
Received July 18, 2018, accepted August 20, 2018, date of publication August 31, 2018, date of current version September 21, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2868114

A Multi-Tier Stacked Ensemble Algorithm to
Reduce the Regret of Incremental Learning
for Streaming Data
R. PARI , M. SANDHYA, AND SHARMILA SANKAR
Department of Computer Science and Engineering, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India

Corresponding author: R. Pari (pari_ramalingam@yahoo.com)

ABSTRACT Incremental Learning (IL) is an exciting paradigm that deals with classification problems based
on a streaming or sequential data. IL aims to achieve the same level of prediction accuracy on streaming data
as that of a batch learning model that has the opportunity to see the entire data at once. The performance of
the traditional algorithms that can learn the streaming data is nowhere comparable to that of batch learning
algorithms. Reducing the regret of IL is a challenging task in real-world applications. Hence developing
an innovative algorithm to improve the ILs performance is a necessity. In this paper, we propose a multi-
tier stacked ensemble (MTSE) algorithm that uses incremental learners as the base classifiers. This novel
algorithm uses the incremental learners to predict the results that get combined by the combination schemes
in the next tier. The meta-learning in the next tier generalizes the output from the combination schemes to
give the final prediction. We tested the MTSE with three data sets from the UCI machine learning repository.
The results reveal that MTSE is superior in performance over the SE learning.

INDEX TERMS Incremental learning, stream data mining, ensemble learning, stacked generalization,
stacked ensemble and classification accuracy.

I. INTRODUCTION
A streaming data emanates continuously from one or more
data sources at high speed [1], [2]. The volume of data
received from the data sources is vast and varies from one
instant to another instant [3]. Though it is possible to store
them on disk, processing and analysing them using multiple
passes is challenging [4], [5]. As soon as they arrive, they
are processed and discarded [6]. Due to the high frequency
of arrival and high volume of data, some of the data are
discarded without even getting processed [7]. In streaming
data, it is necessary to train the model with different sets
of data emanating from various sources at different points
of time [8], [9]. There is a need to update the model incre-
mentally with the new sets of data without impacting the
performance of the model [10]. The process of learning con-
tinuously on streaming data and updating the model to adapt
to the new sets of data is called incremental learning [1], [2],
[8], [11]. There are two common scenarios in incremental
learning. (i) The data received from the sources at each of
the time instants contain the same inherent pattern in them
(ii) New patterns evolve with the new data received from the
sources. Accordingly, the data set is said to have a stationary

target and a dynamic target [12]–[14]. When the target is
dynamic in nature, the data set is said to have a concept
drift [15]–[17]. The probability distribution of the data set
which has the concept drift, varies with time [13]. In such
data sets, the model trained at previous instants of time is not
consistent with the data received at the current instant. Hence
the model is updated for every new set of data received from
the sources [1], [18]. In some extreme cases, the old models
are discarded, and new models are created.

In incremental learning, themodel evolveswith every set of
data made available for training [19]. The model dynamically
adapts to the new patterns in the new set of data [20]. As the
model evolves, the performance of the model keeps improv-
ing with every set of new data [11], [21]. The performances
of such models are far below the performance of the models
which have the opportunity to see the entire data. Incremental
learning aims to reduce the regret [22]–[25]. The Regret
of the incremental learning is the difference between the
performances of incremental and full batch models [26]. The
primary challenge in reducing the regret is that the endpoint
of incremental learning keeps moving with every arrival of
a new set of data [21]. Even if the regret is reduced at

48726 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 6, 2018

https://orcid.org/0000-0003-0787-8927


R. Pari et al.: MTSE Algorithm to Reduce the Regret of IL for Streaming Data

instant ‘T’, with the arrival of data at ‘T + 1’, there is no
guarantee that the regret continues to reduce or remains at
the same level. To reduce the regret of incremental learn-
ing, the algorithm needs to increase the accuracy of the
models and also adapt to the concept drift [27]. Rather
than using a single classifier, ensemble learning gives better
accuracy [1], [28]–[30]. When multiple weak learners carry
out the incremental learning, their predictions can be com-
bined using an ensemble algorithm [14], [31]. The combined
predictions are more accurate than the predictions of the
individual incremental learners [32]. Instead of using a static
function like average or weighted sum, trainable combiners
generalizes well [33]–[37]. This study goes one step further
by using multiple ensemble algorithms and generalizing the
predictions from the ensemble algorithms using another clas-
sifier. Thus it uses an MTSE algorithm for incremental learn-
ing. MTSE possesses the following characteristics which are
mandatory for stream data mining.
• Ability to read and process blocks of data at a time,
rather than processing all the data as a whole.

• Each block of data is processed only once
• Use a fixed amount of memory irrespective of the size
of the data set

• Ability to stop the algorithm at any time and get the best
prediction

In this study, MTSE simulates the steady flow of streaming
data from a large static dataset. Hence the data stream is not
handled in a pure stream fashion. The static dataset is divided
into multiple partitions, and each partition is considered as
a data stream at an instant ‘T’. Thus the training happens in
mini-batches with every new stream of data received from the
source.

The contributions of this study are as follows. (i) Intro-
duce a multi-tier stacked ensemble algorithm for incremental
learning (ii) Demonstrate that the algorithm minimizes the
regret and (iii) Motivate the intellectual community to make
use of this algorithm for real-time classification problems
with streaming data. The rest of the sections of this paper are
organized as follows. Section II describes the related work
in this area of data analytics. After explaining the proposed
method or approach in Section III, the experimental evalua-
tion is depicted in Section IV. Section V is the conclusion and
the scope for future work.

II. RELATED WORK
Training a new model for every new concept in the data
stream and keeping them in sleep mode helps to reactivate
the old models if there is a recurrence of concept. Detecting
the concept drifts and the recurrence of concepts helps to
decide whether a new model needs to built or any of the old
models is appropriate. Gama and Kosina [38] used a two-
layered learning system for mining dynamic data streams.
The first layer was trained on the data stream and the second
layer was also trained using the same data stream. The class
label of the second layer was decided based on the correctness
of the first layer classifier. The second layer classifier acts

as a meta-learner to learn about the performance of the first
layer classifier. Depending on the delay in receiving the actual
labels of the data stream the second layer was trained, only
after the actual labels were received and the correctness of the
first layer classifier was evaluated. The arrival of the actual
labels also updated the first layer classifiers. The first stream
of data was used only for training the base classifier. From
the second stream onwards, both base classifier and the meta-
learner were trained. The number of examples after which
the meta-learner started to train was a hyper-parameter. The
evolution of performance measures and the error rates were
monitored to detect concept drift.Whenever there is a concept
drift, the meta-learners predicted whether the old models
were applicable or not. Accordingly either a new model was
trained or one of the previously learned models was activated.
If the number of concepts in the data stream is large, then
the number of models to be maintained also becomes large.
Hence in the case of concept drift, it took more time to decide
whether a new model needs to be trained or an old model
needs to be reactivated.

