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ABSTRACT Collaborative filtering recommendation suffers from the problems of high data sparsity, poor
expansibility, cold start, and the difficulty of modeling user preferences, among which data sparsity is the
greatest issue. Although our previous work on matrix completion model, named low rank non-negative
matrix factorization and completion algorithm (LR-NMFC) and stochastic sub-gradient based low rank
matrix completion algorithm, could effectively alleviate the sparsity problem, they customarily model
the linear feature interactions instead of the complex nonlinear structures between users and items when
making recommendations. To better depict user preferences and item features, we deepen the linear model
LR-NMFC to establish a wide and deep model, which we named Wide and Deep model of Multi-source
information-Aware recommender system (WDMMA), based on multi-source information composed of
user-item interaction matrix, attributes, and context. The wide part mainly handles the linear interactions
between users and items, while the deep part portrays the high-order nonlinear interactions.We pre-train both
the wide and the deep part using LR-NMFC in the embedding layer. In the pooling layer, we define a pooling
operation, AC-pooling, which is used to model the various interactions among users, items, attributes, and
context information. Upon the pooling layer, we stack some hidden layers to capture the high-order nonlinear
feature interactions. Experiments on two public datasets show that WDMMA can learn complex nonlinear
feature patterns successfully and effectively and is beneficial to improve the recommendation performance.
Therefore, it is an effective way to consider both linear user-item interactions and multi-source information-
aware nonlinear interactions in a deep learning framework when making recommendations.

INDEX TERMS Collaborative filtering recommendation, data sparsity, deep learning, high-order nonlinear
interactions, multi-source information.

I. INTRODUCTION
In the era of information explosion, recommender systems
have been widely applied to various online service sys-
tems to alleviate the problem of information overload. One
popular example is the Amazon product recommender sys-
tem, a typical representative of item-based collaborative
filtering [1]. Social networks like Facebook,1 Myspace2 and

1http://www.facebook.com
2https://myspace.com/

LinkedIn3 etc. employ collaborative filtering to their sys-
tems for recommendation of new friends, groups and other
social connections. According to Yelling in 2013,4 approx-
imately 75-80% of movies watched on Netflix5 come from
recommendations rather than by search engines. With the
renaissance of artificial intelligence,6 the development of

3https://www.linkedin.com/
4https://www.huffingtonpost.com/entry/

netflix-profiles_n_3685876
5https://www.netflix.com/
6https://sites.google.com/view/lianghu/home
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machine learning involves almost all the fields from natu-
ral language processing to computer vision to game theory.
Deep learning, one of the most advancing machine learning
technologies, becomes the preferred solution when building
recommender systems, here a case in point is the technical
report from Netflix.7

Collaborative filtering (CF) recommendation is currently
the most popular method among content-based, collabora-
tive filtering based and hybrid recommendation methods,
which has the advantages of simplified modeling and low
data dependency. However, it still suffers from the prob-
lems of high data sparsity, poor expansibility, cold start and
the difficulty of modeling user preferences. The main cause
of these problems stems from the insufficiency of data [2],
and matrix completion has become a popular and effective
solution [3], [4]. Our previous work on the matrix comple-
tion model, the LR-NMFC (Low Rank Non-negative Matrix
Factorization and Completion Algorithm) [6] and SS-LRMC
(Stochastic Sub-gradient based Low Rank Matrix Comple-
tion Algorithm) [7], could effectively alleviate the above
issues.

Despite the effectiveness of LR-NMFC and SS-LRMC,
they are still modeling the linear feature interactions between
users and items. However, in the real world, these interactions
are customarily built on complex nonlinear structures [8].
In addition to the user-item interaction matrix, user prefer-
ences are also affected by some rich auxiliary information [9].
For example, to enhance the accuracy of targeted advertis-
ing, Saia et al. [10] proposed a novel segmentation strat-
egy by a semantic analysis on the description of the
items, while Boratto et al. [11] take the time effect, that
is, the aging of items into account when modeling user
preferences. In a word, there are various kinds of heterge-
neous multi-source information available in recommender
systems [12]:

1) The attribute information of users and items, such as
user’s demographic information (age, occupation and
gender, etc.), as well as item’s attribute information,
such as movie genre, leading actors and the semantic
information of item descriptions.

2) The rich contextual information related to user-item
interactions, such as location, time, peers and user
emotions.

Obviously, if we fuse these data with implicit or explicit
feedback in recommender systems, we can better model user
preferences and item features. However, the greatest prob-
lem confronted here is the expression of these multi-source
information, and in many complex scenarios, it becomes
increasingly difficult when incorporating them into recom-
mender systems. Furthermore, like the sparse user-item inter-
actions, the feature vectors produced by these data are also
high-dimensional and sparse, which further increase the dif-
ficulty of modeling and recommending with them.

