
Received June 18, 2018, accepted July 30, 2018, date of publication August 30, 2018, date of current version September 21, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2865683

Hybrid Simulation and Test of Vessel
Traffic Systems on the Cloud
MASSIMO FICCO1, (Member, IEEE), ROBERTO PIETRANTUONO 2, (Senior Member, IEEE),
AND STEFANO RUSSO 2, (Senior Member, IEEE)
1Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi della Campania Luigi Vanvitelli, 81031 Caserta, Italy
2Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, 80125 Naples, Italy

Corresponding author: Roberto Pietrantuono (roberto.pietrantuono@unina.it)

This work was supported by the GAUSS National Research Project through the MIUR Program under Grant PRIN 2015.

ABSTRACT This paper presents a cloud-based hybrid simulation platform to test large-scale distributed
system-of-systems for the management and control of maritime traffic, the so-called vessel traffic
systems (VTS). A VTS consists of multiple, heterogeneous, distributed, and interoperating systems, includ-
ing radar, automatic identification systems, direction finders, electro-optical sensors, and gateways to
external VTSs, information systems; identifying, representing, and analyzing interactions is a challenge to
the evaluation of the real risks for safety and security of the marine environment. The need for reproducing
in fabric the system behaviors that could occur in situ demands for the ability of integrating emulated and
simulated environments to cope with the different testability requirements of involved systems and to keep
testing cost sustainable. The platform exploits hybrid simulation and virtualization technologies, and it is
deployable on a private cloud, reducing the cost of setting up realistic and effective testing scenarios.

INDEX TERMS Cloud computing, emulation, HLA, simulation, system-of-systems, testing, vessel traffic
systems.

I. INTRODUCTION
A Vessel Traffic System (VTS) is a large-scale system whose
objective is to support safety and efficiency of navigation
and protection of the marine environment, adjacent shore
areas, work sites and offshore installations from possible
adverse effects of maritime traffic. It is a typical critical
infrastructure system manufactured according to the System-
of-Systems (SoS) paradigm, where multiple interoperable
systems are interconnected by means of proper middleware
solutions through local or wide-area networks [1]. A VTS
is generally organized in three hierarchical levels, including
local control centers, area centers, and head quarters. Each
local VTS can integrate a wide variety of remote sensors and
inter-operate with several external systems.

Due to their huge complexity and scale, setting up real-
istic and cost-efficient testing sessions for a VTS is a seri-
ous concern. A typical test scenario can consist of several
VTSs hierarchically connected, with a multitude of physical
and functional heterogeneous components across different
technological domains (representing physical hard compo-
nents as well as soft components), and human and organi-
zational components, not necessarily belonging to the same
entity or organization. The monitored area can include from

100 to 5,000 marine objects (including ships, buoys, offshore
plant, etc.), as well as different identification base stations,
weather stations, and huge number of radar, cameras, and
direction finders, with the network scenario involving both
geographical and local connections.

This complexity is likely to lead to unexpected (hence
untested) behaviors, mainly affecting dependability and per-
formance, that usually become evident only during systems
operations on-site and, in particular, in presence of stress,
unexpected conditions or events not observed until then. For
example, during the monitoring of traffic navigation in a
seaport, if not covered in the system specification, a ship out
of the norm (i.e., longer than those specified by applicable
regulations) could be identified by VTS as two distinct ships
when it passes behind a buoy.

A failure in one component can propagate within the
subsystem and to other subsystems, provoking cascading
failures that can produce severe unpredictable consequences
well beyond the impact zone. Diagnosis of malfunctions
during system operation is a very difficult and expensive
task, that often requires urgent actions on sites by specialized
teams of engineers, with high cost and time overruns for the
company.

VOLUME 6, 2018 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ 47273

https://orcid.org/0000-0003-2449-1724
https://orcid.org/0000-0002-8747-3446


M. Ficco et al.: Hybrid Simulation and Test of VTSs on the Cloud

Assessing the dependability of such a system before
deploying it is as much important as difficult. The main
challenge is to be able to reproduce ‘‘relevant’’ scenarios
locally, in order to gain knowledge about the real behavior of
the system in-factory as it would be on-site. It would require
sophisticated modeling practices and expensive experimen-
tation environments/infrastructures to simulate and test the
functionality of the whole SoS and analyze the interconnec-
tions and interactions among its parts [3].

In the context of a public-private research project named
DISPLAY (Distributed hybrId Simulation PLAtform for
ATM and VTS sYstems) [4], we have considered the hybrid
simulation as a valuable testing option, also known as pseudo-
dynamic testing [5], coupled with a cloud-based deployment.
Hybrid simulation can combine emulation and simulation
together in order to cope with the extreme heterogeneity of
testing requirements for the described systems. The simula-
tion can be used to reproduce the behavior of the external
systems of interest (e.g., sensors, radar, web cam, and exter-
nal software COTS), whereas emulation can be adopted to
reproduce the execution of the real target system.Deployment
over virtual infrastructures and a service-oriented architecture
provides flexibility and scalability, optimizing time and cost
of testing and maintenance activities.

The article presents a platform to implement locally con-
trolled testbeds (managed in factory) for VTSs, through
the integrated use of distributed and hybrid simulation
techniques. The platform supports synchronization and
communication services needed to make heterogeneous
distributed simulation tools and emulated components
interoperable. Moreover, service interfaces are provided to
configure and manage (at architectural level) the simulation
scenario through the platform, which runs and manages the
simulation process (i.e., emulate the system behavior), with-
out the effort and cost needed for building and maintaining
complex testbed infrastructures. By adapting the Platform-as-
a-Service (PaaS) concepts to the simulation domain, the sim-
ulation framework can be offered as a service to testers
on a cloud infrastructure (SIMPaaS), and exploited to build
large-scale test scenarios.

The rest of the paper is organized as follows: in Section II,
we survey potential solutions from the literature to simulate
and test a critical SoS, such as VTS. Section III discusses
the role and potential of simulation, hybrid simulation and
simulation-as-a-service solutions for setting up testing envi-
ronments of a SoS. Section IV describes the requirements
of the testing platform for the VTS case. Section V and VI
present our solution. Section VII reports about the testbed
implementation and the main test scenarios of the target
VTS. Section VIII discusses the cloud-based distributed
simulation-as-a-service solutions proposed in the literature.
Section IX discusses implications and concludes the paper.

II. SoS TESTING AND SIMULATION
A VTS is a prominent example of critical System-of-
Systems. According to De Laurentis [6], a SoS consists of

‘‘multiple, heterogeneous, distributed, occasionally indepen-
dently operating systems embedded in networks at multiple
levels that evolve over time’’. This entails a inherent structural
and dynamic complexity [7]. Structural complexity derives
from: (i) a multitude of physical and functional heteroge-
neous components, across different technological domains,
representing physical hard components (e.g., railway, radar,
direction finder, etc.), as well as soft components (such as
SCADA, information systems), and human and organiza-
tional components, in general not belonging to the same
entity or organization; (ii) the scale and dimensionality of
their connectivity and their geographical extension. Dynamic
complexity manifests itself as emergence of unexpected sys-
tem behaviors in response to changes in the environmen-
tal and operational conditions of its components, as well
as of disruptive events, (e.g., natural events, criminal and
malicious activities, market and policy factors, outages),
introducing additional complexity in the management and
control.

Identifying, understanding and representing such complex-
ity is a challenge to the evaluation of weaknesses and vul-
nerabilities of subsystems in consequence of an initiating
event. It requires sophisticated testing environments to sup-
port activities as: (i) in-factory integration and system testing
without the need of expensive geographic-scale evaluation
on-site; (ii) testing to assure the correct functioning of the
product before delivery, to avoid expensive re-designs, late
bug fixes and delivery of bad-quality products; (iii) definition
of tuning actions before their first on-site execution; and (iv)
verification of failure mitigation strategies.