The stream mining community explored the use of ensem-
ble learning for streaming data extensively. It is often used
for streams where adapting to the concept drift is essential.
Some of the studies used SE to tackle the dynamic nature of
streaming data and got better accuracy. Bifet et al. [39] trained
multiple Hoeffding trees with different subsets of features and
generalized the class probabilities of their predictions. Simple
perceptrons with sigmoid activation functions were used as
generalizers. To minimize the squared loss, the stochastic
gradient was used to train the perceptrons. Initially, equal
weights were assigned to all the nodes and were updated
based on gradient descent. The weights were updated in-line
with the learning rate of the perceptrons. Whenever concept
drift was detected, the learning rate was reset to a larger value.
ADaptive sliding WINdow (ADWIN) was used to detect the
concept drift. Though this approach improved the accuracy to
some extent and also was coping with the concept drift, it is
more dependent on the size of the feature subset, the number
of feature subsets and the learning rate of perceptrons. It is
challenging to optimize these parameters and to get the near
optimal values.

When the streams keep arriving continuously from multi-
ple sources, it is difficult to model the underlying function of
the complete data set. Canzian et al. [40] used local learners
for each of the data sources and combined the predictions
with a weighted majority rule to arrive at the final prediction.
The aggregation rules were updated to make it more relevant
to the dynamic nature of the data. Here the dynamic nature
was referred to the concept drift in the data. When the real
label of the data was available, the prediction error was
calculated. Based on the prediction errors, the weights of the
aggregation were updated. The technique was named as Per-
ceptron Weighted Majority (PWM). This technique assumed
that each learner could have its statistical dependency on its
observations and the actual labels. The aggregation rules were
updated when the local prediction was not matching with the

VOLUME 6, 2018 48727



R. Pari et al.: MTSE Algorithm to Reduce the Regret of IL for Streaming Data

actual label. The misclassification probability was used as the
performance measure to assess the technique. The number of
wrong predictions per instance was considered as the mis-
classification probability. Themisclassification probability of
this technique reached the minimum when the misclassifi-
cation probabilities of each of the local classifiers were at
a minimum. This technique achieved the performance gain
of 34 to 71 % over the existing solutions. They achieved the
misclassification probability of 31.5% for one of the data sets
which contained the concept drift. As this value is very high,
this technique is suitable only for a data set which does not
have concept drift.

Combining the predictions of a set of adaptive classifiers
using meta-learners helps to deal with the concept drift and at
the same time achieves high accuracy. Frías-Blanco et al. [41]
used Fast Adaptive Stacking of Ensembles (FASE) for learn-
ing from non-stationary data streams. A two-sided variant of
Hoeffding-based Drift Detection Method was used to esti-
mate the error rate of the adaptive learners. 0-1 loss function
was used to calculate the error. Meta-instances were gener-
ated using a predictive sequential approach. Based on the con-
cept drift, the base classifiers were alternated or in some cases
removed. The meta-learner was also an adaptive learner to
handle the dynamic changes in the meta-instances. The num-
ber of base classifiers and the confidence level for the drift
detection was used as hyperparameters for FASE. The per-
formance of FASEwas on par with similar ensemble methods
like OzaBag, OzaBag-HDDM and OzaBagAD-WIN. Model
alternations for every new concept with a smaller set of
examples worsened the accuracy. There was an additional
cost associated with the classifier replacements in case if the
number of examples for the new concepts is small.

Most of the incremental learning algorithms work rea-
sonably well for the balanced data sets and are not suit-
able for imbalanced data set. Wang et al. [42] proposed
Over-sampling-based Online Bagging (OOB) and Under-
sampling-based Online Bagging (UOB). The study used ran-
dom oversampling and random under-sampling to increase
or decrease the number of minority class instances.
A Poisson distribution parameter ‘‘λ’’ was used for perform-
ing the re-sampling. The integration of random sampling
with the bagging algorithm had a positive impact on improv-
ing the minority-class recall and G-mean. Based on the
ANOVA analysis, it was found that data distribution is the
more influential factor than the imbalance rates and the types
of base classifiers. The weighted ensemble of OOB and UOB
assigned the weights based on the normalized G-mean. These
weights were either proportional weights or binary weights
and accordingly the strategies were named WEOB1 and
WEOB2. Both WEOB1 and WEOB2 achieved better perfor-
mance than that of OOB and UOB individually. The perfor-
mance of these strategies for data streams with concept drift
was not studied.

Neural activities produce the data continuously and hence
can be considered as a streaming data. Mining this stream
helps to treat the brain related diseases. The challenge here

is that this stream needs to be processed in real time and the
predictions are made in real time. The accuracy of such pre-
dictions is critical for treating the patients. Lee et al. [43] used
Incremental Linear Discriminant Analysis to decode the neu-
ral signal. Data flow for the algorithmwas implemented using
DSPCADLightweight Data flow environment and was tested
with the traces of the animal’s neurons. Animal’s behavior
data was recorded for five days and three times a day. Accu-
racy was used as the performance measure. The algorithm
showed a tremendous improvement in the execution time.
The accuracy of the algorithm was closer to the batch Linear
Discriminant Analysis algorithm. While experimenting, for
each of the test cases only one increment was considered.
Hence the experiment was not reflecting the true nature of
incremental learning using streaming data. The change in the
concept was not simulated in the experiment, and hence the
applicability of this approach for dynamic data streams is not
known.

Bifet [3] used Leveraging Bagging (LB) for classifying
the examples in the evolving data streams. They leveraged
the performance of bagging with two improvements. They
used resampling with replacement and output detection codes
for achieving the randomization improvement. Poisson dis-
tribution was used for increasing the weights of resampling.
They assigned a binary string of length ‘n’ to each of the
class labels. They trained each of the classifiers on one-
bit position. For each of the new instances, their proximity
with the binary string is checked, and as per that, they are
assigned to the corresponding classes. They used random
output codes to increase the diversity of the ensemble. The
random output code is a form of voting system with the
flexibility of correcting the incorrect votes. ADWINwas used
for detecting the change in the error code of the classifiers.
Whenever there was a change in the error, classifiers with
higher error were replaced with a new classifier. They imple-
mented the algorithms using Massive Online Analysis. They
used four artificial data sets namely Streaming Ensemble
Algorithm (SEA) Concept Generator, Rotating Hyperplane,
Random Radial Basis Function (RBF) Generator and Light-
Emitting Diode (LED) Generator for testing their algorithms.
They also tested the algorithms with three real-world data
sets namely Forest Cover Type, Poker-Hand and Electricity.
Hoeffding Naive Bayes Tree was used as a base learner. Three
different bagging strategies namely subagging, half subag-
ging and bagging were used. Though these strategies were
performing better than ADWIN in terms of the time, their
accuracies were less. When compared with random forest,
LB showed improvement.

Enabling Random Forest to adapt to the concept drifts
in the evolving data streams is a state-of-the-art strategy.
Gomes et al. [44] used an updated version of the Adaptive
Random Forest (ARF) for evolving data streams. They com-
bined the characteristics of the batch algorithm with dynamic
adaptation. They used the Hoeffding Tree algorithm as a
base classifier. Drift adaptation was handled by training a
background tree when a warning was detected. The base

48728 VOLUME 6, 2018



R. Pari et al.: MTSE Algorithm to Reduce the Regret of IL for Streaming Data

model was replaced by the background tree only when the
drift occurred. Rather than considering all the features to
make the leaf split decision, they limited it to a feature subset.
For online bootstrap aggregation, they used Poisson distribu-
tion with a λ value of 6. They ensured that the number of
background trees is less than the maximum number of trees.
They achieved the parallelism by managing the operations of
each tree in separate threads. In addition to the accuracy, they
also captured the Kappa M and Kappa Temporal to support
the data sets with class imbalance or temporal dependencies.
They used ten synthetic and six real data sets for testing their
algorithm. They compared the six different variations of their
algorithm. From the experimental results, they concluded
that ARF yielded good classification accuracy, Kappa M and
Kappa Temporal. The memory usage and the processing time
of ARFwas less than the state-of-the-art ensemble classifiers.
The limitation of ARF was that it was not improving the
performance for data sets where all the features are critical
for building a model.

