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ABSTRACT In this paper, we propose a novel control strategy, a finite memory output feedback control
(FMOFC), for an unmanned aerial vehicle (UAV). The proposed control strategy is designed with the
estimated states obtained by stacking a finite N number of measurements, and the finite N number is
defined as the horizon size, which represents the finite memory structure of the system. Through extending
the concept of the horizon size by introducing a vector form to the augmented horizon size, the UAV is
considered as a parallel system in terms of four independent states. Furthermore, the controller gain of the
FMOFC is derived from the reconstructed parallel system under not only the finite memory structure, but
also unbiasedness. Because of those constraints, the FMOFC exhibits a robust performance even in the
presence of disturbance or unexpected noises from uncertainties, computational errors, and sudden changes
in environments. The fast convergence and robust performance under disturbance or unexpected noises of
the proposed control strategy are demonstrated through experimental results.

INDEX TERMS Finite memory structure, output feedback control, unbiasedness, robustness, unmanned
aerial vehicle (UAV).

I. INTRODUCTION
Recently, research on unmanned aerial vehicles (UAVs) has
become a more active and popular topic with the advent
of the fourth industrial revolution. Because of the primary
advantages of being able to fly in a desired or any direction
and position, hover at any desired altitude, and take off and
land vertically, UAVs are applied to several important appli-
cations such as managing agriculture [1], [2] rescues [3], [4],
disaster or traffic monitoring [5], object detection [6]–[9],
and mapping systems [8]–[10] extensively. However, UAVs
have characteristics such as nonlinearity, uncertainties, and
underactuation, so designing a robust controller for UAVs is
not only challenging, but also an important issue [11]–[15].

Several studies propose control strategies for UAVs, and
these can be classified in respect of the availability of states:
state feedback control when all states are available [16], [17]
and output feedback control when only partial states are
available [18]–[22]. In [16], Yacef et al. presented the state
feedback control strategy for the stabilization of a quadrotor
UAVwith the parallel disturbance compensation (PDC) tech-
nique, solving the linear matrix inequality (LMI) feasibility

problem. In [17], Samir et al. proposed the state feedback
control strategy with integral action to minimize steady-state
errors for real-time trajectory-tracking problems.

However, due to the limitations in sensors and consid-
eration of unexpected noises or disturbance in measure-
ments, output feedback control strategies are considered
more appropriate control strategies, and these are the major
issues to be addressed intensively in this paper. The output
feedback control strategies can be divided into two types
in terms of control laws [18]–[22]: observer-based control
and dynamic output feedback control. Observer-based out-
put feedback control strategies are generally built with the
state feedback control and an observer for estimating the
unknown states with feedback gain. In [18], Islam et al.
presented observer-based nonlinear adaptive output feed-
back control for miniature aerial vehicles with bounded
uncertainty. They designed a model-free observer to esti-
mate the linear and angular velocities of translational and
rotational error dynamics with small constant proportional
design parameters. In [19], Tognon et al. presented the
observer-based control of the position and tension for an
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aerial robot. They proposed the nonlinear control scheme
considering the intrinsic characteristics of the aerial robot
and high-gain observer based on a set of standard sensors to
estimate unknown states and parameters. In [20], Dharmawan
et al. proposed the linear quadratic regulator (LQR) and
linear quadratic Gaussian (LQG) for the translation move-
ment stability control of a quad tilt rotor, minimizing the
linear quadratic (LQ) performance criterion. Dynamic output
feedback control strategies are presented to compensate for
various dynamical changes of UAVs through varying matri-
ces in the state-space representation of modeling and con-
trol input. In [21], Wang and Han presented network-based
modeling and dynamic output feedback control to provide
much smaller oscillation amplitudes of the yaw velocity error
and the yaw angle than the proportional-integral controller
through the adoption of non-uniform distribution and the
Wirtinger-based integral inequality approach. In [22], Dong
and Hu presented time-varying dynamic output feedback
control for linear multi-agent systems based on the separation
principle through the generalized linear dynamics ofN agents
and determined the gain matrices by solving the Riccati
equation.