7https://www.re-work.co/blog/deep-learning-tony-
jebara-machine-learning-research-netflix

Since deep learning can obtain a unified embed-
ding expression through automatic feature learning [13],
we decide to build a deep learning based recommendation
framework. And due to the high sparsity of feature vec-
tors that represent the multi-source data mentioned above,
we ought to consider the impact of different feature inter-
actions when modeling user preferences. Wide&deep [14]
extracts low-order and higher-order feature interactions from
the data simultaneously, but its wide deep part requires fea-
ture engineering. DeepFM [15] applies multiple feature com-
binations for modeling CTR prediction. Based on the above
analysis, we decide to deepen our linear model LR-NMFC
and build a wide and deepmodel ofmulti-source information-
aware recommender system, abbreviated asWDMMA.When
modeling user preferences and item features, we consider
the effect of linear interactions as well as attribute and
context aware higher-order nonlinear interactions. The fusion
of multi-source information enhances the expressiveness of
our model; meanwhile, the extraction of both low-order
linear features and high-order nonlinear features improves
the recommendation accuracy. The main contributions are as
follows:

1) To better depict user preferences and item features,
we propose WDMMA, a wide and deep recom-
mendation model based on multi-source information.
Its structure is composed of GNMF (Generalized
Non-negative Matrix Factorization) and AC-MLP
(Attribute and Context-aware Multi-Layer Percep-
tron). The wide part GNMF mainly handles the
linear interactions between users and items, while
the deep part AC-MLP portrays the high-order non-
linear feature interactions based on multi-source
information.

2) We pre-train both the wide and the deep part using
LR-NMFC in the embedding layer. Upon the embed-
ding layer of AC-MLP is the pooling layer. We define
a pooling operation, AC-pooling, to model the various
interactions among users, items, attributes and context
information. Upon the pooling layer, we stack some
hidden layers to capture the underlying high-order non-
linear feature interactions.

3) Experiments on two public datasets show that, the pro-
cess of pre-training can accelerate algorithm con-
vergence, as well as yield better recommendation
performance. In addition, it also indicates empir-
ically that WDMMA can learn complex nonlin-
ear feature patterns successfully and effectively,
considering both the linear interactions and the
high-order multi-source information-aware nonlinear
interactions.

II. RELATED WORK
A. SYMBOLS AND NOTATIONS
We provide here a brief summary of the symbols and nota-
tions used in the paper, as shown in Table 1.
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TABLE 1. Symbols and notations.

B. REALTED WORK
Collaborative filtering recommendations are mainly divided
into rating prediction and ranking prediction, also known as
Top-N recommendation, based on their forms of output [16].
Recently, Top-N recommendation based on implicit feedback
has been extensively studied. The latent factor models like
MF [17], PLSA [18], and LDA [19] and so forth, become
increasingly popular due to its outstanding performance in
large-scale recommendation tasks. The key idea behind the
MF model is to decompose the user-item interaction matrix
into a product of low rank user and item submatrices in a
shared hidden space. And therefore, a target user’s prediction
on an item is calculated through the inner product of the
corresponding implicit user factor and item factor:

yui = pTu qi =
k∑
l=1

pulqil (1)

Although the MF method is very effective in collaborative
filtering, the inner product of Eq.(1) does not consider any
high-order non-linear feature interactions between user and
item hidden factors, implicitly assuming they are independent
of each other [8]. Therefore, this form of representation limits
the expressiveness of the model and is insufficient to capture
the complex structure of user-item interactions.

To improve model performance, many researchers incor-
porated attributes or time information in their basic matrix
decomposition models. For example, Agarwal and Chen [20]
extended their model to handle user or item attributes, while
Koren and Yehuda [21] and Xiong et al. [22] considered the

temporal influences. Although the above work demonstrated
empirically their superiority over basic MF models, they
still belong to the category of shallow methods and model
the interactive relationships linearly. In large datasets, these
methods tend to increase the model complexity while not
significantly improving the performance. Therefore, tomodel
the second-order feature interactions, Rendle proposed a
fast and effective context-aware recommendation system [12]
based on FM (Factorization Machine) [23]. However, FM is
a linear model which captures the low-order feature interac-
tions and cannot handle the nonlinear relationships and deep
features.

Deep neural networks (DNNs) can extract implicit struc-
tures and intrinsicmodels from training data at different levels
of abstraction and are able to approximate any continuous
function [24]. DNNs have been successfully applied in com-
puter vision [25], speech recognition [26], and natural lan-
guage processing [27] and so forth; as a result, recommender
systems based on deep learning have attracted increasingly
more attention among researchers [28]. Related work mainly
includes FNN proposed by Zhang et al. [29], PNN network
by Qu et al. [31], wide&deep by Cheng et al. [14], deepFM
by Guo et al. [15], and NCF by He et al. [8].
In deep recommender systems, we can combine the

user-item interactions with various attributes and contextual
information to model user preferences and to alleviate the
impact of the sparsity issue. These information is customarily
encoded as binary vectors with one-hot encoding, which
is high-dimensional and sparse. We ought to consider the
feature combinations among them if we want to establish an
effective recommendation model, and moreover, there indeed
exist complex higher-order nonlinear feature interactions. For
instance, company staffs become accustomed to download-
ing APPs that provide food delivery services during meal
time, which shows that a feature combination of APP type,
user age, occupation and time context can be used for CTR
prediction. Among which, user age, occupation, and APP
type belong to attribute information, while timestamp is the
context of current action.