Generally, complexity forces testers to simplify the testbed
configuration to keep its realization cost low. For instance,
some software components are assumed to work prop-
erly (e.g., operating systems), thus, software on the testbed
is a simplified version of the operational one. Also, each
scenario could take several hours to complete – thus, only
test scenarios obtained from recording behaviors observed
in-situ are considered. Scenarios taken from the operational
phase assures to test representative cases, but focusing always
on the same (few) scenarios does not allow evaluating
new cases or specific, unforeseen, situations not included
in the requirements, and very few cases can be explored
carefully. Such simplifications greatly reduce the number
of tests, but to the detriment of a deep quality assurance.
The natural pay-off is a partial coverage of requirements
and a risk of low representativeness of tested scenarios,
and a consequent increased risk of poor quality of final
products.

On the other hand, reproducing real complex scenarios in-
factory for a deeper quality assurance is still very expensive
and time-consuming (and often even unfeasible), as multiple
independent and heterogeneous entities, with their own tem-
poral dynamics, must be involved and synchronized among
each other. In this direction, several simulation methods are
proposed in the literature for vulnerability assessment and
risk analysis of critical infrastructure systems (CISs):

47274 VOLUME 6, 2018



M. Ficco et al.: Hybrid Simulation and Test of VTSs on the Cloud

• Logical methods, which include logic trees, Markov
Chains, Markov/Petri nets, Bayesian networks, etc., are
capable of capturing the logic operating of a system, and
of identifying the combinations of failures of elements
potentially leading to the system failure [9]. Drawbacks
of these methods are the exponential growth of system
configurations when the number of components and
states increases, as well as the significant efforts in logic
modeling and quantification.

• Functional methods include agent based model, system
dynamic model, economic-based approaches; they are
capable of capturing the dynamics of interrelated opera-
tions among hardware and software elements of a system
and its interaction with the environment [3]. Nonethe-
less, it is difficult to calibrate the model parameters and
validate complex models.

• Structural/topological methods represent CISs by net-
works, where nodes are the components and links
are the physical and relational connections among
them [11], [10]. Networks can be analyzed by simu-
lation and analytical methods, which can capture rele-
vant structural properties, identify critical components
and support the improvement of system robustness.
However, they hardly capture the dynamic complex-
ity of real SoSs, and their computational cost can be
prohibitive when components and links are modeled in
detail.

There exist many different tools and frameworks that
developers can use to build complex simulations upon. Some
of these focus on specific application domains, others focus
on domain-independent scope and support simulation in gen-
eral. Examples of domain-specific simulation frameworks are
Mosaik [12], which is a flexible Smart Grid co-simulation
framework, and RinSim [13], a simulator for logistics prob-
lems. Currently, several specific VTS simulators have been
proposed [15], [16]. On the other hand, they are not designed
to test VTS, but only used to train personnel in handling
marine traffic. Examples of general simulation frameworks
are the Jadex project [17], which is a multi-agent based simu-
lation framework, and COSSIM [14], a simulator specifically
designed for providing accurate simulation of cyber physical
systems. On the other hand, generic frameworks would force
the developer to implement realistic simulation scenarios
from scratch, and as the next sections will clarify, it might
complex to capture heterogeneity and structural and dynamic
complexity of a SoS, such as the VTS. However, no specific
simulation platform has been proposed to test VTS.

III. VTS SIMULATION AS-A-SERVICE
The evaluation of risks, vulnerabilities and resilience of
systems can be carried out through a simulation process,
by modeling reality and quantifying defined metrics. In gen-
eral, Simulation can be a valuable support to improve test
representativeness and coverage at low cost. Being able to
accurately simulate the behavior of a system allows engineers
to drastically reduce the time and costs of its dependability

evaluation, enabling more effective testing, analysis of alter-
native design decisions, identification of architectural bottle-
necks, early detection of bugs, and so on. Nonetheless, due
to heterogeneity, structural and dynamic complexity, the SoS
representation and modeling is such that its characteristics
cannot be fully captured and quantified in a reliable way, and
large uncertainty is always present [8].

A simulation service for a SoS would present several
serious challenges: various simulation tools, real sub-
systems (usually Commercial Off-The-Shelf) and experimen-
tal platforms need to interact in a coordinated way within
a distributed environment. Their integration would require
sophisticated modeling practices and complex experimen-
tation environments. Also, despite the advantages of sim-
ulation, the complexity of systems and the large number
of involved entities would still lead to very high cost and
simulation time. To be effective, simulation should manage
these complex aspects and be, at the same time realistic, time-
optimal and cost-effective - objectives which contrast each
other.

Hybrid distributed modeling strategies represent a viable
alternative to design simulation platforms for testing.
In hybrid simulation, the emulated parts are the system or
components under test, e.g, the Vessel Traffic System (VTS)
software, as well as each element that cannot be tested in real
operating environment, for example a network router. The
simulated parts can be, for instance, the sensors or objects
present within the operating scenario, such as a radar, a ship
in a port or a marine object, which can be used to gener-
ate the experimental workload or perturbation in the system
operation. Other elements that can be simulated are compo-
nents or subsystem that cannot be directly used, for example,
because they are not accessible or available for the testing
activity. Finally, the real systems are all the other subsystems
that are not the target of testing, but from which it is possible
to obtain, in real-time, the data streams needed to reproduce
a real experimental scenario.

A. HYBRID SIMULATION AS A SERVICE
The high-level objective of hybrid simulation is to repro-
duce, in-factory, a high percentage of tests usually executed
in-situ, in a much more efficient way. The VTSs targeted
in this work are typical large-scale critical systems, made
up of several systems geographically distributed in local
and remote centers, which should interact through a com-
munication infrastructure with other COTS systems (such
as external software entities and sensors sites). Therefore,
the simulation framework should be able to manage large-
scale simulations with several hundreds of entities, typical
of a mission-critical domain. To drastically reduce the setup
cost of testing, testers should be able to easily setup scenarios
without caring about details of the underlying infrastructure
and platform, e.g., hardware and software configurations,
communication networks, software licenses and upgrades,
scaling, SLA-compliant QoS assurance. Therefore, hybrid
and distributed simulation services, supported by novel

VOLUME 6, 2018 47275



M. Ficco et al.: Hybrid Simulation and Test of VTSs on the Cloud

technologies for resources virtualization and working envi-
ronment reproduction, represent the most promising option.
This can be realized by designing the simulation platform on
atop of a cloud computing infrastructure, namely, by imple-
menting the simulation environment as a service [19].

In the literature, Simulation-as-a-Service (SIMaaS) model
is conceived to provide access to simulation services on-
demand, running in a shared pool of computing resources,
at low cost and scale as needed [18]. By adapting this concept
to the cloud computing domain, simulation could be built on
Software as a Service (SaaS), Platform as a Service (PaaS),
and Infrastructure as a Service (IaaS). At SaaS layer, the sim-
ulation functionality is implemented as software and hosted in
the cloud. All the simulation services are provided according
to a service-oriented architecture approach. This approach
unifies the invocation of different simulation types and allows
combining different implementation models. In particular,
a simulation service can be either directly used through thin
clients (e.g., web browser), if testers require specific simula-
tion functionality, or by other simulation services (as a sub-
simulation) to implement complex simulation workflow [20].
PaaS abstract from the operating system level and provides a
dedicated middleware programming interface to develop and
run simulation applications on cloud without managing the
underlying hardware and software layers. The platform auto-
matically deploys the simulation components and starts new
instances to achieve scalability [21]. However, it restricts the
application types to those supported by the platform. At IaaS
layer, it does not restrict the type of applications deployable
on the IaaS, but it abstracts away only from the details of
the physical hardware. Virtual resources are provided to the
testers (e.g., the virtual machines of the system under test),
allowing fine-grained control of the software stack, such as
operating systems.