The proposed approach is different from all the above
approaches. It creates an ensemble of ensemble system. The
exception is that it does not use any ensemble classifiers like
Random Forest, AdaBoost, etc. Instead, it only uses a set of
combination schemes to combine the predictions of the base
classifiers and a generalizer to generalize the predictions of
the combination schemes. The generalizer in the proposed
approach is a simple classifier. In this study the results of
the proposed approach is compared with the results of Adap-
tive Random Forest, Leveraging Bagging and the traditional
SE algorithm.

III. METHODOLOGY
The diversity of the base learners and a proper choice of
generalize ensures that the accuracy of stream mining using
SE is not impacted by the concept drift [39]. Though concept
drift is handled well by SE, the accuracy is not improving
beyond a certain level. Hence there is a scope for fine-tuning
SE and improving its accuracy. The literature discusses some
of the best ways of fine-tuning SE [34], [45]. This study
intends to fine-tune SE by introducing a new tier in between
the base classifiers and the meta-learner. This study takes the
stance that the accuracy of classification is improved when a
new tier is introduced between the incremental learners and
the meta-learner in SE. Figure 1, Figure 2 and Figure 3 depict
the different tiers in MTSE.

The base tier which is also called the incremental tier is the
first tier. Different combination schemes form the ensemble
tier. The combined predictions from these schemes along
with the top three critical features form the input space for
generalization tier. Hence the bias and variance are controlled
in different tiers. Using multiple incremental learners with
cross-validation ensures that the bias is reduced in the base
tier. The combinations schemes and the meta-learners reduce
the variance. Hence a perfect balance between the bias and
the variance is achieved. As a result of this, the classification
accuracy improves. The main difference between MTSE and

FIGURE 1. The Base Tier of the MTSE Algorithm. Classification by
Incremental Learners to produce the cross validated predictions.

FIGURE 2. The Ensemble Tier of the MTSE Algorithm. Classification by
Ensemble Learners to produce the Meta-Features.

FIGURE 3. The Generalization Tier of the MTSE Algorithm. Classification
by Meta-Learner to produce the final prediction.

SE discussed in the literature is the introduction of a new
tier. Most of the studies found in the literature used Meta-
learning as part of the ensemble process. Whereas, this algo-
rithm separates the entire combination schemes together as a
separate tier. The output of this tier forms the input space for
meta-learning. At the same time, this algorithm still uses the
most popular principle of the ensemble. For a given data set,
different classifiers are effective and efficient within different
subsets of data.

Using a wide range of suitable learners along with 10-fold
cross validation reduces the bias. Hence MTSE uses a set of
incremental classifiers with the partial fit as weak learners
in the base tier. These learners produce the cross-validated
predictions. The process of producing the cross validated

VOLUME 6, 2018 48729



R. Pari et al.: MTSE Algorithm to Reduce the Regret of IL for Streaming Data

predictions using the following classifiers is depicted
in Algorithm 1.
• Stochastic Gradient Descent (SGD)
• Passive Aggressive Classifier (PAC)
• Gaussian Naïve Bayes (GNB)
• Multinomial Naïve Bayes (MNB)
• Bernoulli Naïve Bayes (BNB)
• Perceptron (Linear Model)
• Multi Layer Perceptron (MLP)
The ensemble tier uses the following combination

schemes. Plural Voting (PV), Majority Voting (MV),
Weighted Majority Voting (WMV) and Confidence-Based
Voting (CBV). PV and MV use the cardinality to make the
decision. WMV assigns the weights based on the class prob-
abilities of the incremental learners. CBV decides based on
class probability. The generalization is made at the final tier
using Logistic Regression (LR). Algorithm 2 depicts how the
cross validated predictions from the base tier are combined
to produce the meta-features. Algorithm 4 depicts how the
optimal weights of the base classifiers are obtained using
brute-force approach. When the number of base learners
is more than seven, the time complexity of the brute-force
approach becomes unmanageable. Hence the number of base
learners is chosen as either seven or less than seven.

The predictions from the ensemble tier and the top three
features from the original space are used as input for LR.
The top three features are selected by analysing the cor-
relation between each of the features and the class labels.
Algorithm 3 depicts how the meta-features along with the
critical features from the original space are used for training
the generalizer. Algorithm 3 also depicts how the regret of
MTSE is calculated.

As depicted in Figure 4, this algorithm trains a model
on the first stream of data received from the source. After
that for every new stream of data received from the source,
the model predicts the labels for those examples. Based on
the predictions, the MR of the model is calculated. In line
with the calculated MR, the model is updated. The entire
process is repeated for every arrival of a new stream of data
from the source. At any instant, only one model exists, and its
parameters are updated based on the streams of data received
till that instant. Hence the model adapts to the change in
the target concept and thus taking care of concept drift in
the data stream. By maintaining an updated model at any
instant, MTSE supports any-time learning. MTSE can be
stopped at any point in time to get the best prediction then.
Whenever a new stream of data is received from the source,
the model predicts the labels for those examples. The model’s
performance is evaluated. Thus it tracks how the accuracies
of the models are improving with every new stream of data.

In each of the epoch, MTSE calculates the ‘‘Regret’’ to
find out how close this model is to the model trained by
the offline or batch algorithm. For this purpose, the batch
algorithm is initially trained on 80 % of the data and tested
with the remaining 20 % of the data. Testing the batch algo-
rithm helps in calculating the loss of the batch algorithm.

FIGURE 4. Use of Multi-tier Stacked Ensemble Algorithm for Streaming
Data. Describes how the data received at any instant is used for training
the model and how the model is tested with the data received for the
next instant.

The difference between the cumulative loss of the models
generated by MTSE till that instant and the loss of batch
algorithm gives the regret at that instant. The performance of
SE is also captured as a benchmark so that the performance
of MTSE is compared with SE.

A. MATHEMATICAL MODEL
Let D1,D2, . . . ,DT be the stream of data received from the
source at difference instants of time.

Where, D1
⋃
D2
⋃
. . .
⋃
DT = D.

In general, DT =


xT11 xT12
xT21 xT22

· · ·
xT1d
xT2d

...

xTz1 xTz2 . . . xTzd

yT1
yT2
...

yTz


Where‘d’ is the number of features (dimensions) in the data

stream and ‘z’ is the size of each streams simulated.

Input data is X =


xT11 xT12
xT21 xT22

· · ·
xT1d
xT2d

...

xTz1 xTz2 · · · xTzd

 (1)

The Label is y =


y1
y2
...

yz

 y1, y2, · · · yzε{−1,+1} (2)

In the case ofmulti-class classification problem, y1, y2, · · · yN
ε{c1, c2, . . . , cl} where c1, c2, . . . , cl are the class labels.

1) BASE TIER
Let IC = {IC1, IC2, · · · , ICm} be the set of incremental
classifiers.

