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ABSTRACT Detection of outliers present in noisy images for an accurate fundamental matrix estimation is
an important research topic in the field of 3-D computer vision. Although a lot of research is conducted in
this domain, not much study has been done in utilizing the robust statistics for successful outlier detection
algorithms. This paper proposes to utilize a reprojection residual error-based technique for outlier detection.
Given a noisy stereo image pair obtained from a pair of stereo cameras and a set of initial point correspon-
dences between them, reprojection residual error and 3-sigma principle together with robust statistic-based
Qn estimator (RES-Q) is proposed to efficiently detect the outliers and estimate the fundamental matrix with
superior accuracy. The proposed RES-Q algorithm demonstrates greater precision and lower reprojection
residual error than the state-of-the-art techniques. Moreover, in contrast to the assumption of Gaussian
noise or symmetric noise model adopted by most previous approaches, the RES-Q is found to be robust
for both symmetric and asymmetric random noise assumptions. The proposed algorithm is experimentally
tested on both synthetic and real image data sets, and the experiments show that RES-Q is more effective
and efficient than the classical outlier detection algorithms.

INDEX TERMS Fundamental matrix, stereo vision, robust statistics, outliers detection.

I. INTRODUCTION
The popularity of stereo cameras for recognition and
localization in intelligent vehicles is increasing tremen-
dously. Application of computer vision algorithms in object
tracking [2], [3] and 3D reconstruction using stereo cameras
for depth estimation [32], 3D lane detection [5], traffic sign
recognition [7], pedestrian detection and tracking with night
vision [40], driver assistance [9] have been extensively stud-
ied in the field of computer vision. Stereo vision, along with
the sensor fusion, has been used in a number of security and
safety applications as the trend of autonomous and intelligent
vehicles is increasing. In order to successfully exploit the
benefits of stereo cameras, one needs to estimate the fun-
damental matrix accurately from the noisy matching point
correspondences in the stereo image pair. Thus, the obtained
fundamental matrix can be successfully used to reproduce
3D reconstruction of the scene for further analysis, such
as determining the distance to other objects ahead of the

autonomous vehicle, buildings or obstacles ahead, traffic
lights, poles, and pedestrians. However, noises in the images
captured by these stereo cameras are inevitable due to unpre-
dictable disturbances in the camera system. For example,
an intelligent vehicle might be running through a rough
terrain or the stereo cameras might be affected due to the
presence of dust, rain, fog, irregular illumination, reflectance,
occlusion, and other surrounding electromechanical or elec-
tromagnetic interferences. Similarly, instances like inconsis-
tent feature extraction, depth discontinuities or cyclic patterns
also add to this. Thus, a real-time and robust algorithm is
required to filter the correct matching points from the noisy
measurement for an accurate fundamental matrix estimation
which helps in a precise 3D reconstruction of the surrounding
environment.

The estimation of the fundamental matrix from feature
point correspondences between a stereo image pair of the
same scene is one of the most important steps in the field
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of 3D computer vision. It is considered to be a vital step since
the fundamental matrix stores all the geometric information
for the relative transformation between an image pair and
helps in the projective reconstruction of a scene. In general,
a stereo image pair is taken with the help of two cameras
with different orientations. However, the two-view images
can also be taken using a single camera with appropriate
motion dynamics such as rotation with translation. It is shown
in [10] that an estimation of such a 3× 3 fundamental matrix
is governed by the epipolar geometry between the camera
orientations.

It would have been a lot easier to estimate the fundamental
matrix if there were no erroneous matching point correspon-
dences between the image pair. Pragmatically, a number of
mismatched points are present in two views and a reliable
outlier detection algorithm should be employed to filter the
outliers efficiently. The matching point pair is considered to
be an outlier if it violates the epipolar constraint or comes
from different 3D coordinates. The epipolar constraint is
merely a geometrical constraint between the stereo image
pair. It can be understood as if a feature point on one image
is matched with the feature point on the other image, then
both the points must lie on their respective epipolar lines. The
epipolar lines are determined using the point coordinates and
the fundamental matrix. Thus, the main goal of an outlier
detection algorithm is to validate the match points against
such constraints and also check if the point pairs come from
the same 3D coordinates. Those pairs of matching points that
follow these constraints are termed as inliers, otherwise, they
are called outliers.

A number of algorithms have been proposed in the past
to estimate the fundamental matrix from the matching point
correspondences. These algorithms can be grouped into three
separate categories: linear, iterative and robust estimation
approach [1], [42]. In the linear estimation approach, each
pair of correspondences is first fit into a fundamental matrix
equation and then grouped together to form a homogeneous
linear system. Next, the seven-point [10] or eight-point tech-
nique [10], [11] is used to compute the fundamental matrix.
The pros of using this method are its simplicity and computa-
tional efficiency. However, the estimation of the fundamental
matrix cannot be guaranteed to be exact in the presence of
outliers among the point correspondences.