According to Preisler et al. [21], if the simulation is black-
box and not implemented with explicit cloud distribution
in mind (e.g., in the case of an already existing simulation
system), it might be more feasible to use the IaaS approach.
Instead, if the simulation is built from scratch or the simu-
lation model is a simple one, it is more feasible to use PaaS
to encapsulate the model within a simulation component that
is implemented by the PaaS Application Programming Inter-
face (API). Finally, if the simulation is offered as a service,
SaaS paradigm can be adopted, in which simulation software
is used as services through the cloud.

The test scenarios of a VTS – and of critical SoS in general
– are characterized by a large number of distributed and
heterogeneous components (from functional and operational
environment point of view), interacting with other COTS
systems by a complex network structure. Therefore, the use of
cloud-based simulation as a service allows exploiting config-
urability, elasticity and tenacity offered by cloud computing.
In the described context of hybrid simulation, it is necessary
to emulate the real operation environment – therefore, fine-
grained control of the software stack must be assured and a
IaaS approach is more flexible. As for COTS and external

components, such as radar, surveillance camera, and water
systems, it could be only needed to simulate some behavioral
patterns. Considering their complexity, the implementation
of simulators from scratch could be excessively complex and
time-consuming – thus, the platform has to offer facilities to
reuse already existing system components simulated by dedi-
cated environments, such asMatlab, Modelica, OMNET++,
etc.. Encapsulating their functionality, namely micro simula-
tion functionality, by a service simulation component would
enable their execution in a unified way on a scalable cloud
infrastructure [21]. However, in order to implement complex
simulation processes, where several simulations are executed
in parallel while exchanging data, the time model of dif-
ferent simulators must be synchronized. Therefore, specific
macro simulation functionalitymust also be provided, such as
communication and synchronization, to allow the interaction
among different simulators and interoperability between the
simulated and emulated environments. Although, the PaaS
approach restricts the types of applications to those supported
by the platform, it can be more suitable for realizing hybrid
simulation as a service. Therefore, the simulated compo-
nents can be new components built on top of the platform
API, or existing simulation tools to encapsulate as a black
box simulation within a component implemented by the API
of the PaaS; but in this case, the simulation does not profit
from the distribution, scalability and robustness properties of
the PaaS platform.

Essentially, the proposed solution consists in implementing
the simulation platform as a service (SIMPaaS), enabling at
PaaS level both the macroscopic simulation functionality (for
interlinked simulations) and the microscopic functionality
of simulated components, as well as allowing fine-grained
control of the software stack of emulated components at IaaS
level. This solution abstracts, by virtualization, the use and
management of physical resources and the synchronization
and communication mechanisms of each involved simulation
tools, which are very complex in the considered domain.

IV. SIMULATION PLATFORM REQUIREMENTS
In the following, the requirements of the simulation platform
for the VTS scenario are outlined.

In general, a VTS is organized in three hierarchical lev-
els, including local control centers, area centers, and head
quarters. Each local VTS can integrate a wide variety of
remote sensors (e.g., radar, electro optical sensor, automatic
identification system, and direction finder), as well as exter-
nal systems (e.g., long range identification systems (that
is, satellite), tracking, weather and communication systems.
In such complex scenario, hybrid simulation can support the
process of integration and testing of such system, allowing
to: (1) add and remove dynamically sensors; (2) simulate a
failure of a component; (3) simulate accidents; (4) simulate
communication degradation over a large scale wide area net-
work; (5) control the number, type, velocity, and trajectory
of the ships; (6) modify the number of hosts composing
the VTS; (7) generate predefined traffic flows. In particular,

47276 VOLUME 6, 2018



M. Ficco et al.: Hybrid Simulation and Test of VTSs on the Cloud

the traffic flows soliciting the system are not a variable that
can be controlled in real-world situations, so that, knowing
the behavior of the system when these variable parameters
change is a kind of a guess that conversely can be carefully
studied in simulated systems.

An example of test scenario is the ‘‘Degraded AntiSplitting
Tracking’’ test. The objective of this test is to check if the anti-
splitting trackerworks correctly: whenever an object exceed-
ing the expected size is detected by the radar, the system
should still identify it as one single big object rather than two
smaller objects (i.e., splitting the object). This is expected to
work even under degraded performance up to 50% of band-
width loss. Specifically, the test must replicate a critical situ-
ation where a radar has to manage the track fusion correctly.
One single big target can generate track splitting (because
of the size and/or because its slipstream), that can lead to
multiple tracks for the object. This scenario is emulated both
under nominal network conditions, in which case the WAN
uplink and downlink bandwidth is set at 3.5140 Mbps and
LAN links are set at 100Mbps, as well as in various degraded
bandwidth ranging from 3.1626 (i.e., −10%) to 0.3514Mbps
(i.e., −90%), wherein 100 distributed targets (also called
marine objects) are generated over 10 different trajectories.
The scenario uses the following entities: 1 radar, 1 Automatic
Identification System (AIS), Direction Finders (DFs), and
2 Electro-Optical Sensors (EOS). The oracles of the test are
three: 1) checking the number of tracks createdwith respect to
the actual number of marine objects to detect under nominal
network conditions; 2) checking the correct detection of pos-
sible degraded network performances; 3) check if the number
of tracks created is correctly determined, even under degraded
performance up to 50%. Other oracles could be considered by
composing single oracles. The nominal scenario (oracle 1)
is exemplified in Fig. 1, while the degraded performance
scenario (oracle 2) is in Fig. 2.

FIGURE 1. Nominal scenario.

A representative simulation setup to cope with the
described scenarios like the described one is reported
in Fig. 3, where the simulated VTS operation process is

FIGURE 2. Degraded performance scenario.

FIGURE 3. Logical view of the hybrid simulation of VTS.

obtained by the fusion of real time and simulated data, and is
placed on top of a platform that supports synchronization and
communication between the simulated and emulated parts for
a correct evolution of the scenario.

Considering a number of desirable test scenarios, along
with the mentioned considerations about the SIMPaaS
approach, we have elicited a set of final-users (testers) and
systems-level requirements outlined in the next paragraphs.

1) USER REQUIREMENTS
Simulation services must be accessible through Web inter-
face, where the tester is enabled to:
• configure both the test scenarios (at architectural level)
and the simulation process (dynamic behavior), to
realize specific simulation experiments;

• configure the network infrastructure to interconnect
distributed simulated and emulated components;

• configure virtual resources necessary to rum the
simulated and emulated components;

• deploy and un-deploy a predefined simulation scenario;
• monitor the current state of the simulated scenarios.

2) SYSTEM REQUIREMENTS
User-level simulation services must be supported by system
functionality. Specifically, at functional level, the simulation
platform has to reproduce the test scenarios, by configuring,
distributing, and deploying simulation tasks, implementing
the interactions and synchronization among the involved

VOLUME 6, 2018 47277



M. Ficco et al.: Hybrid Simulation and Test of VTSs on the Cloud

FIGURE 4. Logical view of proposed framework.

tasks, and setting up the network to interconnect simulated
and emulated components; in particular:
• The complex nature of SoS forces the tester to include
real/emulated entities and communication infrastructure
together with simulated entities. This requires mecha-
nisms to assure the correct integration of different inter-
linked simulation and emulation environments.

• The platform shall care about the data distribution
between all the entities involved in the simulation, which
include local and remote entities, simulated and emu-
lated components, virtualized and real resources.

• The hybrid nature also entails complexities in the time
management, since the simulated time of the different
involved simulation tools, the physical (real) time, and
the clock time should be managed. This implies the
overall simulation time to be synchronizedwith real time
of (emulated) components.

• The peculiarity of considered systems, is the strong
heterogeneity among the multiple involved simulation
tools. This suggests exploiting the standards for dis-
tributed simulation, in order to ease interoperability of
different simulation/emulation environments, as well as
the portability and extensibility of the framework.