48730 VOLUME 6, 2018



R. Pari et al.: MTSE Algorithm to Reduce the Regret of IL for Streaming Data

At any instant, when the data stream DT is received from
the source, it is partitioned into ten equal subsets at 10 %. Let
DT1,DT2, · · · ,DT10 be the equal size sets, partitioned from
the set DT.
Fold 1: The training set TT = DT1 ∪ DT2 ∪ . . .DT9
The testing set VT = DT10
Train the incremental classifiers using TT. The incremental

classifiers ICm map the elements of TT into one of the classes
in Y.

ICm : TT → Y (3)

ICm : XTg→ {c, c2, . . . , cl} (4)

Where XTg ∈ TT
In the next fold, DT9 is taken as the testing set and the

remaining nine sets combined together are taken as the train-
ing set. This is repeated until all the partitioned sets in ST1
are taken as testing sets. This results in the predictions for all
the instances in ST1. Let ILT = {ILT1, ILT2, . . . , ILTm} be
the labels predicted by the incremental classifiers at any time
instant ‘T’.

i.e. ILTm = ICm(XTg) (5)

2) ENSEMBLE TIER
Let EC = {EC1,EC2, . . . ,ECm} be the set of ensemble
classifiers, and they combine the labels predicted by the
incremental classifiers and maps them into one of the classes
in Y.

ECm : ILTm→ {c1, c2, . . . , cl} (6)

ECm = Aggregation of (ILTm) (7)

Here the Aggregation of ILTm is dependent on the choice
of the combination scheme used in the ensemble tier. Let
ELT = {ELT1,ELT2, · · · ,ELTm} be the labels predicted by
the ensemble classifiers at any time instant ‘T’.

ELTm = ECTm(ILTm) (8)

3) GENERALIZATION TIER
Let GC be the generalization classifier, and it combines the
labels predicted by the ensemble classifiers and maps them
into one of the classes in Y. This tier takes the set of ensemble
labels ({EL t1,EL t2, · · · ,EL tm}) and the actual labels (Y) and
produces the generalized label. This can be mathematically
represented as

GLm : ELTm→ {c1, c2, . . . , cl} (9)

Where GLTm is the final result produced by the mth meta-
learner at Tth time instant.

4) MISCLASSIFICATION RATE OF THE MODEL
In this study, MR of the classifiers at Tth instant is calculated
by using the set of data received at (T + 1)th instant as the
test set. Hence the testing is always done with the unseen
examples. The ratio between the counts of wrongly classified

instances to the total number of instances in the test data gives
MR of the classification.

Misclassification Rate (MRt) =
(FP+ FN )

(TP+ FP+ TN + FN )
(10)

5) REGRET OF THE MODEL
Regret is defined as the difference between the cumula-
tive loss of the incremental models and the loss of the
batch or offline model. The cumulative loss is calculated by
summing up the loss of the offline models for all the instants.
The regret of the incremental model over different instants is
calculated as follows.

Regret = L −
T∑
t=1

Lt (11)

Where ‘L’ is the loss of the model trained on the entire data
set by the batch algorithm. ‘Lt’ is the loss of the model trained
byMTSE at any particular instant ‘T’. Regret is calculated for
MTSE as well as SE. Calculating regret for both MTSE and
SE helps in comparing their performance for different data
sets.

B. ALGORITHM
1) BASE TIER
See Algorithm 1.

2) ENSEMBLE TIER
See Algorithm 2.

3) GENERALIZATION TIER
See Algorithm 3.

4) BRUTE FORCE ALGORITHM
See Algorithm 4.

IV. EXPERIMENTAL EVALUATION
A. EXPERIMENTAL SETUP
Scikit-learn library in Python was used to implement the
experiment [46]. Three real-world data sets from the UCI
Machine Learning repository [47] which are very popular in
the data mining community were used for the experiment.
These data sets are listed in Table 1. The following are the
reasons for picking these three data sets for conducting our
experiments. (i) They have a large volume of data (ii) They
have a large number of features with mostly numerical or
categorical data types and (iii) The data is evenly distributed
across different classes. The large volume helps in splitting
each data set into multiple data streams. All the missing
values or NaN values were replaced with the most frequently
occurring values depending upon the nature of the features.
For every data set, ten runs of experiments were conducted
to ensure the consistency of the results. At the end of all the
trials, the minimum, themaximum, themean and the standard
deviation of the performance metrics were calculated.

VOLUME 6, 2018 48731



R. Pari et al.: MTSE Algorithm to Reduce the Regret of IL for Streaming Data

Algorithm 1 Classification by Incremental Learners
1: Input: Data streams at instants ‘T’ and ‘T+ 1’ (DT and

DT+1)
2: Output: The labels (ILmT ) and (ILmT+1) predicted by

the incremental learners
3: Randomly Split DT into ten partitions (folds) of equal

size. DT={F1,F2,F3, . . . ,F10}
4: Do for m = 1, 2, . . . ,M:
5: Do for i = 1, 2, . . . , 10:
6: Li←

⋃j=10
j=1 Fj if i! = j

7: Vi← Fi
8: Partially fit an incremental learner ICm with Li
9: Using the model obtained in step 8, predict the

labels for Vi and name them as ILi
10: End
11: Combine the predictions obtained from step 9 into

a single vector ILmT (Predictions from mth

incremental learner for the data stream at instant
‘T’.

12: End
13: Repeat steps 3 through 12 with Dt+1 and get the labels

ILmT+1
14: ####Calculate the MR of the incremental learners
15: s← Size(Dt+1)
16: Do for m = 1, 2, . . . , M:
17: FP_FN← 0
18: Do for j = 1, 2, . . . , s:
19: If IL jmT+1! = yj:
20: FP_FN++
21: End if
22: End
23: MRmT ← FP_FN

s
24: End
25: Return the predictions (ILmT ) and (ILmT+1) obtained

in step 11 and step 13
26: End

In the above table, CR refers to the class ratio of majority
class to the rest of the classes.

The data set is split into ‘n’ number of partitions to simulate
the streaming data from the static data set. Each partition
represents the data stream received from the source at a
particular instant. Hence ‘n’ number of partitions represents
the data stream received from the source at ‘n’ number of
different instants. Incremental models are built and updated
for each of these ‘n’ instants using MTSE algorithm. The
experiment is repeatedly conducted for different values of
hyper-parameters as shown in Table 2.

MR of the batch learner is required to calculate the regret
of incremental learning. Hence the data set as a whole was
trained using a batch algorithm resulting in an offline model.
This model was tested with the test data, and thus MR of
this offline model was calculated. For each of the ‘n’ dif-
ferent instants, MR of the incremental model was calculated.