Most existing output feedback control strategies for UAVs
exhibit the infinite memory structure, which requires all
the past measurements, where the linear quadratic Gaus-
sian (LQG) control is a standard output feedback control
with infinite memory structure [20], [23]–[25]. Because of
the infinite memory structure of the existing output feedback
controls, not only errors of noise information, but also uncer-
tainties and round-off errors in computation can be accumu-
lated for every time-step. The accumulation of these errors
may lead to performance degradation and the divergence phe-
nomenon in many cases. In other words, the existing output
feedback controls have drawbacks in that they can be sensi-
tive to the accumulation of noise information, uncertainties,
and round-off errors in real-world environments. Therefore,
there is high demand to design a controller to overcome the
drawbacks of the existing output feedback controllers and to
show robust performance even in the presence of these errors.

In this paper, we propose a novel output feedback control
strategy, finite memory output feedback control (FMOFC),
for a quadrotor UAV that can solve the above drawbacks. The
FMOFC is designed under the finite memory structure, which
satisfies the bounded input and bounded output (BIBO) sta-
bility and requires only the most recent N number of mea-
surements, called the horizon. Because of the finite memory
structure, the FMOFC can show robust performance, over-
coming the addressed problems of existing controllers with
the infinite memory structure and with less sensitivity to
unexpected noises and uncertainties. The controller gain of
the proposed strategy is determined to stabilize the error
dynamics derived from the original state-space representation
with states composed of velocities in the vehicle coordinate
system and the yaw rate by defining a set of horizons corre-
sponding to each state. Furthermore, the control inputs in the
UAV are derived by obtaining auxiliary control inputs for the

error dynamics. Through the experimental results, the robust
performance of the FMOFC compared with the LQG control
under the presence of disturbance signals or inaccurate noise
information is demonstrated.

This paper consists of three sections. In Section 2, the state-
space modeling of a UAV and the proposed output feed-
back control strategy, FMOFC, are presented. In Section 3,
the experimental setup, and experimental results with tra-
jectories of hovering, rectangular motion, and circular
motion under disturbance signals are demonstrated. Finally,
in Section 4, concluding remarks are presented.

II. FINITE MEMORY OUTPUT FEEDBACK
CONTROL FOR UAV
In this section, the state-space modeling of a UAV and pro-
posed control strategy, FMOFC, are discussed sequentially.
Firstly, in the state-space modeling part, the state-space equa-
tions for designing the proposed control strategy are derived.
Finally, the FMOFC is designed with the estimated state from
the finite memory estimator.

A. STATE-SPACE MODELING
The coordinate system of the UAV can be divided into two
types: the vehicle coordinate system (i.e., eBx , e

B
y , and eBz )

and the inertial coordinate system (i.e., eIx , e
I
y, and eIz) as

shown in Fig. 1. The relationship between the two coordinate
systems can be represented by a rotational transformation
matrix as follows [26]–[28]:

ṗ = Rv, (1)

where

p =
[
x y z

]T
, (2)

v =
[
vx vy vz

]T
, (3)

where p, v, and R represent the positions of the UAV in the
inertial coordinate system, velocities of the UAV in the vehi-
cle coordinate system, and rotational transformation matrix
that converts from the vehicle coordinate system to the inertial

FIGURE 1. The inertial- and vehicle-coordinate systems of the UAV.
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R =

 c(θ )c(ψ)
c(θ )s(ψ)
−s(φ)

s(φ)s(θ )c(ψ)− c(φ)c(ψ)
s(φ)s(θ )s(ψ)+ c(φ)c(ψ)

s(φ)c(θ )

c(φ)s(θ )c(ψ)+ s(φ)s(ψ)
c(φ)s(θ )s(ψ)− s(φ)c(ψ)

c(φ)c(θ )

, (4)

coordinate system, respectively. Each component of p and v,
in (2)-(3), sequentially indicates the x-, y-, and z-positions
and velocities, respectively. In (4), as shown at the top of this
page, the cosine and sine functions are denoted by c(·) and
s(·), and φ, θ , and ψ represent the roll, pitch, and yaw angles,
respectively.

By defining u1, u2, u3, u4 as control inputs for the forces
and torques generated by each propeller, the general dynamic
model of the UAV with the outputs of the rotor signals can be
written as follows [26]–[28]:

mp̈ = u1

c(φ)s(θ )c(ψ)+ s(φ)s(ψ)c(φ)s(θ )s(ψ)− s(φ)c(ψ)
c(φ)c(θ )

− mg
00
1

, (5)

Ī ẇ+ w× (Īw) =

u2u3
u4

, (6)

where

Ī =

Ixx 0 0
0 Iyy 0
0 0 Izz

,
w =

[
wx wy wz

]T
.