• Performance and scalability are crucial. The platform
should manage several independent long running sim-
ulation scenarios, which should be executed in par-
allel, in order to reduce testing time and cost. Thus,
it should optimize allocation of simulation tasks, in order
to reduce the resource utilization and satisfy speci-
fied confidence intervals for the results, according to
tester-specified objectives.

• For the reasons explained in the previous sub-sections,
the simulation should be set as a service, making most
of the complexity associated with SoS transparent to the
tester. This implies that the simulation platform should

manage all what concerns resource virtualization
(i.e., hardware and software configurations, communi-
cation networks, resources scheduling, scaling, etc.),
orchestrating the deployment of emulated and simulated
components on the virtual environment.

• Finally, while the platform can be deployed in prin-
ciple on public or private cloud, when test scenarios
involve critical systems and sensitive data, or due to
industrial strategic reasons, simulations often demand to
be performed on private clouds for security and privacy
concerns.

V. HYBRID SIMULATION SERVICES
The simulation services are schematized according to four
levels shown in Fig. 4: user level, functional level, simulation
engine, and IaaS.

A. USER-LEVEL SERVICES
The presented framework exposes its services by means
of Web-based graphical user interfaces (GUIs) and Appli-
cation Programming Interfaces (APIs). In particular, spe-
cific GUIs are provided to testers in order to represent
and configure test scenario, like the one presented above,
by composing simulated and emulated components, and
drowning their interconnections at the architecture level. The
description of available components is stored in a repository.
The framework will automatically represent the described
scenario by an XML-based simulation descriptors. From
logical point of view, the simulation descriptor represents
the set of micro functionality involved in the simulation
scenario (including individual simulation services provided
by simulated/emulated components), as well as their inter-
relation (i.e., the structure of exchanged data) and network
interconnection. In general, a scenario’s descriptor includes

47278 VOLUME 6, 2018



M. Ficco et al.: Hybrid Simulation and Test of VTSs on the Cloud

TABLE 1. Scenario elements and attributes.

the following conceptual elements, represented in Tab. 1 and
described in the following:
• Entities, describing the objects involved in the scenario,
which are distinguished in simulated entities, emulated
entities, real entities, plugins (useful as adapters to
connect simulated entities to the system under test,
e.g., by translating different communication formats),
through an attribute called mode. These are in turn
characterized by a descriptive type such as: Radar,
Automatic Identification System (AIS), Marine Objects,
Electro-Optical Sensor (EOS), Network, and System
Under Test (SUT), as well as by parameters, such as
bandwidth, tracking mode, splitting probability, config-
uration parameters of AIS/EOS/Radar/. . ., etc., largely
depending on the entity type and mode.

• Operations sequence, describing the sequence of oper-
ations between entities (specifying a staring and end
entity) easily representable by an UML sequence
diagram.

• Oracles, describing the expected result of a test, char-
acterized by a type (i.e., automatic, manual check),
a description, the entity to be checked against,
the expected output parameter(s) and the expected out-
put value(s) for such parameters. Complex oracles can
be built by combining simple oracles.

Fig. 5 shows an example screenshot of the GUI used to
deploy and monitoring a test scenario. Moreover, on the
base of the specific simulation domain (e.g., VTS), specific
interfaces are implemented to monitor the simulation process
(for example the movement of ships in the port), as well as
support the system diagnosis and log analysis.

Three sets of APIs are provided for interfacing the platform
with the external environment:

FIGURE 5. User interface of the Scenario Launcher.

• Runtime Execution Interface (REI) - to configure the
involved simulation components and control at run time
the simulation process execution.

• Runtime Storage Interface (RSI) - to store and manage
the necessary information for orchestrating simulation,
including simulated/emulated component images, con-
figuration scenarios (simulation descriptors), simulation
recording/log data, etc.

• Runtime Infrastructure Interface (RII) - to achieve, con-
figure, and monitor cloud resources, according to the
individual simulation process and architectural config-
uration, as well as deploy the simulation and emulation
entities on the experimental infrastructure.

VOLUME 6, 2018 47279



M. Ficco et al.: Hybrid Simulation and Test of VTSs on the Cloud

Moreover, a set of API is provided to the developer to cus-
tomize the framework with respects to a specific application
domain. In particular, the framework supports standard API
to integrate and make interoperable existing or new simula-
tion/emulation components in the simulation scenarios.

B. FUNCTIONAL-LEVEL SERVICES
The simulation platform uses simulation descriptors
produced at user-level to deploy and execute the hybrid
simulation process, which is implemented by orchestrat-
ing a combination of micro functionality offered by the
involved simulated/emulated components, and macro func-
tionality (Simulation Engine Services) exploited to imple-
ment interaction and synchronization features among them.
In particular, at functional level, the following services are
provided by the simulation platform:
• Configuration and execution Service (CS), which
interacts with the lower-level modules to configure the
simulation environment and instantiate simulation sce-
narios, providing: (i) the list of the simulation com-
ponents and their configuration to the Simulation
Service Manager (SSM); (ii) the types of data to
exchange among simulated/emulated components to
Data Distribution Manager Service (DDM); (iii) the
setting-up of the network emulation scenario to the Net-
work Emulation Manager (NEM), in order to intercon-
nect the emulated elements with the simulated parts;
and (iv) the architectural description of the test scenario
to the Virtual Environment Manager (VEM), in order
to implement it in the virtualized environment in a
cost-effective way.

• Monitoring Service (MS), in which themonitoring infor-
mation received back from lower modules are prompted
to the tester via the GUI, in order to enable a full control
of the simulation process and the state of components
and the virtual environment.

• Supporting Service, offering repositories and services
to ease the reuse of configuration scenarios, simula-
tion/emulation components, and recording/log data.

• Policy Service (PS) provides services to set QoS profiles.
Specifically, the user is ebabled to define policies to
manage the life-cycle of components involved in the
simulation. It interacts with DDM by providing the user-
defined QoS profiles for data exchange among compo-
nents, andwith the VEM,whichmaps the access profiles
into virtual resources access policies.

C. SIMULATION ENGINE SERVICES
This layer implements the hybrid simulation platform by
means of the following modules, whose implementation is
described in the next section.
• SSM – It implements the hybrid simulation process and
manages the system behavior in terms of interactions
among the components involved in the simulation.

• DDM – It is in charge of managing the constant
exchange of information among components, providing
services for data distribution.

• TEM (Time/Event Manager) – In order to simulate dis-
tributed and concurrent environments, it is necessary
that each involved component perceives the progress of
time in a uniform manner, regardless of their world of
origin (real, emulated, simulated). TEM is responsible
for the correct advancement of time, by managing the
alignment of real and emulated components’ time with
the simulation time.

• NEM – Given the very complex nature of the consid-
ered network-centric systems, we adopt a distributed
network emulation solution to reproduce reality with a
high degree of verisimilitude. NEM implements services
to create, manage and emulate complex LAN/WAN
network scenarios.

• VEM – This component enables the dynamic deploy-
ment, management and monitoring of virtual resources,
which are necessary for the implementation and orches-
tration of the local testbed. It instantiates virtual
resources based on information it receives from the CS.
Moreover, it is able to: (i) manage the life-cycle of virtual
machines; (ii) support resource on-demand and scalabil-
ity to manage multiple parallel simulation experiments;
(iii) manage the life-cycle of the network resources and
of the virtual storage.

• TOM (Tuning and Optimization Manager) – It imple-
ment a spatial partition algorithms for optimal schedul-
ing and parallel execution of the simulation/emulation
tasks on the virtual resources, in order to perform mul-
tiple and concurrent simulation experiments, specially
when the simulation scale becomes extremely large and
the resources are limited (e.g., in the case of a private
cloud shared by several users and different services).

D. IaaS CLOUD SERVICES
The infrastructure layer provides the executing environment
for simulation engine components and test scenarios, as well
as allows fine-grained control of software stack of emulated
components.