Jian et al. [30] proposed a recommendation model which
coupled the deep neural network SADE with the CF model,
timeSVD++ for rating prediction, to address the issue of cold
start. Liao et al. [32] proposed the social network embedding
model, and they suggested enhancing network embedding
expression by various attribute information, in addition to
structural similarities. Embedding is originating from word
embedding [34], a distributed representation that is automat-
ically learned from data. It is a fully connected layer with
one-hot encoding vectors as the input, and the number of
nodes in the mid layer as the vector dimensions. Each dimen-
sion of this low-dimensional and dense vector has its practical
meaning, and their values can be continuously updated during
the training of DNNs [34].

Guo et al. propose deepFM [15], which combines
the linearity of FM with the non-linearity of DNN,
to extract high-order and low-order feature combinations
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simultaneously for CTR prediction. However, its FM part
adopts shared input and embedding expressions with its deep
part, which could limit the scalability of the model and
hinder the further improvement of accuracy. NCF [8] allows
its integrated components to learn different user and item
embeddings, respectively, but it does not account for any
impacts of the abovementioned multi-source information.
According to wide&deep model [14], both high-order and
low-order features can bring about additional performance
improvements, in contrast to considering either one alone.
Hence, it is an efficient way to consider the various feature
interactions between these data. In this way, we can better
capture user preferences and item features, and improve the
performance of recommender systems.

In addition, due to the non-convexity of the objective func-
tion in deep learning, optimizations based on gradient descent
can only find its local optimal solution. The influence of ini-
tialization on the convergence and performance of the model
is far reaching. Therefore, we can obtain good feature expres-
sions through reasonable pre-training to guide the learn-
ing and optimization in the direction of the minimum [33].
In light of this, many researchers try to use pre-training
to enhance the performance of their deep recommendation
models. For example, Zhang et al. pre-trained the embedding
layer of FNN [29] through feature embeddings learned by
FM [23]. And it indicates empirically that the pre-trained
FNN can learn complex nonlinear modes between features
effectively. He et al. also used the pre-training results of GMF
and MLP in NCF [8] to initialize their NeuMF framework.

Inspired by this, we use the latent user and item factors
produced by our matrix completion model LR-NMFC [5],
[6] to pre-train WDMMA. LR-NMFC is a low-rank matrix
completion model based on non-negative decomposition to
solve the sparse problem of the rating matrix:

min
U ,V
‖P� (X)− P� (UV )‖2F

s.t. P� (X) = P� (M) ,

rank(X ) ≤ r,Uij ≥ 0 and Vij ≥ 0 (2)

where M represents the set of known observations of the
original rating matrix, U ∈ Rm×r and V ∈ Rr×n are the
decomposition sub-matrices, and P� is defined in (3):

P� (X) =

{
Xij, if (i, j) ∈ �
0, otherwise

(3)

The multiplicative update process of U and V are derived
by coordinating descent method, as shown in (4):

U (n+1)
jk ← U (n)

jk

(
P� (X)V T

)
jk(

P� (UV )V T
)
jk

,

V (n+1)ki ← V (n)ki

(
UTP� (X)

)
ki(

UTP� (UV )
)
ki

(4)

During iterations of LR-NMFC, we obtain the low-rank
reconstruction solution X̂ to predict the missing values in

original matrix X ; besides, we obtain the corresponding
non-negative decomposition satisfying:

X̂ = UV (5)

It indicates emperically that combining LR-NMFC with
existing collaborative filtering algorithms can significantly
improve the prediction accuracy.

III. THE PROPOSED MODEL WDMMA
A. MODEL DESCRIPTION
In WDMMA, we can combine the user-item interaction
matrix with various attributes and contextual information
when modeling user preferences. Its framework is shown
in Fig. 1, which is composed of two parts: the generalized
non-negative matrix factorization part named GNMF, and the
deep neural part, namedAC-MLP.WDMMAmodels both the
linear interactions of GNMF and the higher-order nonlinear
feature interactions of AC-MLP and tries to generate better
predictions unifying the strengths of the two parts. Andmore-
over, different from deepFM [15], WDMMA allows GNMF
and AC-MLP to learn their respective embeddings and com-
bines these two components at the prediction layer.

B. GNMF
The input layer of GNMF contains the one-hot encoding
vectors for users and items, respectively, which are not only
high-dimensional but also extremely sparse. Upon the input
layer is the embedding layer which, according to [34], maps
the sparse input to a low dimensional dense vector. In addi-
tion, each dimension of this dense vector has its practical
meaning. Therefore, vectors of the embedding layer can be
used as features; for example, He et al. [8] treats them as user
and item hidden feature vectors of the latent factor models.