In (5), m and g denote a mass of UAV and the gravita-
tional acceleration, respectively. In (6), Ī denotes a system
inertia matrix, where the inertia values in the x-, y-, and z-
directions are arranged in a diagonal form and w represents
a vector, considering the angular velocities in the x-, y-, and
z-directions as components, sequentially.
By substituting the control inputs (i.e., u1, u2, u3, u4) into

the x-, y-, and z-velocities and yaw rate, the state-space model
of the UAV can be expressed as follows [26]–[28]:

V̇b = AbVb + BbUH , (7)

where

Vb =
[
vx vy vz ψ̇

]T
,

UH =
[
uvx uvy uvz uψ̇

]T
,

Ab = −


K2 0 0 0
0 K4 0 0
0 0 K6 0
0 0 0 K8


T

,

Bb =


K1 0 0 0
0 K3 0 0
0 0 K5 0
0 0 0 K7


T

.

In (7), the state in the vehicle coordinate system and con-
trol input are denoted as Vb and UH , respectively. UH is

the quantification of the combination of motor thrusts that
generate the four dynamics of the UAV: longitudinal, lateral,
vertical motion, and yawing. The corresponding motion and
direction can be determined according to the magnitude and
sign of the UH value. K1, · · · ,K8, the diagonal components
of Ab and Bb, are positive integers, and constants are obtained
through system identification. In this paper, the state-space
model of the UAV is obtained through the system identifica-
tion based on the least squares method with input and output
data from open loop experiment with AR Drone 2.0 [26].
The state-space model in the inertial coordinate system can
be obtained by substituting the rotational transformation
matrix, R, into (7) as follows:

V̇g = AgVg + BgUH , (8)

whereVg represents the state in the inertial coordinate system.
In (8), Ag and Bg can be obtained from following equations,
respectively; Ag = RAbR−1 and Bg = RBb. In this paper,
since the controller is designed for roll and pitch angles as
zero, a new rotational transformation matrix R̄ is used instead
of R and reformulated as follows:

R̄ ≈ R,

=


c(ψ) −s(ψ) 0 0
s(ψ) c(ψ) 0 0
0 0 1 0
0 0 0 1

 .
B. FINITE MEMORY OUTPUT FEEDBACK CONTROL
The FMOFC considers a constant velocity (CV) model deter-
mining only positions and velocities by assuming accelera-
tions and higher-order terms as noises. Therefore, the state
with discrete-time index k can be defined as x(k) =[
pos(k) vel(k)

]T , where pos(k) and vel(k) refer to the posi-
tion and velocity, respectively. The state-space model in the
discrete time can be written as follows:

x(k + 1) = Ax(k)+ w(k), (9)

y(k) = Cx(k)+ v(k), (10)

where

A =
[
1 4t
0 1

]
,

C =
[
1 0

]
,

where x(k) and 4t denote the state at time index k and
the sampling period, respectively. w(k) and v(k) represent
the process and measurement noises, respectively. They are
assumed to be mutually uncorrelated and zero-mean white
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Gaussian, and their covariances are defined as follows:

Qw =
[
q21 0
0 q22

]
, Rv = r2.

The augmented state of four number of independent states,
x1(k), x2(k), x3(k), and x4(k) for the x, y, z, and yaw axes can
be defined as follows:

X (k) =
[
x1T (k) x2T (k) x3T (k) x4T (k)

]T
, (11)

where

xi(k) =
[
posi(k) veli(k)

]T
, i = 1, 2, 3, 4.

The state-space model for augmented state X (k) can be
rewritten from (9)-(10) as follows:

X (k + 1) = ĀX (k)+W (k), (12)

Y (k) = C̄X (k)+ V (k), (13)

where

W (k) =
[
w1

T (k) w2
T (k) w3

T (k) w4
T (k)

]T
,

V (k) =
[
v1(k) v2(k) v3(k) v4(k)

]T
,

Ā , I4 ⊗ A =


A 0 0 0
0 A 0 0
0 0 A 0
0 0 0 A

, (14)

C̄ , I4 ⊗ C =


C 0 0 0
0 C 0 0
0 0 C 0
0 0 0 C

 . (15)

In (14)-(15),⊗ denotes the Kronecker product of thematri-
ces, where I4 represents the 4× 4 size of the identity matrix.