VI. SIMULATION PLATFORM AS A SERVICE
By exploiting standard for distributed simulation, virtual-
ization and cloud paradigm, the proposed simulation plat-
form can on-demand and elastically enable the execution
of different simulation/emulated components of the VTS,
and perform simulation in parallel of multiple complex and
distributed test scenarios.

Specifically, in order to implement distributed simulation
environment, and support simulation interoperability and
synchronization, theHigh Level Architecture (HLA) has been
adopted. It is an IEEE standard developed by the Department
of Defense in the United States, which enables the reuse
and interoperability of multiple independent, heterogeneous
and distributed existing simulation environments, each with
its own features, operating systems, and languages within
a more complex federated simulation solution. By using
the component-based technology, different simulation

47280 VOLUME 6, 2018



M. Ficco et al.: Hybrid Simulation and Test of VTSs on the Cloud

environments can interact through standard interfaces and
operate together in a federated HLA architecture composed
by several interactive members, called federate. The interface
specification of the HLA describes how to communicate
within the federation, and is implemented by the Run Time
Infrastructure (RTI). In order to make possible the interaction
between federates and the RTI, there is the concept of ambas-
sador, which is an interface that each federatemust implement
to inter-operate through the RTI middleware.

As a framework for advanced distributed interactive sim-
ulation, HLA-RTI is exploited to implement three of sim-
ulation engine services, including SSM, TEM and DDM.
Specifically, as for SSM, HLA provides mechanisms for
managing the federation members, as well as for specifying
the interaction among the federates. Each federation member
is represented by an HLA simulation object model (SOM),
which specifies the types of information that a federate can
provide to the federations, as well as information that it can
receive from the other. The interactions among the feder-
ates are described by the federation object model (FOM),
that represents the language of the federation. To correctly
exchange simulation data among federates, which evolve
along a different temporal model (emulated and simulated),
the TEM can exploit synchronization functionality offered
by RTI to coordinate how the simulators advance in their
logical and emulation scenarios. According to the test sce-
nario presented in Sec. IV, the simulated parts consist in
100 marine objects (i.e., ships, floating booms, etc.) and
sensors (i.e., 1 radar, 1 AIS, and 2 EOS) used to monitor
marine objects (i.e., their identification, trajectories, velocity,
position, shape, etc.). The sensors will send the collected
information to the SUT through the emulated network. Each
a sensor will represent an HLA federate. Therefore, to share
the time reference among components, specific HLA ambas-
sadors must be implemented for each simulator integrated in
the federation, which waits for events received by sensor and
interacts with the others through the TEM to manage the time
progress. The progress of time among distributed simulated
parts is based on HLA-RTI event driven strategy [25], while
the emulation parts use the system time. Specifically, during
their operation, the sensors will simulate the collection of
information related to the implemented scenario, and send it
to the TEM. The messages received by TEM will be placed
in a queue when they arrive, and are immediately eligible for
delivery to the SUT by the emulated network. The ordering
of these messages is arbitrary. To enable synchronization,
an event driven federate will invoke the TEM, by aNext Event
Request (NER) RTI procedure, when it has completed all
simulation activity at the current logical time and is ready to
advance to a new time. The parameter T specified in the NER
indicates the logical time to which the federate would like to
advance, if there are no other events from other federates con-
taining a smaller time stamp. Typically, T is the time stamp of
the next event in the federate’s local set of pending events. If
there are no messages with time stamp less than or equal to T ,
and none will be received in the future, the TEM invokes the

federates (by Time Advance Grant RTI procedure) indicating
its logical time has been advanced to T. Before invoking this
service, the TEMwill send to the SUT all federates’ messages
in its internal queue. Otherwise, the TEMwill deliver the next
smallest message destined for the federate (with time stamp
T ′ where T ′ < T ), and all other messages with time stamp T ′.
In this case, the federate’s logical time is advanced to T ′.

As regards the synchronization between the simulation and
the emulation environment, under the real-time execution
mode, the simulation parts follow a time-stepped discrete
time model, while the network emulation uses the system
time. Therefore, according to [24], assuming that the system
clocks of the network emulation host and the simulation hosts
are synchronized at startup time (for example, by using the
network time protocol), and in the absence of delay due to
communication and computation issues between the simula-
tion and the emulation environment, such time synchroniza-
tion will not violate local causality constraint. When delay
exists, it will cause the time stamp discrepancy of the same
message at the two environments. In the presence of delay,
the simulation time should lead or equal to emulation, so that
the message from simulation parts will not arrive at emulation
in its past time. During our experiments, we observed that the
delay varies across different experiments, with the maximum
value of 35ms and average around 7ms. On the other hand,
VTS can be considered as a near real-time system. In a real
system, the communication delay due to the WAN network
can be very significant. A radar track can be considered
obsoleted only it arrive with 9s of delay. Therefore, the delay
between the two environments can be considered negligible
and assimilated to a network delay.

Moreover, data exchange within the federation is
implemented through the DDM, by exploiting the pub-
lish/subscribe paradigm provided by the RTI. Finally, in order
to support Cloud-based distributed simulation, a Cloud-RTI
middleware has been adopted, in which traditional RTI is
provided by the use of Web services [26].

The NEM enhances the overall HLA-based architecture
with network services needed for the interconnection of dis-
tributed simulated parts and emulated components through
the emulated network over the same shared infrastructure.
It interacts with the CS, from which receives the XML
description of the network scenario to emulate. It can include:
(i) the configuration of the elements to be connected; (ii) the
type of network to emulate; (iii) the routing protocol; (iv) the
network characteristics in terms of bandwidth, delay, jitter
and packet loss of connections, etc. In the presented imple-
mentation the Common Open Research Emulator (CORE)
has been adopted [27].

As previously described, the simulated components are
objects present in the test scenario, and used to simu-
late the experimental workload (e.g., radars, objects in
motion) or perturbation in the system operation. Each test
could require several tens or hundreds of such objects to
reproduce a real experimental scenario. Moreover, they could
be dynamically added or removed during the the simulation,

VOLUME 6, 2018 47281



M. Ficco et al.: Hybrid Simulation and Test of VTSs on the Cloud

for example, in order to simulate a failure of a remote sensor.
In general, they are either software components developed
from scratch or exiting simulation tools. Therefore, in order
to reduce both the number of virtual nodes to be scheduled
(i.e., the required computational resources, which could be
limited in a private cloud), and the VTS’s initialization
time (boot up time) needed for the setup of the whole test
scenario, we adopted two different virtualization approaches
to host simulated and emulated components. Specifically,
we adopt lightweight Linux containers for the simulation
parts, and KVM-based full virtualization for the emulated
components that must be ‘physically’ tested. A ‘container’
is a packaged self-contained, ready-to-deploy set of parts
of an application. It is represented by a lightweight virtual
image that can include both the middleware and business
logic (binaries and libraries) to run application. Instead, a vir-
tual machine (VM) is a full monolithic image, which requires
guest OS images in addition to the binaries and libraries nec-
essary for the applications [22]. The life cycle of containers
andVMs ismanaged by theVEM,which provides PaaS cloud
services for their packaging and deployment. VEM acts as a
container manager, which enables a registry for the images
of the simulated components to be deployed on the virtual
nodes. It keeps track of the images executed on each node,
and identifies the virtual nodes on which deploys the images,
downloaded from the registry, needed for instantiating the test
scenario. As Linux container, we used the Docker container
virtualization technology [28]. As open-source cloud PaaS,
we adopted OpenShift [29] for supporting containers, and
Kubernetes [30] to orchestrate Docker containers on clus-
ter nodes. As open-source cloud IaaS, we adopted Open-
Stack [33]. Moreover, an IaaS management layer has been
exploited in order to access and control the virtual infras-
tructure, for supporting on-demand resources provisioning,
running simulations on the cloud efficiently, and improv-
ing load balancing capability of the simulation. Specifically,
VEM exploits Chef technology in order to simplify the
configuration and deployment of the OpenShift nodes and
emulated components (emulated networks and systems under
test) on cloud resources [31]. In particular, software com-
ponents that must be installed on virtual nodes are seen as
‘‘resources’’. ‘‘Recipes’’ specify the resources to use and
the order in which they are to be applied. A ‘‘cookbook’’
defines a scenario. It contains everything that is required to
support that scenario, including recipes, attribute values, file
distributions, templates, etc. Chef cookbooks are stored in
the Chef server (central repository), which is a component of
the VEM installed on a cloud node and invoked as a remote
service. The Chef Workstation loads the Chef cookbooks
onto the Chef Server, and manages operations, such as the
installation and execution of the agents (Chef clients) on the
target nodes. Finally, the communication between the Chef
workstation and the Chef server is performed by the Knife
interface, which offers to the testers management functional-
ity for nodes, recipes and cookbooks, roles.

