colors. The
defect detection on the pattered fabric image is challenging
for the compared methods. Figure 7 presents the results.
As illustrated, we can find that the other competitors can-
not successfully obtain the desired results. Contrastively, our
method can suppress the regular patterns and efficiently dis-
tinguish the defect region with singular colors and irregular
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FIGURE 7. Comparison of patterned fabric defective images. (a) is harness balk; (b) is stains; (c) is floating thread; (d) is stains and
flushing. From the second left column to the right column are patterned defective images, the results of SR-based method [37], the results
of low-rank representation based method [45], the results of GLSR-based [46], and the results of proposed method, respectively.

textures from the non-defective region with regular textural
structures.

2) COMPARISON OF DETECTION RATE
In this subsection, we further evaluate the performance of the
proposed method by comparing the detection rate (DR) with
the competitors. The experiment is carried out on four types
of lattice, gray, stripe, and plates fabric images. Each type
consists of 20 images with different defects including holes,
stains, belt yarn, cotton ball, and so on. The DR is employed
to evaluate the performance of detection performance, which
is defined as below.

DR =
DN
TN
× 100%, (7)

where DN is the number of accurate detection, and TN is the
number of total fabric images.

Table 1 tabulates the DR of four different types of fabric
defect images. As the results presented in the table, we can
see that the proposed method achieves the best performance
on the two types of Lattice and Plates images, reaching 85%
and 90%, respectively. For two types of Gray and Stripe
image, the DRs of our method are 90% and 75%, respectively,

TABLE 1. Comparison of detection rate.

which are comparable to GLSR-based method but superior to
the SR-based method [37] and low-rank based method [45].
Although the overall DR of our method is the best per-
formance, we also notice that the proposed method shows
relatively lower DR on Lattice and Stripe fabric images. This
is because that defects in Lattice and Stripe fabric images are
similar to the backgrounds and the Lattice and Stripe regions
are easily regarded as saliency regions, leading to mistake
detection.

D. INFLUENCE OF SIMILAR NEIGHBORS
In the proposed method, an important parameter is the num-
ber of similar neighborsK used for calculating the dissimilar-
ity in Eq. (3). In this subsection, we verify the reasonability
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FIGURE 8. Defect detection results influenced by different similar
neighbors. (a) and (c) are the detection results of floating thread; (b) is
the detection result of ribbon yarn; (d) is the detection result of stains;
(e) is the detection result of holes. From left to right: the names of fabric
defective images, the defective images, and the defect maps with K = 32,
K = 64, and K = 128, respectively.

FIGURE 9. Four test images for evaluating the CPU time.

of selecting the K most similar neighbors rather than all other
patches in the image. Figure 8 displays the results obtained
from three different numbers of neighbors, i.e., K = 32,
64, and 128, respectively. Based on the results we can see
that there are no significant differences when different num-
bers of similar neighbors are used for the defect detection.
Nevertheless, we also notice that more similar neighbors are
helpful to achieve more robust and more contrastive result.
However, too many similar neighbors would result in much
computational cost, which does not benefit real-time applica-
tions. To study how the number of similar neighbors affects
the computational time in the proposed method, we select
four fabric images of the size is 250×250 shown in Figure 9 to
compare the CPU time by setting the similar neighborhood
size K to 32, 64, and 128, respectively. As demonstrated
in Figure 10, more similar neighbors will cost more CPU
time. To take a tradeoff between the computational time and
the detection accuracy, we suggest selecting medium-sized
similar neighbors (K = 64) in the proposed framework.

FIGURE 10. Comparison of the CPU time for four different fabric images
shown in Figure 9.

E. INFLUENCE OF THE SIZE OF IMAGE PATCH
In the experiment, we also find that the size of image patch
fundamentally impacts the detection result. The smaller size
may tend to more similar neighbors which are not similar
at all, leading to too larger defect regions. While too larger
size could result in finding the less similar neighbors, leading
to inaccurate results. To probe a suitable image patch size,
we choose three different sizes of image patches, i.e., 3 × 3,
7 × 7, and 11 × 11, to compare their performance. The
contrastive results are shown in Figure 11 and Table 2,
respectively.