By defining the horizon size, which means the most recent
number of measurements, corresponding to each state xi(k)
as Nxi , where i = 1, 2, 3, 4, the augmented horizon size N
can be defined as follows:

N =
[
Nx1 Nx2 Nx3 Nx4

]
. (16)

From (16), a stacked-form matrix according to the expo-
nent of matrix A and a new matrix C{Nj} can be defined as
follows:

C{Nj} = [INj ⊗ C]A{Nj − 1}, (17)

where

A{Nj − 1} =


I
A
...

ANj−1

, (18)

where j denotes any positive integer that satisfies j ≤ 4 and
Nj is the jth element of N. Generally, both A{·} and C{·},
in (17)-(18), are the matrices that require a positive integer as
an input; however in this paper, a positive integer is denoted
as one of the elements of the augmented horizon size for
convenience.

The maximum value among the elements of N can be
defined as Nmax . For k ≥ Nmax , the batch form of (12)-(13)
on the horizons [k − Nj, k − 1], where j = 1, 2, 3, 4, can be
obtained as follows:

X (k) = ĀNjX (k − Nj)+MNj5(k − 1), (19)

Ȳ (k − 1) = C̄NjX (k − Nj)

+mGNj5(k − 1)+�(k − 1), (20)

where

ĀNj ,


AN1 0 0 0
0 AN2 0 0
0 0 AN3 0
0 0 0 AN4

,
MNj ,

[
ĀNj−1 ĀNj−2 · · · I8

]
,

5(k − 1) ,
[
W T (k−Nj) W T (k−Nj+1) ··· W T (k−1)

]T
,

Ȳ (k − 1) ,
[
y1(k−N1)···y1(k−1) ··· y4(k−N4)···y4(k−1)

]T
,

�(k − 1) ,
[
V T (k−Nj) V T (k−Nj+1) ··· V T (k−1)

]T
,

C̄Nj =

C{N1} 0 0 0
0 C{N2} 0 0
0 0 C{N3} 0
0 · · · 0 C{N4}

,

=



1 0 0 · · · 0
1 4t 0 · · · 0
...

...
... · · ·

1 (N1 − 1)4t 0 0
0 0

. . .
...

...
... 0 0

. . . 1 0
1 4t
...

...

0 0 0 1 (N4 − 1)4t



,

L =



0
C{N1 − 1}

0

...

0

0
0
0

C{N2 − 1}
0
...

0

0
...

0
C{N3 − 1}

0
0

0

...

0
C{N4 − 1}

0
C{N1 − 2}

0

...

0

· · ·

. . .

. . .

· · ·

0

...

0

...

0


.
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(19)-(20) can be rewritten by taking the expectation as
follows:

E[X (k)] = ĀNjE[X (k − Nj)], (21)

E[Ȳ (k − 1)] = C̄NjE[X (k − Nj)]. (22)

The finite memory estimator can be designed as follows:

X̂ (k) = HȲ (k − 1), (23)

where X̂ (k) and H represent the estimated state and gain
matrix of the finite memory estimator, respectively. By com-
bining the expectation result of (23) with (22), the finite
memory estimator can be rewritten as follows:

E[X̂ (k)] = HC̄Nj Ā
−NjE[X (k)]. (24)

From the unbiasedness condition, E[X̂ (k)] = E[X (k)],
and a variable substitution, C̄O = C̄Nj Ā

−Nj , (24) can be
represented as follows:

HC̄O = I , (25)

where

C̄O =



1 −N14t 0 · · · 0
· · · 0

...
...

...
...

1 −4t 0 · · · 0
0 0 1 −N24t

. . .
...

...
...

...
... 1 −4t 0 0

0 0
. . . 1 −N44t

...
...

...
...

0 0 · · · 0 1 −4t



.

(26)

Through (24), it can be confirmed that (26) represents the
observability matrix. For the two conditions, non-zero 4t
and Nj ≥ 2, where j = 1, 2, 3, 4, (26) shows the full rank
property. Therefore, each element of N can be any positive
integer that is greater than or equal to 2.

From (23) and (25), the gain matrix H can be represented
as follows:

H =


h̄(1,1) h̄(1,2) · · · h̄(1,Ntotal )
h̄(2,1) h̄(2,2) · · · h̄(2,Ntotal )
h̄(3,1) h̄(3,2) · · · h̄(3,Ntotal )
h̄(4,1) h̄(4,2) · · · h̄(4,Ntotal )

, (27)

where

h̄(m,n) =
[
α(m,n) β(m,n)

]T
, (28)

Ntotal =

4∑
j=1

Nj, (29)

with m = 1, 2, 3, 4. In (27), h̄(m,n) and Ntotal represent the
mth row and nth column element of the gain matrix related to
the mth state of X (k), and the sum of all elements of the aug-
mented horizon size, respectively. From (25)-(27), it is noted
that h̄(m,n) is not zeros only for

∑m−1
j=1 Nj < n ≤

∑m
j=1Nj.