Finally, a resource management algorithm has been pro-
posed in our previous work, which optimizes allocation
of the simulation tasks (i.e., OpenShift nodes) and emu-
lated components on virtual nodes, reducing the cost to
the service provider (the cloud resource consumption in a
private cloud), and enhances the parallelization of the sim-
ulation jobs, by fanning out more federated instances (test
scenarios) [34]. The computed allocation of the test scenario
is translated in a Chef cookbooks and automatically deployed
by VEM.

VII. TEST SCENARIOS
The developed platform is used to implement several test sce-
narios of the VTS of the DISPLAY project’s industrial part-
ner. In the following, we describe the implemented testbed
and the test scenarios that can be currently run in the hybrid
simulation mode without the burden (or infeasibility, in vari-
ous cases) of a real implementation.

A. TESTBED
Figure 6 schematizes the implemented testbed.

It is based on a DELL M820 blade cluster with 32 nodes,
each with two quad-core processors, a 72GB HDD and either
8/16/32 GB RAM. Each node is equipped with the CentOS
6.6 x86_64 distribution – kernel 2.6.32-504.8.1.el6x86_64,
OpenSwitch (OVS) 2.3.1 linked as kernel module, and Open-
stack Icehouse series. Each node is equipped with 4 network
interface cards (NIC) at 1Gbps. One NIC is used by the
DELL management suite; two NICs are used for the data
exchange among virtualized nodes; the fourth NIC is used
by OpenNebula for node and VMs monitoring.

The logical components running on the testbed are:

• The System Under Test (SUT), namely the VTS, whose
behaviour is observed under the given test scenario;

• The simulation platform (SIM), responsible for simu-
lating data coming from many types of sensors, such
as Radars, AISs, EOSs, DFs, Weather station and
others;

• The plugin component (PLG), which is an adapter to
convert data format from/to SIM to/from the SUT;
implemented as a HLA federate; moreover, a Bridge that
do not interact with the SIM, relays data captured from
the operational site toward the SUT;

• The network component (NET), providing the network
infrastructure, that is interfaced with external systems
by the routers emulated bu CORE; moreover, a DMZ is
used to decouple and protect the interface from the OS
and from the DB, for security reasons.

The high-level objective of the testbed is to provide the
ability to setup realistic scenarios with a desired and con-
figurable (at runtime) number of marine objects (e.g., ships,
buoys, wrecks) along with simulated data coming from all
kinds of sensors (e.g., radars, AISs, EOSs, DFs) from a given
geographical site, provided as input to the VTS under test.

47282 VOLUME 6, 2018



M. Ficco et al.: Hybrid Simulation and Test of VTSs on the Cloud

FIGURE 6. Testbed.

B. TEST SCENARIOS
By using the platform, we implemented all the operational
scenarios reported in Tables 2–5. They are grouped into the
following four types:
• Maritime traffic control operation (MTC) - Scenarios
in this category test the correct functioning of the VTS
instance (emulated on the developed platform) with
respect to maritime traffic control operations (i.e., they
mimic real operational scenarios, according to a given
functional test plan drawn from requirements).

• Network operation (N) - These scenarios aim at recreat-
ing WAN contexts, to test the correct functioning of the
VTS with respect to varying network conditions.

• Fault tolerance (FT) - These scenarios are reproduced
to test conditions where faults (at component and/or
network level) can occur, so as to check to detection and
recovery ability of the VTS.

• Multiple scenarios (M) - Tests in this category aim
at checking the behaviour of the VTS when multiple
instances are present in one center and/or when it oper-
ates in multiple control centers at the same time.

The scenarios listed in Table 2–5 act as test frames, namely
as a suitable combination of classes of parameters’ values
fromwhichmany concrete test cases can be drawn (by instan-
tiating specific values from within the classes range). Each
scenario is characterized by: an ID denoting the group it
belongs to (among the four ones mentioned above); the high-
level objective of the scenario; the entities involved (simu-
lated, emulated or real entities, depending on the scenario);
the relevant parameters along with the ranges of input that
can be provided.1 From these frames, testers easily obtain test

1Ranges’ boundary values are determined by the tester, who usually
observes typical runtime conditions to set them, and/or refers to extreme
conditions, depending on the objective of the test.

case by specifying values for the entities and for the relevant
parameters,

As a matter of fact, the new platform practically enabled a
pre-release system testing activity (both functional and non-
functional) that was previously prohibitive: without the plat-
form, many of those scenarios were unfeasible (or extremely
expensive), and thus, single pieces tested in isolation, because
of many real systems involved in geographically distributed
sites and not synchronously available for testing. The plat-
form enables the possibility of running tests continuously,
as the platform is system-independent. Also, it allows a
drastic reduction of orders of magnitude (from days to few
hours or minutes) to setup and run a single test case with
respect to a (feasible) real test. The 19 scenarios we imple-
mented are expected to increase with the increase of the
platform usage by the industrial partner’s engineers. This will
expectedly bring to considerable saving of testing time/cost
and many more scenarios that can be actually proved.

VIII. RELATED WORK
Simulation Software-as-a-Service (SIMSaaS) is a relatively
new paradigm that has achieved significant attention on in the
Cloud Computing community, which enables the execution
of simulation application environments that can be deployed
on-demand and offered as-a-service [35]. Several specific
application domains use SIMSaaS, such as traffic and trans-
portation [36], scheduling parallel discrete event simulation
jobs [37], and manufacturing [38]. Tsai et al. [19] proposed
a generic SIMSaaS framework incorporating multi-tenancy
architecture and scalability for simulation, also presenting
a simulation runtime infrastructure. The Fortissimo project
provides one-stop, pay-per-use, on-demand access to sim-
ulation cloud resources, including software, hardware and
expertise [41]. In particular, it focuses on modeling and sim-
ulation of coupled physical processes and high-performance

VOLUME 6, 2018 47283



M. Ficco et al.: Hybrid Simulation and Test of VTSs on the Cloud

TABLE 2. Maritime traffic control test scenarios. Legend: AIS = Automatic Identification System; EOS = Electro-Optical Sensor; DF = Direction Finder;
MO = Marine Objects; NM = Nautical Mile; SAR = Synthetic Aperture radar.

TABLE 3. Network test scenarios. Legend: AIS = Automatic Identification System; EOS = Electro-Optical Sensor; MO = Marine Objects.

data analytic by exploiting HPC facilities. However, there is
a lack of automation and integration of tools in modeling and
simulation of distributed systems.

In this direction, Distributed Interactive Simulation (DIS)
and HLA represent two standards for distributed simulation.
DDS is managed by the Object Management Group, and

47284 VOLUME 6, 2018



M. Ficco et al.: Hybrid Simulation and Test of VTSs on the Cloud

TABLE 4. Fault tolerance test scenarios. Legend: AIS = Automatic Identification System; EOS = Electro-Optical Sensor; MO = Marine Objects;
SAR = Synthetic Aperture radar.