TABLE 2. The saliency values and the CPU running time.

Figure 11 displays the results using different image patch
sizes. Based on the Figure 11, we can find that the sizes of
3×3 (see the third column) and 11×11 (see the fifth column)
produce a relatively larger defect region in comparing with
the original images. By contrast, the obtained results from the
size of 7× 7 (see the fourth column) are more faithful to the
original defect as showed at the fourth column in Figure 11.

Furthermore, we compare the saliency values and the CPU
time varying with different sizes of image patches to select
an optimal size of patch. Moreover, we notice that the larger
size of patch may result in larger saliency value as shown
in Table 2. From the results tabulated in the table, in com-
parison to the results obtained from 3 × 3 and 7 × 7 image
patches, we can observe that the patch size of 11 × 11 can
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FIGURE 11. Defect detection results influenced by different sizes of
image patches. (a) is the results of cracked warp; (b) is the results of
missing waft; (c) is the results of belt yarn; (d) is the results of Knot; (e) is
the results of stains. From left to right: the names of images, the defective
images, and the defect maps obtained by using the patch sizes of 3× 3,
7× 7, and 11× 11, respectively.

achieves the top level saliency value but takes more CPU
time. To take a tradeoff between the computational time and
the detection performance, we suggest using the medium-size
patch, i.e., 7× 7 in the proposed FDD for efficient detection.

F. EFFECTIVENESS OF MULTI-SCALE FUSION
In this subsection, we validate the effectiveness of multi-scale
analysis strategy by comparing the results from single-scale
and multi-scale. The compared results from four single scales
(e.g., r = 1, r = 2, r = 3, and r = 4) and the fused
results towards four scales are shown in Figure 12. In terms
of the figure, we can find that the fused results are the best
among the compared results. The fact tells us that similar
patches at multiple scales can improve both the accuracy and
the contrast of resultant defect maps.

G. ROBUSTNESS AGAINST GAUSSIAN NOISE
In practical applications, the noise is not avoidable for FDD.
In order to validate the robustness against noise of the pro-
posed method, the additive Gaussian noise are added into the
test images for defect detection. Figure 13 demonstrates
the experimental result by the centered Gaussian noise with
the standard deviation of 0.02. Based on the results, we can
find that the proposed method does well on the defect detec-
tion of noisy fabric images and achieves comparable results
to the images without any noise. This is because the color dis-
similarity and positional aggregation of K similar neighbors
are considered in the proposed approach, which benefits to
suppress the noise influence on the defect detection.

FIGURE 12. Comparison of defect detection using multi-scale fusion.
(a) is the detection results of Knot; (b) is the detection results of cracked
warp; (c) is the detection results of belt yarn; (d) is the detection results
of harness balk; (e) is the detection results of hole. From left to right: the
name of image, the defect maps at scale 1(100%), the defect maps at
scale 2(80%), the defect maps at scale 3(50%), the defect maps at scale
4(30%), the fused defect maps of four scales, respectively.

FIGURE 13. Defect detection results on the fabric images with and
without the Gaussian noise. The first row is input images without noise;
the second row is the detection results at the first row; the third row is
the images with the Gaussian noise; the fourth row is the detection
results at the third row.

V. CONCLUSIONS
This paper has presented a novel FDD method based on
the mechanism of visual attention. In the proposed method,
an effective and robust saliencymetric which incorporates the
color dissimilarity and the positional aggregation is proposed
for FDD. Extensive experimental results demonstrate that
1) the proposed method can achieve more accurate defect
detection than other state-of-art competitors, 2) the proposed
method show good robustness on the fabric images with dif-
ferent textural structures different types of defects, and 3) the
multi-scale similarity introduced in the proposed method can
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effectively improve the contrast between the non-defective
region and the defective region. Despite the effectiveness of
the proposed method for fabric images with complicated pat-
terns, it is still clumsy at accurately detecting the defects in the
motif and box-patterned fabric images. In the future, we will
continue to elaborate on integrating multi-view feature learn-
ing algorithms [47], structural kernel analysis [48], and sparse
representation [49] to further improve the performance of the
proposed method.
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