In the second category, an iterative method to minimize the
non-linear distance function with the synchronized updates
of the fundamental matrix can be used to estimate the
required fundamental matrix from the matching correspon-
dences. In this method, the geometric distance between each
matched feature points and their corresponding epipolar lines
(determined iteratively using the feature coordinates and the
estimated fundamental matrix) is computed and summed over
all the matched points. Thus, the goal of the iterative method
is to minimize the sum and update the fundamental matrix
in each iteration. The advantage of this approach over linear
estimation approach is its meaningful geometric explanation.
However, one of its cons is that the approach is still not void

of noise sensitivity and performs poorly in the presence of
outliers.

To alleviate the adversities of outliers, some robust esti-
mation approaches such as RANSAC [8], LMedS [23],
M-estimator [27], MLESAC [31], Guided-MLESAC [28],
PROSAC [6], ARRSAC [21] and MAPSAC [29] have been
proposed in the past few decades. These methods can be
utilized to correctly identify and remove the outliers for
an accurate fundamental matrix estimation. Such methods
show improved data noise tolerance but are computationally
expensive than the earlier discussed approaches. In our early
studies [41], [34], a new iterative algorithm to eradicate pos-
sible outliers for an accurate fundamental matrix estimation
using reprojection error, instead of the algebraic error, was
developed to enhance the computational efficiency as well as
match the performance of the robust estimation approaches.
The paper assumed that the image noise as well as the
reprojection residual error follows a Gaussian distribution.
Similarly, it was shown in the paper that the outliers yield very
large reprojection errors and could be successfully removed
using three-sigma principle, i.e., the point correspondences
lying outside three times the sigma (variance) in the Gaussian
distribution of their reprojection residual error are treated as
outliers. One of the major limitations of the paper was the
assumption of the Gaussian noise which may not always be
valid in the practical scenarios. Moreover, the paper exten-
sively used Median Absolute Deviation (MAD) estimator to
calculate the standard deviation of the reprojection residual
error which is only 37% efficient in removing the outliers for
the Gaussian noise model [26].

Therefore, it is very important to find an algorithm that
is robust to general noise models in the stereo image pair
for accurate fundamental matrix estimation and 3D recon-
struction. Similarly, on the quest to find such algorithms
one should also make sure that the algorithm performs with
reliable efficiency. Otherwise, the unnoticed outliers would
severely impact the accuracy of the estimated fundamental
matrix and the intelligent vehicle shall possess inaccuracies
which could be risky.

In this paper, we propose a reprojection residual error
based iterative approach for robust estimation of the funda-
mental matrix. As a substantial extension of our previous
study [41], [37], the proposed approach successfully exploits
both the Gaussian, as well as the other generalized noise
model, which are often present in the image pair captured by
the cameras. Our approach exploits the reprojection residual
error as a confidence measure of the fundamental matrix.
Similarly, we will also utilize an efficient robust statistics
based estimator Qn [22], which performs much better than
the MAD estimator in the Gaussian as well as other noise
distributions for outlier elimination to estimate an accurate
fundamental matrix for 3D computer vision tasks. Com-
pared to the state-of-the-art outlier detection techniques, our
approach is more efficient and accurate, as shown in Fig. 1
and demonstrated via extensive experiments on both synthetic
and real image datasets.
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FIGURE 1. RES-Q rejects most of the outliers successfully. (a) Original
simulated cube. (b) Cube with inliers and 20% outliers. (c) Resulting cube
with detected inliers where most of the outliers present earlier are
rejected after running through RES-Q. (Best viewed in color and
digitally zoomed.)

The rest of the paper is organized as follows. Some ear-
lier research work on outlier detection methods and the
fundamental matrix estimation are presented in Section II.
Section III discusses our proposed approach in details
together with necessary theoretical understandings. Exper-
imental findings are demonstrated in Section IV and V.
Finally, a short conclusion is drawn in Section VI.

II. RELATED WORK
Researchers have proposed several robust outlier detection
methodologies to correctly identify and eliminate the outliers
in a given noisy data points for the fundamental matrix esti-
mation. One of the most celebrated and widely used robust
outlier detection methods is RANSAC [8]. In RANSAC,
the fundamental matrix is initially guessed using the minimal
set of points. Next, each matching feature points is tested
against a hypothesized model to choose an inlier set which
gives an error below a set threshold and a new fundamental
matrix is determined for successive iteration. By the end of
the algorithm, RANSAC chooses an inlier set with the max-
imum number of data points. However, RANSAC requires
a preset threshold, which is hard to determine. A very low
threshold might result in a very few number of inliers depend-
ing on the accuracy of the match points. Similarly, if the
threshold is set to some higher value with respect to the
quality of the match points, the fundamental matrix cannot be
accurately estimated. These inconsistencies make RANSAC
unsuitable for the scenarios where there are approximately
less than 50% inliers. Moreover, the lower the number of
inliers, the higher the computational cost of RANSAC due
to the increased number of iterations.

One of the RANSAC based methods which improved on
the computational cost is PROSAC [6]. This improvement is
possible as PROSAC keeps track of the quality measures of
the point correspondences while determining the fundamen-
tal matrix. This technique is absent in RANSAC. In addition,
the matches are sorted in their non-increasing order of quality
scores and subsets of seven points are progressively chosen
unless a minimum number of inliers are found to estimate
the fundamental matrix. Since the algorithm starts with the
match points having the best quality scores, PROSAC con-
verges in fewer iterations than RANSAC. Though PROSAC
is comparatively faster than RANSAC, it undergoes the same
limitations as in RANSAC because it requires a preset thresh-
old to vote the match points as inliers.