TABLE 5. Multiple test scenarios. Legend: AIS = Automatic Identification System; EOS = Electro-Optical Sensor; DF = Direction Finder; MO = Marine
Objects; NM = Nautical Mile; SAR = Synthetic Aperture radar.

used as amessagingmiddleware standard for supporting data-
centric simulations, enabling seamless, timely, scalable, and
dependable distributed data sharing [39]. However, it focuses
exclusively on information exchange to support the federa-
tion of solutions without providing the necessary introspec-
tion [40]. Its successor HLA is a bit more flexible, as the
information to be exchanged is not standardized (it only
says how to structure the data). HLA is essentially used to
facilitate the reuse and interoperability of different simulation
systems and assets. On the other hand, HLA does not well
suit the considered large-scale, fine-granularity and long-time
distributed simulation scenarios, for its inefficient utilization
of simulation resources, lack of load balancing capability,
weak fault tolerance capability, and complicated simulation
deployment process [26]. RTI services are centralized, which
can be a bottleneck of the interaction between large-number
of hosted simulation entities. Therefore, the new concept

that includes service orientation and provision of simulation
applications via the PaaS model of Cloud Computing would
allow overcoming the discussed limits.

One of the first cloud-based HLA approach is introduced
in [42]. It presents a possible solution for integrating HLA
with a Service Oriented Architecture (SOA) in the context
of a smart building project. The simulation manager mod-
ule is a service wrapper on top of the RTI, which exposes
access to the RTI federation services via a RESTful API.
RESTful-based RTI have been used in the present work to
make interoperable the simulated VTS components hosting
on distributed cloud virtual nodes.

HLAcloud [43] presents a model driven and cloud-based
framework to support both the implementation of distributed
HLA-based simulation systems from a SysML (Systems
Modeling Language) specification of the system under study,
and its execution over a cloud infrastructure. It generates

VOLUME 6, 2018 47285



M. Ficco et al.: Hybrid Simulation and Test of VTSs on the Cloud

the Java/HLA source code of the federates and the scripts
required to deploy and execute the HLA federation onto the
PlanetLab cloud-based infrastructure. Similarly to such con-
tribution, this work aims to propose a framework to provide
distributed simulation on Cloud infrastructure. Nevertheless,
in this work a simulation PaaS has been implemented to
make interoperable simulated and emulated distributed com-
ponents of a VTS, as well as automatically configure deploy
lightweight Linux containers for the simulation parts and
KVM-based virtual nodes for the emulated components on
open-source cloud IaaS, such as OpenStack.

IX. CONCLUSIONS AND FUTURE WORK
Hybrid and distributed simulation, supported by novel tech-
nologies for resources virtualization and working environ-
ment reproduction, represents the most promising way to
define the strategies needed to actually support SoS testing in
factory as it would be on-site. Designing an architecture for
scalable, distributed and parallel simulation, with automated
resource management and execution on the cloud, can satisfy
the requirements of large-scale simulations effectively.

The proposed solution provides testers with a distributed
simulation platform able to support the implementation of
in factory local testbeds for reproducing complex in situ test
scenarios. The framework is able to integrate heterogenous
emulated and simulated environments by relying on synchro-
nization, communication and virtualization services and is
itself offered ‘‘as a service’’ to testers, who can define arbi-
trarily complex scenarios without caring about the underlying
integration and communication complexity. The framework
is currently adopted by VTS engineers for building large-
scale, realistic and effective test scenarios with remarkable
gains in terms of tests set up and execution cost.

REFERENCES
[1] J. Guckenheimer and J. M. Ottino, ‘‘Foundations for complex systems

research in the physical sciences and engineering,’’ Nat. Sci. Found.,
Tech. Rep., 2008. [Online]. Available: http://pi.math.cornell.edu/~gucken/
PDF/nsf_complex_systems.pdf

[2] P. Pederson, D. Dudenhoeffer, S. Hartley, and M. Permann, ‘‘Critical
infrastructure interdependencymodeling: A survey of US and international
research,’’ Idaho Nat. Lab., Idaho Falls, ID, USA, Tech. Rep. INL/EXT-06-
11464, 2006.

[3] M. Ouyang, ‘‘Review on modeling and simulation of interdependent crit-
ical infrastructure systems,’’ Rel. Eng. Syst. Saf., vol. 121, pp. 43–60,
Jan. 2014.

[4] DISPLAY—Distributed Hybrid Simulation Platform for ATM and VTS Sys-
tems. Accessed: Aug. 2018. [Online]. Available: http://www.dieti.unina.
it/index.php?option=com_content&view=article&id=255:display&catid=
75&Itemid=341&lang=it

[5] A. Souid, A. Delaplace, F. Ragueneau, and R. Desmorat, ‘‘Pseudodynamic
testing and nonlinear substructuring of damaging structures under earth-
quake loading,’’ Eng. Struct., vol. 31, no. 5, pp. 1102–1110, 2009.

[6] D. De Laurentis, ‘‘Role of humans in complexity of a system-of-systems,’’
in Digital Human Modeling (Lecture Notes in Computer Science),
vol. 4561. Berlin, Germany: Springer, 2007, pp. 363–371.

[7] IEEE-Reliability Society. (2014). Technical Committee on ‘Systems
of Systems’-WHITE PAPER. [Online]. Available: http://rs.ieee.org/
component/content/article/9/77-system-of-systems.html

[8] T. Aven, ‘‘Interpretations of alternative uncertainty representations in a
reliability and risk analysis context,’’ Rel. Eng. Syst. Saf., vol. 96, no. 3,
pp. 353–360, 2011.

[9] E. Zio, Computational Methods for Reliability and Risk Analysis.
Singapore: World Scientific, 2009.

[10] L. Dueñas-Osorio, I. C. James, J. G. Barry, and B. Ann, ‘‘Interdependent
response of networked systems,’’ J. Infrastruct. Syst., vol. 13, no. 3,
pp. 185–194, 2007.

[11] J. Johansson and H. Hassel, ‘‘An approach for modeling interdependent
infrastructures in the context of vulnerability analysis,’’Rel. Eng. Syst. Saf.,
vol. 95, no. 12, pp. 1335–1344, 2010.

[12] Mosaik—A Flexible Smart Grid Co-Simulation Framework.
Accessed: Aug. 2018. [Online]. Available: https://mosaik.offis.de/

[13] RinSim—A Simulator for Logistics Problems. Accessed: Aug. 2018.
[Online]. Available: https://github.com/rinde/RinSim

[14] COSSIM—A Novel, Comprehensible, Ultra-Fast, Security-Aware CPS
Simulator. Accessed: Aug. 2018. [Online]. Available: http://www.
cossim.org

[15] MARIN—Vessel Traffic Service (VTS) Simulator. Accessed: Aug. 2018.
[Online]. Available: http://www.marin.nl/web/Facilities-Tools/Simulators/
Simulator-Facilities/VTS-Simulators.htm

[16] K-Sim VTS—Vessel Traffic Services Simulator. Accessed: Aug. 2018.
[Online]. Available: https://kongsberg.com/en/kongsberg-digital/maritime
%20simulation/vessel%20traffic%20services%20simulator/

[17] L. Braubach and A. Pokahr, ‘‘The Jadex project: Simulation,’’ in Multia-
gent Systems and Applications, vol. 45. Berlin, Germany: Springer, 2013,
pp. 107–128.

[18] S. Shekhar, H. Abdel-Aziz, M. Walker, F. Caglar, A. Gokhale, and
X. Koutsoukos, ‘‘A simulation as a service cloud middleware,’’ Ann.
Telecommun., vol. 71, no. 3, pp. 93–108, 2016.

[19] W.-T. Tsai, W. Li, H. Sarjoughian, and Q. Shao, ‘‘SimSaaS: Simulation
software-as-a-service,’’ in Proc. 44th Annu. Simulation Symp. (ANSS),
2011, pp. 77–86.