In GNMF, the embeddings for user u and item i are repre-
sented as pGu and qGi , respectively. Then, we can calculate the
element-wise inner product between pGu and qGi to capture the
low-order linear feature interactions, as shown in (6):

ZGL = pGu � q
G
i (6)

where ZGL is used to model the importance of first order fea-
ture interactions between user u and item i, and � represents
the element-wise product between vectors. The predicted
score ŷGui can be computed according to (7):

ŷGui = σ
(
hTZGL

)
(7)

among which σ is the non-linear activation function of
Relu or sigmoid, and h is the weight which is learned from
data.

Based on (5), we obtain the non-negative decomposition
representation of the reconstruction matrix, where U (i) and
V (j) represent the distributions of user interest and item fea-
tures, respectively. Therefore, we pre-train WDMMA with
normalizedU (i) andV (j), separately assigning them to pGu and
qGi . According to (6) and (7), we can generalize and deepen
our LR-NMFC to a non-linear context.
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FIGURE 1. The structure of WDMMA

C. AC-MLP
1) THE INPUT LAYER AND EMBEDDING LAYER
In AC-MLP section, the input layer includes the one-hot
encoding vectors of user u, his attributes Au, item i, its
attributes Ai, as well as the corresponding context of the cur-
rent interactionCui, where Au, Ai andCui might include either
categorical or continuous variables. Upon the input layer is
the embedding layer, which converts these sparse vectors into
low-dimensional and dense expressions, represented as pEu ,
gAu , q

E
i , gAi and gCui , respectively. We still pre-train pEu and

qEi with normalized U (i) and V (j) as we do in GNMF.
Since only the non-zero binary feature vectors of gAu , gAi

and gCui are stored, different user-item interactions might
contain different numbers of non-zero attributes and context
variables. As a result, the input of AC-MLP is a set of embed-
ding vectors with varying length. DNNs traditionally require
a fixed-length vector as input, and consequently, the embed-
ding vectors should be preprocessed before they are fed into
the hidden layers. To achieve this, these vectors ought to
be converted into a fixed-length vector, and the important
low-rank interactive information between them should be
captured effectively.

In CNNs (conventional neural networks) [35], convolution
and pooling are its two crucial operations. The pooling layer
conducts dimensionality reduction on features of its convo-
lution layer to form the final features, and above the pooling
layer we stack some fully connected layers. Average andmax-
imum pooling are two commonly used pooling operations,
suitable for feature extraction in dense data representations

as images and videos. However, the feature vectors generated
by the heterogeneous multi-source data here are highly sparse
and, consequently, the two pooling operations are no longer
applicable to capture the important user-item interactions.
To address this issue, He et al. proposed BI-Interaction pool-
ing operation [36] and Wang proposed a pairwise-pooling
operation [37]. These pooling operations are capable of cap-
turing the interactions between user/item and its attributes
with low computation complexity, making it convenient for
the following deep layers to learn meaningful information.
Inspired by this, to guarantee that the fully connected layers
learn meaningful high-order nonlinear feature interactions,
we define the AC-pooling operation, which is used to capture
different interactions between users, items, attributes and
contextual information.

2) POOLING LAYER
In AC-MLP, we defined three types of AC-pooling operations
for user u, expressed as:

• ϕAC−pooling

(
pEu ,

{
gtAu

})
: to capture pairwise correla-

tions between users and their attributes, as well as all
nested correlations between these attributes;

ϕAC−pooling

(
pEu ,

{
gtCui

})
=

|Cui|∑
t=1

pEu � g
t
Cui

+

|Cui|∑
t=1

|Cui|∑
t ′=t+1

gtCui � g
t ′
Cui (8)
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• ϕAC−pooling

(
pEu ,

{
glCui

})
: to capture pairwise correlation

between users and context and all nested correlations
between the context variables;

ϕAC−pooling

(
pEu ,

{
glCui

})
=

|Cui|∑
l=1

pEu � g
l
Cui

+

|Cui|∑
l=1

|Cui|∑
l′=l+1

glCui � g
l′
Cui (9)

• ϕAC−pooling

({
gtAu

}
,
{
glCui

})
: to capture pairwise correla-

tions between attributes and context variables.

ϕAC−pooling

({
gtAu
}
,
{
glCui

})
=

|Au|∑
t=1

|Cui|∑
l=1

gtAu � g
l
Cui (10)

Based on the pooling operations of (8), (9) and (10),
the embedding expression pMu of user u in AC-MLP can be
described as:

pMu = ϕAC−pooling
(
pEu ,

{
gtAu
})
+ ϕAC−pooling

(
pEu ,

{
glCui

})
+ϕAC−pooling

({
gtAu
}
,
{
glCui

})
(11)

Similarly, the three pooling operations for item i are
defined as:
• ϕAC−pooling

(
qEi ,

{
gtAi

})
: to capture pairwise correlations

between items and their attributes, as well as all nested
correlations between these attributes;

ϕAC−pooling

(
qEi ,

{
gtAi
})

=

|Ai|∑
t=1

qEi � g
t
Ai +

|Ai|∑
t=1

|Ai|∑
t ′=t+1

gtAi � g
t ′
Ai (12)

• ϕAC−pooling

(
qEi ,

{
glCui

})
: to capture pairwise correlation

between items and context and all nested correlations
between the context variables;

ϕAC−pooling

(
qEi ,

{
glCui

})
=

|Cui|∑
l=1

qEi � g
l
Cui

+

|Cui|∑
l=1

|Cui|∑
l′=l+1

glCui � g
l′
Cui

(13)

• ϕAC−pooling

({
gtAi

}
,
{
glCui

})
: to capture pairwise correla-

tions between attributes and context variables.