The other method MLESAC [31], instead of maximiz-
ing the number of inliers, utilizes a median-based approach
and a different cost function, unlike RANSAC. Inliers are
assigned a fitness score whereas the outliers are assigned
a constant weight. Next, expectation maximization is per-
formed to maximize the maximum likelihood estimates of the
normal distribution for the inliers and the uniform distribution
for the outliers. The solution that produces the least median
of residuals is considered to be the set of inliers. However,
MLESAC possesses the same limitations as in RANSAC and
also requires the noise parameters as a prior knowledge.

Similarly, MAPSAC [29] tried to improve MLESAC using
posterior estimation maximization of the fundamental matrix
and the matching point correspondences under Bayesian
statistics. MAPSAC uses a new evaluation technique to deter-
mine the consistency of the solution. Guided MLESAC [28]
replaced the random search in MLESAC or RANSAC with a
guided search and significantly reduced the required number
of iterations. ARRSAC [21] removed the outliers in real-
time thus making the algorithm computationally inexpen-
sive than RANSAC. To do so, ARRSAC claimed a new
framework for the real-time robust estimation by utilizing the
efficient adapting techniques for faster performance over a
wide range of the inlier ratios.

In order to solve the problem of automatically determin-
ing the preset threshold for separating inliers from outliers,
a value proportional to the median of the residuals was
used as a threshold in LMedS [23]. LMedS also elegantly
depicted the use of median as a robust outlier detection
estimator [13], [14] and accurate fundamental matrix
estimator.

Recently, the machine learning algorithms, as well as
the neural networks, have been extensively used for effi-
cient outlier detection and robust fundamental matrix estima-
tion. A one-class support vector machine-based pre-selection
algorithm for matching the correspondences obtained using
SIFT [15], together with the maximization of a soft deci-
sion objective function to refine the obtained inlier set, was
used to estimate the fundamental matrix in [39]. A robust
estimation technique least trimmed squares (LTS) regres-
sion was used in [25] to track the outliers which deviate
away from the majority linear model. This technique was
successfully applied to remove the outliers resulting from
the occlusion. Cluster-based outlier removing methodology
was proposed in [38] that solved outlier detection problems
in complex datasets with an ample of clusters and varied
densities. An unsupervised boosting approach was tested
in [24] to improve the accuracy of the ensemble outlier
detection algorithms.Moreover, autoencoder ensembles were
used in [4] for unsupervised outlier detection. However, one
of the major problems with such approaches is that they
are extremely sensitive to noise and often require a lot of
datasets to train. Similarly, as the model hyper parameters
increase, there is a significant impact on their performance
speedwhichmakes them unsuitable for real-time applications
like intelligent vehicles. Therefore, a robust statistics-based
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model is required in order to perform with minimal payload
and apt accuracy.

In addition, some robust feature matching and registration
algorithms have been studied in the literature, including vec-
tor field consensus (VFC) [18], regularized VFC [17], locally
linear transforming (LLT) [19], and L2E estimator [16]. More
robust estimation techniques can be found in [22], [30], [20],
and [35]. The motivation to use such robust estimators is
that they are simplistic, computationally inexpensive and
robust as demonstrated by their influence function and 50%
breakdown point in [23]. In our paper, we propose to employ
Qn estimator as it is experimentally proven to be the most
efficient for Gaussian as well as non-Gaussian noises.

III. PROPOSED APPROACH
A. FUNDAMENTAL MATRIX ESTIMATION AND
ALGEBRAIC ERROR
Given a stereo image pair, the intrinsic projective geome-
try between the pair of images is captured by its epipolar
geometry. Epipolar geometry between two-view images is
dependent only on the camera’s intrinsic parameters and
relative pose. Since it does not depend on the scene structure,
the fundamental matrix F is able to encapsulate the epipolar
geometry between the stereo image pair. The fundamental
matrix is mathematically represented as a rank 2 matrix of
size 3× 3.

The fundamental matrix can be estimated from a set of
point correspondences between a pair of images. Provided
a stereo image pair A and B such that xi ∈ A and x′i ∈ B
be two ith matching point correspondences represented using
homogeneous coordinates, F should satisfy the following
equation [10].

x′i
TFxi = 0 (1)

Each matching correspondence point pair contributes to a
single linear constraint. Since F is a 3 × 3 rank 2 matrix,
defined up to a scale, eight pairs of matching point corre-
spondences are sufficient to determineF using the eight-point
linear algorithm [10], [11]. However, least square estimation
technique can also be utilized if there are more than eight
point pair correspondences available.

In order to evaluate the correctness of the estimated funda-
mental matrix F, we must determine an error measurement
scheme that aids to further correction of the fundamental
matrix estimation technique. Errors in the fundamentalmatrix
estimation occur due to erroneous matching point pairs. One
of the most widely used error measurement criteria is an
algebraic error. An algebraic error ealg can be calculated
as

ealg(i) = x′i
TFxi (2)

Since the matching point correspondences are faulty, they do
not satisfy equation (1) and result in some error as calculated
in equation (2).