[20] S. Guo, F. Bai, and X. Hu, ‘‘Simulation software as a service and service-
oriented simulation experiment,’’ in Proc. IEEE Int. Conf. Inf. Reuse
Integr., Aug. 2011, pp. 113–116.

[21] T. Preisler, T. Dethlefs, and W. Renz, ‘‘Simulation as a service: A design
approach for large-scale energy network simulations,’’ in Proc. Federated
Conf. Comput. Sci. Inf. Syst., vol. 5, Sep. 2015, pp. 1765–1772.

[22] C. Pahl, ‘‘Containerization and the PaaS cloud,’’ IEEE Cloud Comput.,
vol. 2, no. 3, pp. 24–31, May/Jun. 2015.

[23] M. Ficco, G. Avolio, F. Palmieri, and A. Castiglione, ‘‘An HLA-based
framework for simulation of large-scale critical systems,’’ Concurrency
Comput., Pract. Exper., vol. 28, no. 2, pp. 400–419, 2016.

[24] J. Sztipanovits, ‘‘A model-based integration of network emulation with
HLA-based heterogeneous simulation environments,’’ Inst. Softw. Integr.
Syst., Nashville, TN, USA, Tech. Rep. (ISIS)-10-107, 2010.

[25] R. M. Fujimoto, ‘‘Time management in the high level architecture,’’ Sim-
ulation, vol. 71, no. 6, pp. 388–400, 1998.

[26] H. Heng, R. Li, X. Dong, Z. Zhang, and H. Han, ‘‘An efficient and secure
cloud-based distributed simulation system,’’ J. Appl. Math. Inf. Sci., vol. 6,
no. 3, pp. 729–736, 2012.

[27] J. Ahrenholz, ‘‘Comparison of CORE network emulation platforms,’’ in
Proc. IEEE Mil. Commun. Conf. (MILCOM), Oct. 2010, pp. 864–869.

[28] D. Merkel, ‘‘Docker: lightweight Linux containers for consistent develop-
ment and deployment,’’ Linux J., vol. 2014, no. 239, Mar. 2014, Art. no. 2.
Accessed: Aug. 2018. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2600239.2600241

[29] OPENSHIFT—Red Hat Openshift. Accessed: Aug. 2018. [Online]. Avail-
able: https://www.openshift.com/

[30] Kubernetes is an Open-Source System for Automating Deployment,
Scaling, and Management of Containerized Applications.
Accessed: Aug. 2018. [Online]. Available: http://kubernetes.io/

[31] CHEF—Cloud Management. Accessed: Aug. 2018. [Online]. Available:
https://www.chef.io/solutions/cloud-management/

[32] Using Chef to Customize Multi-Node Cloud Foundry Deployments.
Accessed: Aug. 2018. [Online]. Available: https://blog.pivotal.io/pivotal-
cloud-foundry/products/using-chef-to-customize-multi-node-cloud-
foundry-deployments

[33] OpenStack—Open Source Software for Creating Private and Public
Clouds. Accessed: Aug. 2018. [Online]. Available: https://www.
openstack.org/

[34] M. Ficco, B. Di Martino, R. Pietrantuono, and S. Russo, ‘‘Optimized task
allocation on private cloud for hybrid simulation of large-scale critical
systems,’’ Future Gener. Comput. Syst., vol. 74, pp. 104–118, Sep. 2017.

47286 VOLUME 6, 2018



M. Ficco et al.: Hybrid Simulation and Test of VTSs on the Cloud

[35] T. Azevedo, J. F. Rosaldo Rossetti, and G. Jorge Barbosa, ‘‘A state-of-the-
art integrated transportation simulation platform,’’ in Proc. 4th Int. Conf.
Models Technol. Intell. Transp. Syst., Jun. 2015, pp. 340–347.

[36] J. Harri, M. Killat, T. Tielert, J. Mittag, and H. B. Hartenstein, ‘‘DEMO:
Simulation-as-a-service for its applications,’’ in Proc. 71st IEEE Veh.
Technol. Conf. (VTC), May 2010, pp. 1–2.

[37] X. Liu, X. Qiu, B. Chen, Q. He, and K. Huang, ‘‘Scheduling parallel dis-
crete event simulation jobs in the cloud,’’ in Proc. IET Conf. Publications,
2012, p. 72.

[38] S. J. E. Taylor, T. Kiss, G. Terstyanszky, P. Kacsuk, and N. Fantini, ‘‘Cloud
computing for simulation in manufacturing and engineering: Introducing
the CloudSME simulation platform,’’ in Proc. Annu. Simulation Symp.,
2014, pp. 89–96.

[39] IEEE Standard for Distributed Interactive Simulation—Application Proto-
cols, IEEE Standard 1278.1, 2012.

[40] A. Tolk and S. Y. Diallo, ‘‘Using a formal approach to simulation inter-
operability to specify languages for ambassador agents,’’ in Proc. Winter
Simulation Conf. (WSC), 2010, pp. 359–370.

[41] The Fortissimo Project. Accessed: Aug. 2018. [Online]. Available:
https://www.fortissimo-project.eu

[42] M. Dragoicea, L. Bucur,W.-T. Tsai, andH. Sarjoughian, ‘‘Integrating HLA
and service-oriented architecture in a simulation framework,’’ inProc. 12th
IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (CCgrid), May 2012,
pp. 861–866.

[43] P. Bocciarelli, A. D’Ambrogio, A. Giglio, and D. Gianni, ‘‘A SAAS-
based automated framework to build and execute distributed simulations
from SysML models,’’ in Proc. Winter Simulation Conf., Dec. 2013,
pp. 1371–1382.

MASSIMO FICCO (M’02) received the degree
in informatics engineering from the Università
degli Studi di Napoli Federico II in 2000 and the
Ph.D. degree in information engineering from the
Parthenope University of Naples in 2010. From
2000 to 2010, he was a Senior Researcher with
the Italian University Consortium for Computer
Science. Since 2004, he has been teaching master
courses in software reliability and security, soft-
ware engineering, data bases, and programming.

He is currently an Assistant Professor with the Università degli Studi della
Campania Luigi Vanvitelli. His current research interests include security and
reliability of critical infrastructure, cloud computing, and mobile computing.

ROBERTO PIETRANTUONO (SM’16) is cur-
rently an Assistant Professor with the Univer-
sità degli Studi di Napoli Federico II, where he
teaches software engineering. He has co-authored
over 60 papers in his research areas. His research
interests are in the areas of software reliability
engineering, software testing, and verification of
critical software systems. He is a Co-Founder
of Critiware s.r.l., a company working in criti-
cal systems engineering. Since 2008, he has been

involved in several EU and national projects on software engineering and
software dependability.

STEFANO RUSSO (SM’15) has been a Profes-
sor of computer engineering with the Università
degli Studi di Napoli Federico II since 2002,
where he teaches software engineering and dis-
tributed systems and leads the Dependable Sys-
tems and Software Engineering Research Team.
He has co-authored over 160 papers in the areas
of software engineering, software aging, middle-
ware technologies, and mobile computing. He is
an Associate Editor of the IEEE TRANSACTIONS ON

SERVICES COMPUTING.

VOLUME 6, 2018 47287


	INTRODUCTION
	SoS TESTING AND SIMULATION
	VTS SIMULATION AS-A-SERVICE
	HYBRID SIMULATION AS A SERVICE

	SIMULATION PLATFORM REQUIREMENTS
	USER REQUIREMENTS
	SYSTEM REQUIREMENTS


	HYBRID SIMULATION SERVICES
	USER-LEVEL SERVICES
	FUNCTIONAL-LEVEL SERVICES
	SIMULATION ENGINE SERVICES
	IaaS CLOUD SERVICES

	SIMULATION PLATFORM AS A SERVICE
	TEST SCENARIOS
	TESTBED
	TEST SCENARIOS

	RELATED WORK
	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	MASSIMO FICCO
	ROBERTO PIETRANTUONO
	STEFANO RUSSO