ϕAC−pooling

({
gtAi
}
,
{
glCui

})
=

|Ai|∑
t=1

gtAi�
|Cui|∑
l=1

glCui (14)

And then, the embedding expression qMi of item i in
AC-MLP is represented as:

qMi = ϕAC−pooling
(
qEi ,

{
gtAi
})
+ ϕAC−pooling

(
qEi ,

{
glCui

})
+ϕAC−pooling

({
gtAi
}
,
{
glCui

})
(15)

By analysis of expressions in Eq.(8)-Eq.(15), we know that
the AC-pooling operations encode the second-order feature
interactions of users, items, attributes and context variables,
and its output is a k-dimensional vector.

3) HIDDEN LAYERS
Above the pooling layer of AC-MLP, we stack some fully
connected layers. We send pMu and qMi to the hidden lay-
ers to capture the higher-order nonlinear interacting features
between the abovementioned multi-source data, which are
defined as (16):

ZM1 = φc
(
pMu , q

M
i

)
=

[
pMu
qMi

]
ZM2 = σ2

(
W2ZM1 + b2

)
ZM3 = σ3

(
W3ZM2 + b3

)
. . .

ZMH = σH
(
WHZMH−1 + bH

)
(16)

whereWl , bl , σl and ZMl represent weight matrix, bias vector,
activation function and output vector of layer l, respectively,
and for the activation function, we usually choose ReLu
from sigmoid, hyperbolic tangent (tanh) and Rectifier (ReLu)
and among others. During implementation, we use a tower
network structure, and use fewer hidden units in higher layers
so that the model can learn more attractive features [31]. And
the predicted score yMui , based solely on AC-MLP can be
computed as:

ŷMui = σ
(
hTZMH

)
(17)

D. MODEL PREDICTION AND OPTIMIZATION
To obtain the output of the prediction layer, we should lever-
age both the linear and the non-linear feature interactions,
therefore the prediction list cannot be generated in light of
(7) or (17) alone. Instead, we first conduct concatenation of
the output vectors, that is, ZGL of GNMF with ZMH , the last
hidden layer of AC-MLP, and then multiply the neural weight
vector h of the prediction layer, to obtain prediction score ŷui:

ŷui = σ
(
hT
(
ZGL
ZMH

))
(18)

The proposed model WDMMA focuses on implicit feed-
back, and user’s ratings on items are either 0 or 1. Since
implicit feedback only provides a noise signal on the user’s
preference, 1 means that the user likes the item, and 0 indi-
cates that he does not like the item or does not know the
item at all [38]. Therefore, there is a natural loss of negative
feedback in implicit datasets; to deal with it we can either
treat all unobserved items as negative feedbacks or conduct
negative sampling from the unobserved dataset [39]. Here,
in WDMMA, we choose to extract negative items at a certain
sampling rate according to the number of observations.
Since WDMMA fuses user-item interactions with various

attributes and contextual information to realize predictions,
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TABLE 2. Attributes of Movielens-1M.

we regard the whole predicting process as a regression prob-
lem, and its loss function is defined as:

L
(
yui, ŷui

)
=

∑
(u,i)∈χ

(
yui − ŷui

)2
+ λ
/
2‖2‖

2 (19)

where yui is the true value, and ŷui the predicted value, 2
the set of parameters, and λ the regularization coefficient to
prevent the model from over-fitting. χ is the set of training
examples, consisting of both positive and negative feedbacks.
We use mini-batch Adagrad [36], whose learning rate can be
self-adjusted according to the training phase, as the optimizer
to iteratively update all parameters until convergence.

The process of WDMMA is summarized as Algorithm 1.

Algorithm 1 Wide and Deep Model of Multi-Source
Information-Aware Recommender System (WDMMA)
Require:

Embedding dimension m, batch size n;
Step size η, regularization parameter λ;
Maximum iterations T , user-item interaction matrix X ;
One-hot encodings of u, Au, i, Ai, and Cui;

Ensure:
Top-N recommendation list;

1: Initializing the weight matrices and bias vectors defined
in Eq.(16) and Eq.(18) , with small random values;

2: Running LR-NMFC according to Eq.(4) to obtain nor-
malized U (i) and V (i);

3: Pre-training pGu , p
E
u , and q

G
i , q

E
i with normalizedU (i) and

V (j), respectively;
4: for i = 1 to T do
5: Dividing the dataset into multiple batches {χL};
6: for χl ∈ {χL} do
7: Running GNMF part according to Eq.(6);
8: Obtaining pMu and qMi based on Eq.(8)-Eq.(15);
9: Feeding pMu and qMi to the fully connected layers

based on Eq.(16) ;
10: Obtaining predicting scores according to Eq.(18);
11: Computing loss by Eq.(19);
12: Updating the parameters using mini-batch Adagrad;
13: end for
14: end for
15: return Top-N recommendation list according to ŷui in

the testing set.