Algorithm 2 Classification by Ensemble Classifiers
1: Input: The labels predicted by the incremental learners

ILmT and ILmT+1
2: Output: The labels predicted by the ensemble classifier

ELi
tj

3: Plural Voting:
4: Do for n = 1, 2, . . . ,N:
5: ELn1T ← Mode of

(
ILn1T , ILn2T . . . IL

n
mT

)
6: End
7: Simple Majority Voting:
8: Do for n = 1 to N:
9: Corresponding to each class label, initialise a

counter ILi to zero
//Iterate for each of the base learner

10: Do for m = 1, 2, . . . ,M:
11: For each occurrence of a class label in the

classifier’s prediction, increment the
corresponding counter

12: End
13: Max_Count ← Max(AllCounters)
14: If max_Count >M/2:
15: ELn2T ← The class label corresponding to

Max_Count
16: End if
17: End
18: Confidence-Based Voting:
19: For all the instances, store the class probabilities of all

the classifiers for all the classes into an array
20: Do for n = 1, 2, . . . ,N:
21: Max_Prob←Max(class probabilities of all the

classifiers for all the classes)
22: ELn3T ← ELn

3T← the class label corresponding
to Max_Prob

23: End
24: Weighted Majority Voting:
25: Use the Brute Force Algorithm to find the optimal

weights of the base learners. W = {W1, W2, W3, W4,
W5, W6, W7, W8}

26: WTot ← W1+W2+W3+W4+W5+W6+W7+W8
27: Do for n = 1, 2, . . . ,N:
28: Do for k = 1, 2, . . . ,L: // Repeat for each class

label
29: WSumnk ← 0
30: Do for m = 1, 2, . . . ,M //Repeat for each

weak classifier
//Find the sum of the products of the
weights (Wm) and the class probabilities
(Pmk )

31: WSumnk ← WSumnk +Wm ∗ Pmk
32: End
33: End
34: WAvg← WSumnk

WTot
35: ELn4T ← Class label with the highest

weighted average
36: End
37: Repeat steps 3 through 34 with ILmT+1 and get the

predictions ELmT+1
38: Calculate the Accuracy of the ensemble classifier
39: End

48732 VOLUME 6, 2018



R. Pari et al.: MTSE Algorithm to Reduce the Regret of IL for Streaming Data

Algorithm 3 Classification by Meta-Learner
1: Input: The labels predicted by the ensemble

classifiers ELmT and ELmT+1
2: Output: The final labels (GLmT ) predicted by the

generalizer
3: Calculate the correlation between each of the features

in the input space and the class label using
numpy.corrcoef method in numpy library of Python.
//Picking the critical features

r =
N
∑
xy− (

∑
x) ∗ (

∑
y)√[

N
∑
x2 − (

∑
x)2
] [
N
∑
y2 − (

∑
y)2
]

4: CF t ← Pick three features with high corelation with
the class labels

5: Combine the critical features and the ensemble
predictions TST ← CFT ∪ ELmT

6: Train the generalizer with the set TS t
7: Run the model obtained in step 6 with the set ELmT+1
8: Calculate the loss of the generalizer for the current

stream
9: Calculate cumulative loss of MTSE
10: Calculate the Regret of MTSE
11: End

TABLE 1. Summary of data sets.

The number of misclassified instances in each of the instants
was added to get the cumulative count of misclassification
instances. Dividing this data by the total number of instances

Algorithm 4 Find the Optimal Weights of the Base Classi-
fiers
1: Input: The labels predicted by the base classifiers

ILmT and ILmT+1
2: Output: The optimal values of the weight W = {W1,

W2, W3, W4, W5, W6, W7, W8}
3: max_acc← 0
4: Do for W1 = 1, 2, 3, . . . , 8:
5: Do for W2 = 1, 2, 3, . . . , 8:
6: Do forW3 = 1, 2, 3, . . . , 8:
7: Do for W4 = 1, 2, 3, . . . , 8:
8: Do for W5 = 1, 2, 3, . . . , 8:
9: Do forW6 = 1, 2, 3, . . . , 8:
10: Do for W7 = 1, 2, 3, . . . , 8:
11: Do for W8 = 1, 2, 3, . . . , 8:
12: Combine the labels of the base
13: classifiers using these weights and
14: class probabilities
15: Calculate the accuracy using
16: the actual labels
17: If acc > max_acc:
18: max_acc← acc
19: weight_vector← {W1W2

W3 W4 W5 W6 W7 W8}

20: End if
21: End
22: End
23: End
24: End
25: End
26: End
27: End
28: End
29: Return the weight_vector
30: End

TABLE 2. Hyper-Parameters used in this algorithm.

in the test data gives the overall MR of MTSE. The difference
between the MR of the batch algorithm and the overall MR
of MTSE gives the regret of MTSE.

Benchmarking: Massive Online Analysis (MOA) frame-
work was used to conduct the benchmarking for LB and ARF.
Both LB and ARF were tested with the same three data
streams (Forest Cover Type, Network Intrusion and Elec-
tricity Price Change). Table 3 depicts the configurations

VOLUME 6, 2018 48733



R. Pari et al.: MTSE Algorithm to Reduce the Regret of IL for Streaming Data

TABLE 3. Configurations of LB and ARF in MOA framework.

of LB and ARF in the MOA framework. The benchmarking
experiments were also repeated for ten runs to ensure the
consistency of results.

B. RESULTS AND DISCUSSION
For each of the three data sets, this study analyses the perfor-
mances of LB, ARF, SE and MTSE. It compares the accura-
cies of these approaches. This analysis gives the insight about
the performance of MTSE over the other three approaches.
As the experiments were repeated for ten runs, the basic
statistics about the accuracy (the minimum value, the max-
imum value, the mean value and the standard deviation) is
reported. This is shown in Table 3. For Forest Cover Type
and Network Intrusion, the mean accuracy of MTSE is better
than the mean accuracies of LB, ARF and SE. For Electricity
Pricing, LB performs better than all other three approaches.
The size of the data streams simulated using Electricity data
set was much smaller than the size of the data streams simu-
lated from the other two data sets. When the size of the data
streams simulated using Network Intrusion and Forest Cover
Type were large, MTSE performed better than other three
approaches. Hence for larger data streams, MTSE achieves
higher accuracy than LB, ARF and SE. When compared with
SE,MTSE performs better for all the data streams. In the case
of Forest Cover Type, MTSE gives superior performance.

As the proposed approach is an extension of the traditional
SE algorithm, further analysis is done to compare the perfor-
mance of the proposed approach with the performance of SE.
A comparison of the regret of SE with the regret of MTSE for
different values of the hyper-parameters was carried out. This
analysis helps to determine if the hyper-parameters have any
impact on the regret of MTSE. This study analyses the MRs
of the classifiers in different tiers for each of the iterations
within each of the data sets. This study uses amatrix of graphs
to perform this analysis. This matrix of graphs considers the

data sets as rows and either the number of time instants or the
training data percentage as columns. Figure 5 depicts the bar
chart matrix of Regret for different number of data streams
simulated using the three data sets.

For all the data sets, irrespective of the number of streams
simulated, the regret of MTSE is better than that of SE. The
negative value of regret for all the experiments indicates that
the performance of MTSE is not only superior to SE but
also to the batch algorithm. Amongst the 3 data sets used for
experimenting; MTSE gives the best performance for forest
cover type data set. For this data set, when the number of
streams is 10, the regret of MTSE reaches the least value
of −6.35 %. There are two reasons for this behavior.
(i) Size of the data set is huge and (ii) the classes are evenly
distributed within the data set. When MTSE splits the data
set into ten partitions to simulate the streaming data, the sizes
of each of the partitions are still large enough to produce a
stable model with optimal bias and variance. As the model is
already stable, it requires very less fine tuning with every new
set of data corresponding to the time instants. The distribution
of classes within each of the partitions is also contributing
to the stability of the model. Even though MTSE randomly
partitions the data sets, there is a perfect distribution of classes
within the partitions. Here, the incremental models get better
and better with every time instant. Hence it helps in reducing
theMR in each of the time instants, and thus the overall regret
is also at a minimum.