B. REPROJECTION RESIDUAL ERROR
Though the calculation of algebraic error is rather simple,
it does not contain any clear geometric meaning. Also,
equation (1) provides a necessary but insufficient condition
for correct matches as the point in xi ∈ Amay have the corre-
sponding match points x′i throughout the epipolar line defined
by Fxi in B. Therefore, in this paper, we propose to use the
reprojection residual error to overcome such ambiguity.

First, we estimate the fundamental matrix F from available
matching point correspondences between the stereo image
pair. Next, a pair of camera matrices P1 and P2 are recovered
from F for both the cameras using the following equation as
described in [10].

P1 =
[
I | 0

]
(3)

P2 =
[[
e′

]
×
F+ e′qT | βe′

]
(4)

where e′ is the epipole in the second image such that
e′TF = 0, q is an arbitrary three dimensional vector and
β is any nonzero scalar (β 6= 0).

Based on the recovered projection matrices, a triangulation
algorithm [12] is used to obtain a perspective 3D reconstruc-
tion of the matching correspondences. Thereafter, we use P1
and P2 to reproject the reconstructed 3D points back to the
respective image planes. Let x̂i and x̂′i be the reprojected
image point pairs for xi and x′i respectively, the reprojection
residual for point i in the two images can be calculated as ri =[
1ui
1vi

]
and r′i =

[
1u′i
1v′i

]
, where 1u and 1v are the reprojec-

tion errors along the two coordinate axes, respectively. Then,
the reprojection residual error can be defined as the following
vector by collecting the residuals of all the corresponding
matches and their reprojections in the two images.

err =
{
ri, r′i | i = 1, . . . ,N

}
(5)

where N is the total number of correspondences.

C. OUTLIER DETECTION AND REMOVAL POLICY
Since erroneous matching point correspondences result in an
inefficient fundamental matrix estimation, it is necessary to
determine a suitable outlier detection policy to eliminate these
faulty matches. In this section, we will discuss the outlier
detection and removal policies for a symmetric Gaussian
noise model as well as a generalized random noise model to
successfully eradicate the outliers present in the image pairs.
Before moving on to these cases, it is vital to understand
that the reprojection residual error undergoes similar noise
distribution as present in the ordinary image [41] as shown
in the simulation result for a Gaussian inlier noise and ran-
dom outlier noise in Fig. 2. The reprojection residual error
plot is simply a histogram plot of the vector as defined in
equation (5).

1) GAUSSIAN NOISE MODEL
One of the most widely adopted noise models in the field
of computer vision and image processing is the Gaussian
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FIGURE 2. (a) Histogram of the added Gaussian noise (inliers) along with
large standard deviation noise (outliers). (b) Histogram of the
reprojection residual error that follows Gaussian distribution
and 3-σ range for inliers classification.

noise model. The credit can also be given to the central limit
theorem. Gaussian model has a very simplistic representation
as it can be analyzed using only two parameters: mean µ and
variance σ 2. The probability density function of a Gaussian
distribution comprising of data points y is given by the fol-
lowing equation

f (y|µ, σ 2) =
1

√
2πσ 2

e−
(y−µ)2

2σ2 (6)

Since the outliers always tend to have a larger standard
deviation σ , through extensive experimentations we have
found that the reprojection residual error of the outliers also
tend to have a larger standard deviation in comparison to that
of the inliers, as demonstrated in Fig. 2. This finding, sup-
ported by our earlier research work [34], [41], helps us to cor-
rectly estimate and remove the outliers using 3-σ principle.
According to the Gaussian distribution, 99.7% of the inliers
should be within 3-σ of the mean. This principle explains that
the matching points with the reprojection residual error larger
than three times the variance (also known as sigma scaling
factor (σf ) calculated from err (i) for all the corresponding
point pairs) can be classified as outliers. Thus, 3-σ can be
considered as a suitable threshold to filter the inliers from
the outliers effectively. Hence, the only policy needed to
determine now is how to find the required standard deviation
from the calculated residual errors.

We have based our approach on robust statistics [23] as
they are proven to be the most reliable outlier detection
method. Although the median absolute deviation (MAD)
was extensively used in our previous work [34], [41],
the study [22] suggests that the Qn estimator is a more
robust statistic that experimentally outperforms MAD. Thus,
we decided to adopt the Qn estimator in this paper which can
be computed using the following equation.

Qn = σ = c{|xa − xb|; a < b}(m) (7)

where xa and xb ∈ x (data points), c is a constant factor and
m =

(v
2

)
≈

(n
2

)
/4, v =

(n
2

)
+ 1. Thus, the formula suggests

that we need a constant factor c to scale for the different
noise distributions and mth order statistic of the

(n
2

)
interpoint

distances. The constant factor c for the Gaussian noise model
is determined to be 2.2219.

Once the Qn estimator is calculated, the outliers can now
be easily classified using

O = {(xi, x ′i ) : |err (i)|std > 3σ } (8)

where O is an outlier set and |err (i)|std is a standardized
(mean = 0) reprojection residual error for xi and x ′i .