IV. EXPERIMENTAL RESULTS AND THE ANALYSIS
In this section, we first introduce the experimental setup
and datasets. Then, we verify the performance of WDMMA
by comparison with several state-of-the-art recommendation
algorithms.

A. DATASETS
In the experiments, our datasets includeMovieLens-1M 8 and
Frappe.9 Movielens-1M contains 1,000,209 ratings made by
6,040 users on 3,900 movies, as well as the corresponding
timestamps, and each user should rate at least 20 movies.
The ratings are integers ranging from 1 to 5, which we
convert into implicit feedback with value 1 indicating one
interaction between users and items. We extract two kinds
of context from MovieLens, that is, day-of-week and hour-
of-the-day. In addition, we also pick some user and movie
attributes available in the datasets, as shown in Table 2. When
conducting negative sampling for a certain user, we randomly
select items that have no interaction with him under the same
context, at a ratio of 1:2 according to the interactions in his
behavioral history.

Since movie genres have multi-values here, we prepro-
cess the genres column and retain its first value only. Each
user-item interaction with the corresponding attributes and
context information is converted into a feature vector by
one-hot encoding, and we obtain 10,019 features in total.
Fig. 2 demonstrates some related behavioral characteristics
through statistical analysis of movie genres, gender, age and
occupation.

The Frappe dataset contains 96,203 app usage logs in
different contexts. In addition to userID and appID, each log
contains several context variables, including cnt, daytime,
weekday, isweekend, cost, home/work, weather, country, and
city, etc., as shown in Table 3. We also convert each log into
a feature vector using one-hot encoding, which yields a total
of 5,382 features. We assign a value of 1, meaning that the
user used this app in this context. We adopt the same negative
sampling strategy as we do in Movielens dataset. Fig. 3 and
Fig. 4 show the statistical behavioral characteristics related to
attributes such as daytime, weather and country, respectively.

B. EVALUATION INDEX AND SETTING OF
HYPER-PARAMETERS
We use RMSE to evaluate the performance of the algorithms;
the smaller the RMSE, the better the algorithm performance:

RMSE =

√√√√ 1
|TEST |

∑
(u,v,Ru,v)

(
Ru,v − estimated

)2 (20)

In addition, we also conduct performance comparison with
some state-of-the-art algorithms based on AUC(Area under
the ROC curve): the larger the AUC, the better the algorithm
performance.

For each user’s behavior sequence, we take 70% as the
training set, 10% as the validation set, and the remaining 20%

8https://grouplens.org/datasets/movielens/
9http://baltrunas.info/research-menu/frappe
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FIGURE 2. Behavior characteristics related to genres, gender, age and occupation in Movielens-1M

TABLE 3. Attributes of Frappe dataset.

FIGURE 3. Behavior characteristics related to daytime and weather in Frappe

for testing. All the numerical results reported in this section
are averaged over five runs. The training set is used to train
the parameters of the model; the validation set is for tuning
various hyper-parameters, for example, the exploration on
the properties of WDMMA in section IV (subsection C,
D and E) is conducted on the validation set; while the testing
set is for performance comparison with some state-of-the-art

algorithms. The range of parameters involved in the algorithm
is as follows:

1) The range of the embedding dimension m is
[16,32,64,128,256];

2) The range of the regularization coefficient λ is[
10−5, 10−4, 10−3, 10−2, 10−1, 1

]
;
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FIGURE 4. Behavior characteristics related to country in Frappe

FIGURE 5. Effectiveness of the pre-training operation of WDMMA on Frappe dataset. (a) Effectiveness of the
pre-training operation on the training set of Frappe. (b) Effectiveness of the pre-training operation on the
validation set of Frappe.

3) The step size η of Adagrad is set in the range[
10−4, 10−3, 10−2, 10−1, 1

]
;

4) The default value of batch size n is set to 128, which
can be adjusted according to the size of the training set.
Its value should be balanced between the training time
and the convergence rate. The larger the value of n is,
the faster the training, but the slower the convergence.

C. EFFECTIVENESS ANALYSIS AND VERIFICATION OF
PRE-TRAINING OPERATION
Due to the nonlinearity of neural networks, the model easily
falls into the local optimum when using SGD for optimiza-
tion; therefore, we use pre-training to accelerate the training
process. First, we run our LR-NMFC on the two datasets and
then pre-train user and item embeddings with the correspond-
ing normalized U (i) and V (j); for comparison the proposed
algorithm without pre-training is represented as nWDMMA

(here n means no pre-training). The comparable results of
WDMMA and nWDMMA on Frappe and MovieLens are
shown in Fig. 5 and Fig. 6, respectively. Among which the
subgraphs of Figs. 5(a) and 6(a) are the comparisons of
loss on the training sets between WDMMA and nWDMMA,
while Figs. 5(b) and 6(b) are their comparisons on the valida-
tion sets.