After the forest cover type data set,MTSE performed better
for electricity price change data set. Here, when the number
of instants is 40, MTSE achieves the best performance with
the least regret value of−5.26. For network intrusion data set,
the performance of MTSE is just as good as the batch algo-
rithm. Though it is not giving a considerable improvement
in performance over the batch algorithm, the regret is still
on the negative side. Because all the individual classifiers in
the base tier achieve the same performance level and they are
not complementing each other. Hence whenMTSE combines
them in the ensemble tier, there is no considerable improve-
ment in the performance. All the combination schemes in
the ensemble tier are also providing almost the same output.
The combinations schemes are also not complementing each
other. Hence the generalization tier is not showing any con-
siderable improvement in the performance.When the number
of time instants is less than 10, incremental models start to
behave like the offline models.

Figure 6 depicts the bar chart matrix of Regret across the
tiers for different percentages of training data across the data
sets.

The analysis reveals that the percentage of training data is
not having any major impact on the performance of MTSE.
For all the data sets, irrespective of the percentage of training
data, the regret of MTSE is better than that of SE. The nega-
tive value of regret of MTSE indicates that MTSE performs
better than the batch algorithm also. The regret is negative
for all the percentages of training data. By digging deep into
these graphs, they reveal that there is an indirect correlation

48734 VOLUME 6, 2018



R. Pari et al.: MTSE Algorithm to Reduce the Regret of IL for Streaming Data

TABLE 4. Comparison of performance of MTSE, ARF, LB and SE. This table depicts the basic statistics for accuracy, for all the four approaches.

FIGURE 5. Regret of SE and MTSE. Regret is plotted for SE and MTSE for different number of Streams across the Data sets. Numbers of Streams
considered are 10, 25, 40 and 50.

between the performance of SE and MTSE for different
percentages of training data.

Figure 7 depicts the trend of regret of MTSE against the
number of time instants for each of the data sets. The trend
lines of all the three data sets lie below the horizontal axis.
This confirms our earlier inference that MTSE’s performance
is better than that of the batch learning. This graph also reveals
that the regret of MTSE is not having a direct correlation with
the number of time instants. Hence the regret of MTSE does
not either increase or decrease with the increase in the number

of time instants. For network intrusion data set the trend line
almost coincides with the horizontal axis. i.e. the regret is
just below zero. It means that the cumulative MR of MTSE
is almost the same as the MR of the batch algorithm. This
is mainly because all the base classifiers almost produce the
same predictions and all the combination schemes produce
the same output. Hence generalising themwith meta-learning
is not reducing the MR. Figure 8 depicts the trend of regret
of MTSE against the training data percentage for each of the
data sets.

VOLUME 6, 2018 48735



R. Pari et al.: MTSE Algorithm to Reduce the Regret of IL for Streaming Data

FIGURE 6. Regret of SE and MTSE for different percentages of training data across the Data sets. Percentages of training data considered
are 90, 80, 75 and 60.

FIGURE 7. Regret of MTSE against the number of streams.

For each of the data sets, the MR of SE and MTSE are
plotted for comparative analysis. Figure 9 depicts howMR of
SE and MR of MTSE are varying for network intrusion data
set. For both SE and MTSE, MR hits the lowest value during
the initial time instants and increases after 2 or 3 instants.

FIGURE 8. Regret of MTSE against the training data percentage.

It becomes stagnant for later time instants. The low value of
MR irrespective of the number of time instants shows that
the accuracy is close to 100 %. Hence the scope for reducing
the MR is less in Network Intrusion data set. This, leads to
less reduction in the regret. Every feature within this data

48736 VOLUME 6, 2018



R. Pari et al.: MTSE Algorithm to Reduce the Regret of IL for Streaming Data

FIGURE 9. Misclassification rate – network intrusion data set.

set is having a direct correlation with the class labels. Hence
picking the top three features to form the input space for
generalization tier is not helping in any way to minimize the
MR and thus to reduce the regret.

Figure 10 depicts how the MR is varying for forest cover
type data set, with every new set of data received at every
time instant. MR hits the peak value in the very first instant
and reduces after 2 or 3 instants. It becomes stagnant for later
time instants. For this data set, MR varies between 26 and
34. When the number of time instants is 50, it is hovering
around 26.5. There is a significant difference between the
MR of SE and MTSE. This difference is in the range of 4
to 8. The highest value of 8 is reached when the number of
time 50 instants is 50. Except for a few time instants, there
is a synchronous behavior between the trend of SE’s MR and
MTSE’s MR.

Figure 11 depicts how the MR is varying for electricity
price change data set, with every new set of data received
at every time instant. MR starts with a high value, reduces
after 2 or 3 instants and climbs again. It reaches the peak
towards later time instants and drops again slightly. In all the
cases, the trend of MTSE’s MR is below the trend of SE’s
MR. When the number of time instants is 50; this difference
reaches the maximum value of 4. When the number of time
instants is 25, this difference reaches the minimum value of 2.
The fluctuations in the MR of all the three tiers are happening
at the same instant of time. Hence there is synchronous
behavior between the trend of MTSE’s MR and other
tier’s MR.

One common observation across the data sets is that the
MR of MTSE is much lower than that of SE. This pos-
itively impacts the regret of MTSE. It reduces the regret
by over 100 % when compared to SE. Hence MTSE is

FIGURE 10. Misclassification rate – forest cover type data set

FIGURE 11. Misclassification rate – electricity price data set.

the ‘‘go-to’’ algorithm for incremental learning in the real-
time classification problems involving streaming data.

V. CONCLUSION
This study introduced a new algorithm called MTSE for
incremental learning using streaming data. MTSE is an
extension of SE algorithm. MTSE ensures that the accuracy
keeps increasing in every tier. Thus it makes the incremen-
tal model’s accuracy to be better than the accuracy of the

VOLUME 6, 2018 48737



R. Pari et al.: MTSE Algorithm to Reduce the Regret of IL for Streaming Data

models trained by batch algorithms. In challenging cases, the
accuracy of MTSE is as close as possible to that of batch
algorithms. The regret is either negative or tends to be closer
to zero. The experimental results show that MTSE reduces
the regret by over 100 % when compared to SE. This implies
that MTSE is superior over SE and also better than the batch
learners. When compared with LB, MTSE performed better
for all the three data sets. When compared with ARF, MTSE
performed better for two data sets. Hence we conclude that
MTSE is a better choice than ARF and LB for real time
incremental learning problems.

The limitation of this approach is that applying the cross
validation for data streams where the labels do not become
available in the next stream; rather they become available at
the predefined interval. For example in real time, the electric-
ity price change label becomes available at the end of each
day.

We plan to extend this study by carrying out the analysis of
run time of MTSE. We want to consider the parallel learning
of the base learners to minimize the run time of MTSE.
We also want to explore the impact of feature engineering
on the regret of incremental learning. Selecting the optimal
features reduce the regret further and make MTSE even more
reliable solution for data stream mining.