2) GENERALIZED NOISE MODEL
Since the noises in the stereo image cannot be always
assumed to follow a symmetric Gaussian distribution in the
real-world, it is essential to determine an outlier detection
policy for asymmetric noise distributions as well. Thus,
we experimented our algorithm with the stereo images popu-
lated with random noises corresponding to a lower standard
deviation (typically within±3) as inliers and a larger standard
deviation (typically ±4 to ±10 ) as outliers. Now, the theo-
retical understanding follows the same as discussed earlier
because the inlier distribution is bounded and the outliers can
be successfully filtered using 3-σ principle.

D. OUTLINE OF RES-Q ALGORITHM
The implementation details of the above proposed robust
algorithm RES-Q is summarized as below.

Algorithm 1 Robust Outlier Detection Using RES-Q
Input: stereo images
Output: optimal fundamental matrix

1. Estimate an initial fundamental matrix Fint using all the
points in the stereo image
2. Estimate the camera parameters P1 and P2 from Fint
3. 3D reconstruct the point pairs using triangulation
4. Reproject the 3D cloud points using P1 and P2
5. Calculate the reprojection residual error err from repro-
jection in step 4 with input image pairs
6. Use 3-σ principle to remove the outliers (use equation
8)
7. Re-estimate the fundamental matrix Fest using detected
inliers and repeat steps 3 - 7 one more time to refine the
inliers
8. Final Fest is the optimal fundamental matrix for the input
stereo images

IV. EVALUATIONS ON SYNTHETIC DATA
Our algorithm is evaluated on a computer-simulated synthetic
data and compared qualitatively as well as quantitatively
against similar algorithms in the literature. During the simu-
lation, we generated nearly 1200 space points to form a cube
of 50 × 50 × 50 as shown in Fig. 3. Then, an image pair of
size 800×800 is produced using camera matrices P1 and P2.
During the simulation, the focal length of the camera is
set to 800 and is kept 60 units apart from the cube and
angular rotations of the camera are set to [45, 30, 75]
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FIGURE 3. Simulated 3D cube and projected stereo image using camera
parameters P1 and P2 respectively.

and [45, 15, 0] to generate a pair of stereo images. Inliers
were simulated by adding Gaussian noise of 0 mean and
3 pixels standard deviation whereas outliers were randomly
introduced by adding noise with the larger standard deviation
(up to ±10). To best observe the performance of the algo-
rithms on different amount of random noises, we varied the
outlier percentage from 5% to 25% during the experiments.
Every algorithm was executed 500 trials for each outlier
percentage value to best generalize the performance of the
compared algorithms.

A. MEAN REPROJECTION RESIDUAL ERROR
We analyzed our algorithm with the other state-of-the-art
algorithms and plotted the mean reprojection residual error
plot to determine the merits of the algorithms based on the
different reprojection residual error at different outlier levels.
In Fig. 4(a) and Fig. 5(a), we plot the mean reprojection
residual error curve, where the algorithm is executed to deter-
mine the final set of inliers using final estimated fundamental
matrix and the mean reprojection residual error is calculated
for these inliers with their corresponding points in an input
image over 500 trials. If the fundamental matrix determined
by the algorithm is precise, the algorithm shall be robust to
the outliers and effectively detect the inliers with less error.
Thus, it can be verified that the robust algorithms should show
less mean reprojection residual error. In the curve, we can see
that both the proposed algorithm and the MAD [41] show
minimal reprojection residual error compared to the other
algorithms. LTS [25] though starts with a lower mean repro-
jection residual error, further increases significantly when the
percentage of the outliers in an input image is increased thus
making it less robust to heavier noises. A similar pattern can
be observed in RANSAC [8], MSAC [29], and LMedS [23]
except for the fact that they are not as robust as LTS, MAD
and our approach. The gradual increase in the curve can be
accounted for the fact that as the outlier percentage increases,
the algorithm finds harder to determine the accurate funda-
mental matrix which would result in erroneous inliers.

B. MEAN STANDARD DEVIATION OF REPROJECTION
RESIDUAL ERROR
Mean standard deviation of the reprojection residual error is
plotted by calculating the average standard deviation of the

reprojection residual error for each percentage of the outliers
added over 500 independent trials. Since the standard devia-
tion measures the variation of the reprojection residual error
from its mean over multiple trials, it determines the stability,
reliability and reproducibility of the algorithm. Hence, if the
algorithm tends to show the constant mean standard deviation
of the reprojection residual error over different levels of out-
liers, we can conclude that the performance of the algorithm
is noise independent and static. The experimentation plots
in Fig. 4(b) and Fig. 5(b) clearly demonstrate that MAD and
our approach have almost constant mean standard deviation
for the different outlier percentages. LTS and LMedS tend to
deviate from their previous mean reprojection residual errors
when the outlier level increases, thus making them noise
sensitive. Similarly, RANSAC andMSAC clearly are not able
to cope with the changing outlier ratios in an input image.
Ours and MAD show constant plot because these algorithms
remove the outliers by adaptively choosing σ using 3-σ prin-
ciple, unlike other methods which use a fixed threshold for
every outlier levels, thus making them unable to choose the
true inliers with the varying percentages of outliers.