From Figs. 5 and 6, we can see that WDMMA that is
pre-trained by LR-NMFC converges much faster than nWD-
MMA. On the Frappe dataset, WDMMA tends to converge
after approximately 30 epochs in Fig. 5(a), with the perfor-
mance comparable to that of nWMDMA trained from scratch
after approximately 60 epochs. As can be clearly seen from
Fig. 5(b), the variation and comparison tendencies are almost
the same on the validation set as they are on the training set.

Fig. 6(a) and Fig. 6(b) illustrate the comparison results
between WDMMA and nWDMMA on Movielens-1M.
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FIGURE 6. Effectiveness of the pre-training operation of WDMMA on Movielens-1M Dataset. (a) Effectiveness of
the pre-training operation on the training set of Movielens-1M. (b) Effectiveness of the pre-training operation on
the validation set of Movielens-1M.

FIGURE 7. Performance comparison of WDMMA and nWDMMA for different
embedding size m

As shown in the figures, the proposed algorithm with
pre-training achieves better performance, for example,
in Fig. 6(a) WDMMA is apt to converge after only about
20 epochs. In addition, pre-training does enhance the final
performance of the algorithm, as it can be concluded from
Figs. 5 and 6 that, the RMSE of WDMMA is lower than that
of nWDMMA on both the training and validation sets.

D. PERFORMANCE COMPARISON OF WDMMA AND
nWDMMA FOR DIFFERENT EMBEDDING SIZE m
The performance variations and comparison of WDMMA
and nWDMMA with different number of embedding size m
are depicted in Fig. 7. The figure demonstrates thatWDMMA
is superior to nWDMMA under different m, which fur-
ther validates the effectiveness of the pre-training step by
LR-NMFC. With the increase of m, the performance of each
algorithm is gradually increasing, which means that increas-
ing the embedding size can further enhance the expressive-
ness of the model. On Frappe, the relative improvement of

WDMMA is 6.6% and 4%, in contrast to nWDMMA, when
m = 64 or 128. Fig. 7 also indicates that both WDMMA
and nWDMMA obtains optimal performance with m = 64,
which is set as the default value of the embedding size in the
subsequent experiments.

E. VALIDATION ANALYSIS OF THE AC-POOLING
OPERATION
The AC-pooling operation is defined to capture various
interactions between users, items, attributes and contextual
variables, as shown in Eq.(8)-Eq.(15). To confirm whether
this pooling operation has effectively caught related inter-
actions, as well as its influence on the following hidden
layers, we stack 0-5 hidden layers above the pooling layer,
and represented the model as WDMMA-0 to WDMMA-
5, respectively. Table 4 is their RMSE comparison on the
validation sets.

It can be clearly seen from the table that WDMMA-0 has
the worst performance on both the Frappe and Movielens
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TABLE 4. Performance of WDMMA with different number of hidden layers.

datasets. This is principally because without hidden layers,
it directly maps the user and item embeddings to the output
layer, which just captures the low-order feature interactions
between users and items, attributes and context variables.
The relative improvement of WDMMA-1 with one hidden
layer is 16.9% and 11%, when compared with WDMMA-
0, which illustrates the importance of capturing high-order
feature interactions through DNNs.

By comparative analysis of the models WDMMA-1 to
WDMMA-5, we find that the performance has no appar-
ent and further improvement with the increasing number of
hidden layers. Based on the result of Table 4, WDMMA-
2 and WDMMA-3 perform the best. This strongly proved
the effectiveness of the underlying AC-Pooling operation,
since the model are capable of learning higher-order feature
interactions effectively with only two or three hidden layers.
In other words, the algorithm can achieve its best performance
with only two hidden layers. This simplifies model optimiza-
tion a lot and can avoid or relieve the underlying problem [8]
of vanishing/exploding gradients, overfitting, etc. Based on
the above analysis and results, we set two hidden layers for
WDMMA in the subsequent experiments.

F. PERFORMANCE COMPARISON WITH SEVERAL
STATE-OF-THE-ART ALGORITHMS
When compared with state-of-the-art methods, we use
WDMMA-2 with two hidden layers and set embedding size
m = 64; for the activation function, we choose ReLu.
In wide&deep, we use the same network structure as pro-
posed in [14]. The size of the hidden factor is set to 64 for
NCF [8], FM [12] and LR-NMFC [6].

1) ItemKNN+LR-NMFC:
For the implicit user-item interaction matrix we first
run LR-NMFC to fill in the missing values. In the
whole process all missing items are assigned to
0 without negative sampling, to verify the feasibility
and validity of deep expansion for linear methods.
Then the recommendation list is generated based on
itemKNN [40] from the reconstructed matrix.