REFERENCES
[1] C. Aggarwal, Data Streams: Models and Algorithms, vol. 31. 2007.
[2] C. C. Aggarwal and J. Wang, Data Streams: Models and Algorithms,

vol. 31. 2007, pp. 9–38.
[3] A. Bifet, Adaptive Stream Mining: Pattern Learning and Mining From

Evolving Data Streams (Frontiers in Artificial Intelligence and Applica-
tions), vol. 207. 2010, pp. 1–212.

[4] G. Hulten, L. Spencer, and P. Domingos, ‘‘Mining time-changing data
streams,’’ in Proc. 7th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining (KDD), 2001, pp. 97–106.

[5] J. Gama, P. P. Rodrigues, E. Spinosa, and A. Carvalho, ‘‘Knowledge
discovery from data streams,’’ Tech. Rep., 2010, pp. 125–138.

[6] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, ‘‘Models and
issues in data stream systems,’’ in Proc. 21st ACM SIGMOD-SIGACT-
SIGART Symp. Princ. Database Syst. (PODS), 2002, pp. 1–16.

[7] P. Domingos and G. Hulten, ‘‘Mining high-speed data streams,’’ in Proc.
KDD, 2000, pp. 71–80.

[8] C. C. Aggarwal, ‘‘A survey on stream classification algorithm,’’ in Data
Classification: Algorithms and Applications. 2014, pp. 245–273.

[9] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, ‘‘A framework for clustering
evolving data streams,’’ in Proc. 29th Int. Conf. Very Large Data Bases,
2003, pp. 81–92.

[10] R. Polikar, L. Upda, S. S. Upda, and V. Honavar, ‘‘Learn++: An incre-
mental learning algorithm for supervised neural networks,’’ IEEE Trans.
Syst., Man, Cybern. C, Appl. Rev., vol. 31, no. 4, pp. 497–508, Nov. 2001.

[11] R. Polikar, L. Udpa, S. S. Udpa, and V. Honavar, ‘‘LEARN++: An incre-
mental learning algorithm for multilayer perceptron networks,’’ in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), vol. 6,
Jun. 2000, pp. 3414–3417.

[12] D. Brzezinski and J. Stefanowski, ‘‘Reacting to different types of concept
drift: The accuracy updated ensemble algorithm,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 25, no. 1, pp. 81–94, Jan. 2014.

[13] M. Scholz and R. Klinkenberg, ‘‘An ensemble classifier for drifting con-
cepts,’’ in Proc. 2nd Int. Workshop Knowl. Discovery Data Streams, 2005,
pp. 53–64.

[14] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Wozniak,
‘‘Ensemble learning for data stream analysis: A survey,’’ Inf. Fusion,
vol. 37, pp. 132–156, Sep. 2017.

[15] J. Gama, I. Žliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia, ‘‘A sur-
vey on concept drift adaptation,’’ ACM Comput. Surv., vol. 46, no. 4, 2014,
Art. no. 44.

[16] G. Widmer and M. Kubat, ‘‘Learning in the presence of concept drift and
hidden contexts,’’ Mach. Learn., vol. 23, no. 1, pp. 69–101, 1996.

[17] P. Laird, ‘‘Weighing hypotheses: Incremental from noisy data,’’ Learning,
pp. 91–98, 1993.

[18] G. Ditzler and R. Polikar, ‘‘Incremental learning of concept drift from
streaming imbalanced data,’’ IEEE Trans. Knowl. Data Eng., vol. 25,
no. 10, pp. 2283–2301, Oct. 2013.

[19] S. Shalev-shwartz, ‘‘Online learning: Theory, algorithms, and applica-
tions,’’ Ph.D. dissertation, Jul. 2007.

[20] A. Gepperth and B. Hammer, ‘‘Incremental learning algorithms and appli-
cations,’’ Tech. Rep., 2016, pp. 27–29.

[21] T. Seipone and J. A. Bullinaria, ‘‘Evolving improved incremental learning
schemes for neural network systems,’’ inProc. IEEECongr. Evol. Comput.,
vol. 3, Sep. 2005, pp. 2002–2009.

[22] A. Rakhlin, K. Sridharan, and A. Tewari, ‘‘Online learning: Beyond
regret,’’ in Proc. COLT, 2011, pp. 559–594.

[23] E. Hazan and S. Kale, ‘‘Beyond the regret minimization barrier: Optimal
algorithms for stochastic strongly-convex optimization,’’ J. Mach. Learn.
Res., vol. 15, pp. 2489–2512, Jul. 2014.

[24] E. Hazan, ‘‘The convex optimization approach to regret minimization,’’
Optim. Mach. Learn., pp. 1–20, 2011.

[25] S. Shalev-Shwartz, ‘‘Online learning and online convex optimization,’’
Found. Trends Mach. Learn., vol. 4, no. 2, pp. 107–194, 2012.

[26] A. Blum and Y. Mansour, ‘‘From external to internal regret,’’ in Proc. Int.
Conf. Comput. Learn. Theory, 2005, pp. 621–636.

[27] F. Chu, Y.Wang, and C. Zaniolo, ‘‘An adaptive learning approach for noisy
data streams,’’ in Proc. ICDM, Nov. 2004, pp. 351–354.

[28] T. G. Dietterich, ‘‘Ensemble methods in machine learning,’’ in Proc. 1st
Int. Workshop Multiple Classifier Syst., vol. 1857. 2000, pp. 1–15.

[29] R. Polikar, ‘‘Ensemble based systems in decision making,’’ IEEE Circuits
Syst. Mag., vol. 6, no. 3, pp. 21–45, Sep. 2006.

[30] M. Muhlbaier and R. Polikar, ‘‘An ensemble approach for incremental
learning in nonstationary environments,’’ in Multiple Classifier Systems
(Lecture Notes in Computer Science). 2007, pp. 490–500.

[31] L. L. Minku and X. Yao, ‘‘DDD: A new ensemble approach for dealing
with concept drift,’’ IEEE Trans. Knowl. Data Eng., vol. 24, no. 4, pp. 619–
633, Apr. 2012.

[32] W. N. Street and Y. Kim, ‘‘A streaming ensemble algorithm (SEA) for
large-scale classification,’’ in Proc. 7th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD), 2001, pp. 377–382.

[33] D. H. Wolpert, ‘‘Stacked generalization,’’ Neural Netw., vol. 5, no. 2,
pp. 241–259, 1992.

[34] S. Džeroski and B. Ženko, ‘‘Is combining classifiers with stacking better
than selecting the best one?’’ Mach. Learn., vol. 54, no. 3, pp. 255–273,
2004.

[35] K. Tumer and J. Ghosh, ‘‘Analysis of decision boundaries in lin-
early combined neural classifiers,’’ Pattern Recognit., vol. 29, no. 2,
pp. 341–348, 1996.

[36] L. Breiman, ‘‘Stacked regressions,’’ Mach. Learn., vol. 24, no. 1,
pp. 49–64, 1996.

[37] A. A. Ghorbani and K. Owrangh, ‘‘Stacked generalization in neural net-
works: Generalization on statistically neutral problems,’’ in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), vol. 3, Jul. 2001, pp. 1715–1720.

[38] J. Gama and P. Kosina, ‘‘Learning about the learning process,’’ in Proc.
10th Int. Conf. Adv. Intell. Data Anal., 2011, pp. 162–172.