C. MEAN PRECISION
To measure the relevancy of the inliers detected by the
algorithms, we need to determine a measure that accurately
scores the algorithm based on a number of true inliers/outliers
detected. For example, if a particular algorithm classifies a
handful amount of inliers, we cannot claim the algorithm to
be a reliable algorithm merely based on the number of inliers
detected, unless we verify the authenticity of the detected
inliers with the ground truth. This is where the precision
of the algorithm comes into play, which carefully scores
the algorithm up if the detected inliers match the ground
truth and thumbs down otherwise. Let TP denote true pos-
itives (detected inliers/outliers are true inliers/outliers) and
FP denote false positives (detected inliers are true outliers),
then the precision of the algorithm is calculated as TP

TP+FP .
Thus, it can be deduced from the definition that the higher
the precision, the better the algorithmic performance.

The precisions of different algorithms are plotted
in Fig. 4(c) and Fig. 5(c). It is evident that our approach has
higher precision compared to the other approaches for the
most of the outlier percentages. LTS tends to show the highest
precision for lower levels of outliers, while the precision
drastically decreases in a near linear fashion for higher outlier
levels. This can be accounted for the fact that as the number
of outliers increases, LTS finds it hard to segregate the true
inliers from outliers. This can also be observed in Fig. 4(a)
and Fig. 5(a) where mean reprojection residual error for LTS
gradually increases due to the fact that the outliers being
detected as the inliers. MAD shows considerable precision
but does not perform better than our approach. This is one of
the major advantages of using RES-Q over MAD algorithm.
However, we observed that MAD performs slightly better
than RES-Q at higher outlier level, i.e., 25%. RANSAC
and MSAC perform very similar but have lower precisions.
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FIGURE 4. Synthetic experimentation plots (inliers modeled as a random symmetric noise) comparing algorithms for 500 independent trials. (a) Mean
reprojection residual error. (b) Mean standard deviation of reprojection residual error. (c) Mean precision. (d) Mean recall. (Best viewed in color).

FIGURE 5. Synthetic experimentation plots (inliers modeled as a random asymmetric noise) comparing algorithms for 500 independent trials. (a) Mean
reprojection residual error. (b) Mean standard deviation of reprojection residual error. (c) Mean precision. (d) Mean recall. (Best viewed in color).

Again, this limitation is due to having a constant threshold for
every outlier levels and no adaptive outlier rejection strategy.
In addition, LMedS plot shows that LMedS is not a suitable
algorithm for lower outlier percentage and is not able to
outperform the compared algorithms for any higher outlier
percentages. It can be concluded that, for varying outlier
levels, our approach is more precise to use with the least
concern of detecting false positives.

D. MEAN RECALL
While precision score determines how precise the algorithm
is on classifying correct inliers/outliers with respect to the
ground truth, it does not fully help us to understand if we have
correctly predicted all the inliers as well as outliers present.
This necessitates the evaluation of the algorithms on recall.
Recall helps to understand how the algorithms performs in
determining all the inliers/outliers correctly. Mathematically,
let TP denote true positives (detected inliers/outliers are
true inliers/outliers) and FN denote false negatives (detected
outliers are true inliers), then the recall of the algorithm
is calculated as TP

TP+FN . Thus, it can be deduced from
the definition that an algorithm with higher recall is more
reliable.

The corresponding recall curves are plotted in Fig. 4(d)
and Fig. 5(d). The plots clearly depict that our algorithm has
higher mean recall compared to other competitive algorithms.
Although LMedS and RANSAC perform better at 5% outlier
level, RES-Q maintains higher recall at various outlier levels
in overall. MAD performs better at higher outlier levels than
the others, but RES-Q clearly outperforms all the compared
algorithms. It is also important to note that RES-Q has

maximum attainable recall, i.e., 1 at 25% outlier level for
symmetric noise and near 100% recall for asymmetric noise.
Thus, RES-Q is not only precise but also accurately predicts
most of the inliers/outliers irrespective of the noise patterns.

E. COMPUTATIONAL COMPLEXITY ANALYSIS
LetN be the number of iterations performed,D be the number
of data points consisting of both inliers and outliers, F be the
number of features (for example, 8 features for estimating the
fundamental matrix using the normalized eight point algo-
rithm [10], [11]), Cfit be the time complexity for determin-
ing the fundamental matrix, ML be the time complexity for
maximum likelihood operations to determine the most likely
set of inliers in MSAC and T be the computational cost for
triangulation, we can compare the total worst case scenario
computational costs for different algorithms. Since RANSAC
fits the detected inliers in every iteration to estimate the
fundamental matrix to see the fit according to a preset thresh-
old, its complexity is O(N(Cfit + D)). MSAC performs on
a common ground with RANSAC except for calculating a
maximum likelihood fit for the final estimation of the inlier
set, its computational complexity is O(N(Cfit + D)+ML),
slightly higher than RANSAC. Both LMedS and LTS
have the same order of complexity O(NF2D) because of
their iterative machine learning algorithmic approach. How-
ever, MAD and RES-Q, based on the previously proposed
Algorithm 1, calculate the fundamental matrix twice, per-
forms triangulation twice and computes the reprojection
residual error twice which is dependent on D, it has a com-
plexity of O(Cfit + DlogD+ T). A key observation here
is that MAD and RES-Q have their order of complexities
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FIGURE 6. RES-Q sigma selectivity versus various outlier levels for (a) symmetric noise and (b) asymmetric noise.