2) FM [12] and CARs [9]:
Rendle et al. propsed a fast context-aware recommen-
dation method [12], which we call it FM for short,
based on factorization machines; while CARs is a
context-aware recommendation system proposed by
Adomavicis et al. The recommendation list is obtained
based on user-item interactions and the related con-
text. The algorithms here are used to verify the effec-
tiveness of the proposed algorithm in context-aware
recommendations.

3) Wide&deep [14] and NCF [8]:
In wide&deep, we use original features for the wide
part, and concatenate the feature embeddings for
the deep part to model their interactions. We use a
three-layer tower network structure as proposed in [14]
:1024, 512 and 256. We use the NeuMF model pro-
posed by He et al. in their NCF framework and rep-
resent the algorithm as NCF. In addition, in NCF the
predictions are made purely based on user-item inter-
actions without considering any attributes or context.
Both wide&deep and NCF are used to verify the effec-
tiveness of WDMMA in deep recommendations.

TABLE 5. The RMSE comparison with state-of-the-art algorithms.

Table 5 is the RMSE comparison of the above algorithms
on Frappe and MovieLens, and here * means the statistical
significance for p < 0.05 when comparing with the best
baseline. It has been shown that WDMMA obtains the best
performance on both datasets.

On Frappe, the RMSE of ItemKNN+LR-NMFC is slightly
worse than that of CARs, since its recommendations are
made based on the reconstructed user-item matrix of implicit
feedback without any attributes or context variables. Thus it
can be clearly seen that:

1) Algorithms of matrix completion perform worse on
datasets with implicit feedback than on datasets with
explicit feedback. One reason might be that in implicit
feedback users’ ratings on items are either 0 or 1, which
cannot reflect the subjective differences of their rating
behaviors. However, these differences tend to play a
vital important role in low rank matrix completion.

2) The Frappe dataset has abundant context variables
related to the usage of APP, and thus it follows that
this multi-source information has a positive effect on
modeling of user interest and item features.Meanwhile,
on MovieLens, the performance of ItemKNN+LR-
NMFC is slightly superior to CARs, because we only
extract two kinds of context information here: day-of-
week and hour-of-the-day, and recommendations are
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generated mainly based on the user-item interaction
matrix.

On the two datasets, the other algorithms have better perfor-
mance than both ItemKNN+LR-NMFC and CARs, which
further indicates the effectiveness of fusing attributes and
context information in the modeling of recommender sys-
tems. The RMSE of wide&deep is lower than FM, and the
performance of NCF also betters FM a lot. By analysis,
we find that FM only models the second linear feature inter-
actions between the context variables and user-item inter-
actions; and we contribute the performance enhancement
of NCF to the application of its MLP part, which learns
high-order nonlinear feature interactions between users and
items, instead of the conventional inner product between
their embeddings. The superior performance of wide&deep
indicates the effectiveness of considering the higher-order
nonlinear feature combinations of attributes and context
information.

WDMMA achieves the best performance on the two
datasets, significantly outperforming wide&deep by a large
margin. This highly encouraging result is mainly attributed
to two aspects. One is that we pre-train the model using
LR-NMFC, and the other is that, different from the sim-
ple concatenation operations, in WDMMA, we define three
AC-pooling operations for users and items, respectively. The
operation not only captures the interactions of embeddings
at the lower layer but also helps to ease the following fully
connected layers to learn more meaningful, high-order and
nonlinear feature interactions.

Besides the comparison of RMSE, we also conduct exten-
sive experiments to compare the AUC between these algo-
rithms and the results are shown in Table 6. As shown
in Table 6, our proposed WDMMA and nWDMMA achieves
a higher AUC compared with the other algorithms, which
further confirm the effectiveness of the proposed method.

TABLE 6. The AUC comparison with state-of-the-art algorithms.

V. CONCLUSIONS
In this paper, we deepen our linear model LR-NMFC
and build a wide and deep model fusing a multi-source
information-aware learning framework named WDMMA.
We treat recommendation as a regression problem and
pre-train the proposed model with embeddings learned
from LR-NMFC. WDMMA considers both the linear inter-
actions and the high-order nonlinear interactions fusing

heterogeneous multi-source data between users and items.
For one thing, the model improves recommendation accuracy
by extracting low-order linear features and high-order non-
linear features concurrently; for another, it improves model
expressiveness by fusing the multi-source data when depict-
ing user and item expressions. Experiments on two public
datasets indicate that in deep learning framework, WDMMA
can effectively learn complex nonlinear feature interactions,
and the pre-training with LR-NMFC not only speed up the
algorithm convergence but also obtains better recommenda-
tion performance. Therefore, in recommender systems, it is
an effective way to consider both linear user-item interactions
and multi-source information-aware nonlinear interactions in
deep learning framework. In future, we will continue our
study on deep learning based recommendation, for example,
the attention-based deep recommendation based on these
hetergeneous multi-source information.
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