[39] A. Bifet, E. Frank, G. Holmes, and B. Pfahringer, ‘‘Accurate ensembles
for data streams: Combining restricted Hoeffding trees using stacking,’’ in
Proc. 2nd Asian Conf. Mach. Learn., 2010, pp. 1–16.

[40] L. Canzian, Y. Zhang, and M. van der Schaar, ‘‘Ensemble of distributed
learners for online classification of dynamic data streams,’’ IEEE Trans.
Signal Inf. Process. Netw., vol. 1, no. 3, pp. 180–194, Sep. 2015.

[41] I. Frías-Blanco, A. Verdecia-Cabrera, A. Ortiz-Díaz, and A. Carvalho,
‘‘Fast adaptive stacking of ensembles,’’ in Proc. 31st Annu. ACM Symp.
Appl. Comput. (SAC), 2016, pp. 929–934.

[42] S.Wang, L.Minku, and X. Yao, ‘‘Resampling-based ensemblemethods for
online class imbalance learning,’’ IEEE Trans. Knowl. Data Eng., vol. 27,
no. 5, pp. 1356–1368, May 2015.

[43] Y. Lee, S. C. Madayambath, Y. Liu, D.-T. Lin, R. Chen, and
S. S. Bhattacharyya, ‘‘Online learning in neural decoding using incremen-
tal linear discriminant analysis,’’ in Proc. IEEE Int. Conf. Cyborg Bionic
Syst. (CBS), Oct. 2017, pp. 173–177.

48738 VOLUME 6, 2018



R. Pari et al.: MTSE Algorithm to Reduce the Regret of IL for Streaming Data

[44] H. M. Gomes et al., ‘‘Adaptive random forests for evolving data stream
classification,’’ Mach. Learn., vol. 106, nos. 9–10, pp. 1469–1495, 2017.

[45] R. Vilalta and Y. Drissi, ‘‘A perspective view and survey of meta-learning,’’
Artif. Intell. Rev., vol. 18, no. 2, pp. 77–95, 2002.

[46] F. Pedregosa et al., ‘‘Scikit-learn: Machine learning in Python,’’ J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.

[47] D. Dheeru and E. K. Taniskidou, ‘‘UCI machine learning repository,’’
Tech. Rep., 2017.

[48] K. I. Tsianos andM.G. Rabbat, ‘‘Efficient distributed online prediction and
stochastic optimization with approximate distributed averaging,’’ IEEE
Trans. Signal Inf. Process. Netw., vol. 2, no. 4, pp. 489–506, Dec. 2016.

[49] Y. Sun, K. Tang, L. L. Minku, S. Wang, and X. Yao, ‘‘Online ensemble
learning of data streams with gradually evolved classes,’’ IEEE Trans.
Knowl. Data Eng., vol. 28, no. 6, pp. 1532–1545, Jun. 2016.

[50] T. Al-Khateeb et al., ‘‘Recurring and novel class detection using class-
based ensemble for evolving data stream,’’ IEEE Trans. Knowl. Data Eng.,
vol. 28, no. 10, pp. 2752–2764, Oct. 2016.

[51] T. Chen, Q. Ling, and G. B. Giannakis, ‘‘An online convex optimization
approach to proactive network resource allocation,’’ IEEE Trans. Signal
Process., vol. 65, no. 24, pp. 6350–6364, Dec. 2017.

[52] Y.-S. Jeong, Y.-J. Byon, M. Mendonca Castro-Neto, and S. M. Easa,
‘‘Supervised weighting-online learning algorithm for short-term traffic
flow prediction,’’ IEEE Trans. Intell. Transp. Syst., vol. 14, no. 4, pp. 1700–
1707, Dec. 2013.

[53] A. Yassine, S. Singh, andA. Alamri, ‘‘Mining human activity patterns from
smart home big data for health care applications,’’ IEEE Access, vol. 5,
pp. 13131–13141, 2017.

[54] S. Shaghaghian and M. Coates, ‘‘Online Bayesian inference of diffusion
networks,’’ IEEE Trans. Signal Inf. Process. Netw., vol. 3, no. 3, pp. 500–
512, Sep. 2017.

[55] J. Zhu, C. Xu, J. Guan, and D. O. Wu, ‘‘Differentially private distributed
online algorithms over time-varying directed networks,’’ IEEE Trans. Sig-
nal Inf. Process. Netw., vol. 4, no. 1, pp. 4–17, Mar. 2018.

[56] P. Bouboulis, S. Chouvardas, and S. Theodoridis, ‘‘Online distributed
learning over networks in RKH spaces using random Fourier features,’’
IEEE Trans. Signal Process., vol. 66, no. 7, pp. 1920–1932, Apr. 2018.

[57] J. Kivinen, A. J. Smola, and R. C. Williamson, ‘‘Online learning with
kernels,’’ IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2165–2176,
Aug. 2004.

R. PARI was born in Chennai, India, in 1971.
He received the B.E. degree in computer science
and engineering from Madras University, India,
in 1992, and the M.Tech. degree in computer
science and engineering from PRIST University,
India, in 2015.

He is currently a Research Scholar with the
Department of Computer Science and Engineer-
ing, B. S. Abdur Rahman Crescent Institute of
Science and Technology, India. He has the industry

experience of over 20 years in prominent software services organizations
in India. He is a Certified Scrum Master from Scrum Alliance, USA. His
research interests include machine learning, artificial intelligence, and soft-
ware engineering.

M. SANDHYA was born in Chennai, India. She
received the B.E. degree in computer science
and engineering from Madras University, India,
in 1998, the M.B.A, degree from Annamalai Uni-
versity, India, in 2000, the M.E. degree from
Madras University in 2002, and the Ph.D. degree
in computer science and engineering from Anna
University, India, in 2012.

She is currently a Professor and the Head of the
Department of Computer Science and Engineer-

ing, B. S. Abdur Rahman Crescent Institute of Science and Technology,
India. She contributed to the research and education in computer science
and engineering, wireless networks, cloud computing, and big data analytics.
She is a Life Member of the Indian Society for Technical Education. She is
a reviewer of many international journals.

SHARMILA SANKAR was born in Chennai,
India. She received the B.E. degree in computer
science and engineering from Bharathiyar Univer-
sity, India, in 1993, the M.S. degree from BITS,
Pilani, India, the M.E. degree from Madras Uni-
versity, India, and the Ph.D. degree in computer
science and engineering from Anna University,
India, in 2012.

She is currently a Professor of computer science
and engineering with the B. S. Abdur Rahman

Crescent Institute of Science and Technology, India. She contributed to the
research and education in computer science and engineering, Internet of
Things, wireless networks, and big data analytics. She is a member of the
Association for Computing Machinery and the Computer Society of India.
She is a reviewer of many international journals.

VOLUME 6, 2018 48739


	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	MATHEMATICAL MODEL
	BASE TIER
	ENSEMBLE TIER
	GENERALIZATION TIER
	MISCLASSIFICATION RATE OF THE MODEL
	REGRET OF THE MODEL

	ALGORITHM
	BASE TIER
	ENSEMBLE TIER
	GENERALIZATION TIER
	BRUTE FORCE ALGORITHM


	EXPERIMENTAL EVALUATION
	EXPERIMENTAL SETUP
	RESULTS AND DISCUSSION

	CONCLUSION
	REFERENCES
	Biographies
	R. PARI
	M. SANDHYA
	SHARMILA SANKAR