FIGURE 7. Real data experimentation plots comparing algorithms for 500 independent trials on Merton College II dataset. (a) Mean reprojection
residual error. (b) Mean standard deviation of reprojection residual error. (c) Mean precision. (d) Mean recall. (Best viewed in color).

independent to the number of iterations N thus making them
computationally more efficient than the classical approaches.

F. DETERMINATION OF SIGMA SCALING FACTOR
We experimented with several sigma scaling factor (σf ) ver-
sus outlier percentages to best determine the inliers with an
apt precision. Since the precision of determining as well as
eliminating the outliers should be higher for an algorithm
and the reprojection residual error should be lower for bet-
ter performance, we define sigma selectivity as a logarith-
mic ratio of precision p to reprojection residual error err .
The selectiveness of σ is mathematically calculated as
σsel

log(p)
log(err )

. Fig. 6 depicts sigma selectivity against differ-
ent levels of outliers. It can be observed that lower sigma
scaling factors (2.0 and 2.5) has less selectivity for the
most of the outlier levels. In addition, higher scaling factors
(4.0 and 3.5), though have higher selectivity at lower outlier
levels, quickly drop down with the increase of outlier levels.
Thus, it can be safely concluded that sigma scaling factor
of 3.0 is the most appropriate value as it has steady selectivity
across different outlier percentages and is chosen both for
symmetric and asymmetric noise in our experiments for the
RES-Q approach.

V. EVALUATIONS ON REAL DATA
We extensively evaluated the RES-Q algorithm against other
competing algorithms in the real data sets. For this purpose,

four datasets: Lion [36], Fountain [33], Merton College I and
Merton College II from Oxford Multiple View VGG dataset1

were chosen. Lion dataset consists of 3204 matching point
correspondences and 5% random outliers were added for the
experimentation. Fountain dataset consists of 4219 match-
ing point correspondences and 10% outliers were added.
Similarly, Merton College I and Merton College II consist
of 383 and 344 matching point correspondences and 20% and
25% outliers were added respectively. All the stereo image
pairs in the datasets have a resolution of 1024 × 768 and the
calibrated camera parameters were provided along with the
datasets. For the generalization purpose, the algorithms were
executed independently for 500 times on each dataset and the
results are reported.

A. MEAN REPROJECTION RESIDUAL ERROR
In Fig. 7(a), we plot the mean reprojection residual error
curve. This curve determines the number of correct inliers
detected as the reprojection residual error for the true pos-
itives contributes less to the reprojection residual error,
whereas, that of the false positives contributes signifi-
cantly. Thus, a good outlier rejection algorithm should have
lower mean reprojection residual error. In the plot, we can
observe that RES-Q, LTS and MAD have considerably lower
mean reprojection residual error than that of RANSAC,

1http://www.robots.ox.ac.uk/vgg/data/data-mview.html

VOLUME 6, 2018 48671



S. P. Bharati et al.: RES-Q: Robust Outlier Detection Algorithm for Fundamental Matrix Estimation

MSAC or LMedS. Also, RES-Q and LTS outperform MAD
in most of the outlier levels. Though LTS did not perform
as good as MAD and RES-Q in the synthetic experiments,
the real dataset experiments show that LTS could be a suit-
able choice whereas MAD may deviate from the synthetic
experimental findings. Based on the experiments, we can
conclude that RES-Q performs competitively better in both
of the experiments, and thus, proving its robustness at several
outlier levels.

B. MEAN STANDARD DEVIATION OF REPROJECTION
RESIDUAL ERROR
To observe the noise stability, outlier level adaptability and
reproducibility of the compared algorithms, the standard
deviation of the reprojection residual errors over several
outlier percentage values is evaluated over 500 independent
trials to plot the mean standard deviation of the reprojection
residual errors in Fig. 7(b) as explained in the synthetic exper-
iments in the previous section. The plot clearly indicates that
themean standard deviation of the reprojection residual errors
is almost constant for RES-Q, MAD and LTS compared to
RANSAC, MSAC or LMedS. This observation also matches
with the plots in the synthetic experiments. ThoughMAD and
RES-Q performed almost similar in the synthetic experiments
as their plots overlapped, real data experiments show that
RES-Q could be unstable to noises compared to MAD and
LTS for higher outlier levels.

C. MEAN PRECISION
The precision plot over varying outlier percentages helps to
determine the true analysis of the performance of the vari-
ous competing algorithms. Since the precision plot carefully
accounts for the ground truth match with the set of classified
inliers by the various algorithms and penalizes the algorithm
for every misclassification, the higher the precision curve,
the more reliability of an algorithm. In the precision plot
Fig. 7(c), RES-Q clearly outperforms all the competing algo-
rithms. LTS, though has a slightly higher precision for the
lowest outlier level (5%) (also similar findings in the synthetic
experiments), the precision falls below RES-Q and MAD
approaches for higher outlier levels. This can also be verified
by the increasing mean reprojection residual errors for LTS
in Fig. 7(a) due to false classifications. MAD shows a good
precision for higher outlier levels but is not able to perform
with the utmost precision compared to LTS or RES-Q at lower
outlier levels. This was also outlined in the precision plot for
synthetic experiments and argued to be the key disadvantage
of usingMADover RES-Q. RANSAC andMSACdue to their
inadaptive outlier rejection strategy cannot outperform adap-
tive algorithms. LMedS does not seem to perform with much
precision at any outlier levels. Thus, RES-Q is a better choice
for precise outlier rejection scheme for a robust fundamental
matrix estimation.

To further demonstrate the performance of RES-Q, the his-
togram distribution of the reprojection residual error in the
Lion dataset before and after running RES-Q is plotted

FIGURE 8. Histogram of reprojection residual error on Lion dataset with
10% outlier before (a) and after (b) RES-Q.

FIGURE 9. Reconstruction results of Lion dataset with 5% outlier. (First
row) left two are original stereo images and the right two are overlaid
with the matching features obtained by the RES-Q. (Second row) the
reconstructed VRML model of the scene shown from different viewpoints
with texture mapping. (Last row) the corresponding triangulated
wireframe of the VRML models.

in Fig. 8. As discussed earlier, the reprojection residual errors
follow Gaussian distribution and RES-Q is able to reject most
of the outliers using 3-σ principle for the fundamental matrix
estimation which can also be verified in Fig. 8.

D. MEAN RECALL
Although mean precision significantly helps to compare the
algorithms on how precise are their inlier/outlier predic-
tions, mean recall is also an important metric to evaluate
the algorithms on the accuracy of their predictions. In the
recall plot Fig. 7(d), RES-Q is found to outperform all the
compared algorithms in majority of the outlier level percent-
ages. RANSAC and MSAC cannot maintain a good recall
at higher outlier levels due to their inadaptable algorith-
mic approach. LMeds shows an overall poor performance.
RANSAC, MSAC and LTS have a good recall at 5% outlier
level, which is similar to the findings in the synthetic exper-
iment, however, they are not able to keep up with increasing
outlier levels. It is evident that RES-Q outperforms all the
competing algorithms and has a 100% recall at 25% outlier
level. Therefore, RES-Q can be concluded to be more reliable
at different outlier ratios.

E. QUALITATIVE EVALUATION RESULTS
In order to further verify the robustness of our approach,
different outlier levels were added to the real datasets
(5% to Lion, 10% to Fountain, 20% to Metron College I
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FIGURE 10. Reconstruction results of Fountain dataset with 10% outlier.
(First row) left two are original stereo images and the right two are
overlaid with the matching features obtained by the RES-Q. (Second row)
the reconstructed VRML model of the scene shown from different
viewpoints with texture mapping. (Last row) the corresponding
triangulated wireframe of the VRML models.

FIGURE 11. Reconstruction results of Merton College I dataset with 20%
outlier. (First row) left two are original stereo images and the right two
are overlaid with the matching features obtained by the RES-Q. (Second
row) the reconstructed VRML model of the scene shown from different
viewpoints with texture mapping. (Last row) the corresponding
triangulated wireframe of the VRML models.

FIGURE 12. Reconstruction results of Merton College II dataset with 25%
oultier. (First row) left two are original stereo images and the right two
are overlaid with the matching features obtained by the RES-Q. (Second
row) the reconstructed VRML model of the scene shown from different
viewpoints with texture mapping. (Last row) the corresponding
triangulated wireframe of the VRML models.

and 25% to Merton College II) and experimented with
RES-Q to see the reconstructed VRML models and the cor-
responding wireframes. Figs. 9, 10, 11 and 12 show that

RES-Q successfully discards the outliers and recovers the
Euclidean structure of the scene for different levels of out-
liers. As the levels of outlier increase, the VRML mod-
els show some instances of false reconstruction, however,
most of the parts are accurately reconstructed and visually
plausible.

VI. CONCLUSION
In this paper, we have demonstrated that the robust statistics-
based method can be used to determine and remove the out-
liers present in the corresponding matching points between
a pair of stereo images. Through extensive synthetic and real
data experiments, we have verified that the reprojection resid-
ual error based technique is more robust than the algebraic
error based approaches. Furthermore, we have shown that
Qn estimator together with the 3-σ principle in our RES-Q
algorithm can efficiently detect outliers at different levels
and accurately estimate the fundamental matrix for successful
reconstruction of the given scene. In addition, several exper-
iments have been carried out to show that RES-Q performs
equally well for both symmetric and asymmetric random
noises. We have also demonstrated that one of the major
advantages of using RES-Q over MAD is an improved preci-
sion as well as recall which is vital in practical applications.
The greater precision and recall of RES-Q over MAD was
further verified by experimenting themwith various synthetic
as well as real datasets against several outlier ratios.
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