For example, ifm is assumed to be 1, h̄(1,N1+1), · · · , h̄(1,Ntotal )
are all zeros and the remaining parts, h̄(1,1), · · · , h̄(1,N1), have
specific integers related to the mth state. Therefore, by com-
bining (25) and (27), the conditions can be derived as follows:

Nm∑
n=1

h̄(m,n+κm) =
[
1 0
]T
, (30)

1t
Nm∑
n=1

(−Nm − 1+ n)h̄(m,n+κm) =
[
0 1
]T
, (31)

where

κi =

i−1∑
k=j

Nj. (32)

Considering (25), there are numerous solutions for the gain
matrix; however, under the constraints (30)-(31), the solution
for (25) can be obtained by minimizing the following cost
function; Jh̄ =

∑Nm
n=1 h̄

T
(m,n+κm)

h̄(m,n+κm). The Lagrange func-
tion, one of the methods to obtain h̄(m,n+κm) that minimizes
the cost function Jh̄, is introduced, and the Lagrange function
can be written as follows:

L =
Nm∑
n=1

h̄2(m,n+κm) + λ1(1−
Nm∑
n=1

h̄(m,n+κm))

+ λ2

Nm∑
n=1

(−Nm − 1+ n)h̄(m,n+κm)1t, (33)

where both λ1 and λ2 are Lagrange multiplier vectors. By
taking a partial derivative of the Lagrange function with
respect to h̄(m,n+κm), (33) can be rewritten as follows:

∂L
∂ h̄(m,n+κm)

= 2h̄(m,n+κm) − λ1 + λ2(Nm + 1− n)1t.

(34)

Making (34) zero, h̄(m,n+κm) can be obtained as follows:

h̄(m,n+κm) =
λ1 − λ2(Nm + 1− n)1t

2
. (35)

By substituting (35) into (30)-(31), h̄(m,n+κm) can be rewrit-
ten as follows:

h̄(m,n+κm) =


−2Nm + 6n− 4
Nm(Nm − 1)
−6Nm + 12n− 6

Nm(Nm − 1)(Nm + 1)

, (36)

with n = 1, · · · ,Nm. The gain matrix H of the finite mem-
ory estimator can be obtained by the Lagrange function as
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follows:

H =


HN1 0 0 0
0 HN2 0 0
0 0 HN3 0
0 0 0 HN4

, (37)

where

HNi =
[
h̄(i,1) h̄(i,2) · · · h̄(i,Nm)

]
, i = 1, 2, 3, 4,

where HNi denotes the gain matrix of the ith state xi(k).
The final structure of the gain matrix H is composed of the
gain matrices of each independent state. The gain matrix of
the finite memory estimator can be designed as one large
matrix from the augmented state. Therefore, the gainmatrices
obtained from the augmented state and the four independent
states are in a parallel relationship with each other.

The controller is designed to minimize error terms between
the velocities of the UAV and the reference velocities.
Because the velocities of the UAV are inaccessible states and
the measurements are vulnerable to disturbance or inaccurate
noise information, the estimated velocities from the finite
memory estimator are considered the velocities of the UAV. In
other words, the FMOFC is designed to obtain control inputs
that minimize the error terms of the estimated and reference
velocities. The discretization of (7) can be performed as
follows:

Vb(k + 1) = ÂbVb(k)+ B̂bUH (k), (38)

where

Âb = I + Ab,

B̂b = Bb4t,

where Vb(k) and UH (k) represent the state and control input
at time step k .

In (38), Vb(k) can be substituted into the estimated state
V̂b(k) through (23) and by defining a reference value of Vb(k)
as Vb,ref (k), (38) can be rewritten as follows:

Vb,ref (k + 1)− V̂b(k + 1)

= Âb(Vb,ref (k)− V̂b(k))− ÂbVb,ref (k)

− B̂bUH (k)+ Vb,ref (k + 1), (39)

where

V̂b(k) = I4 ⊗
[
0 0
0 1

]
HYb(k − 1),

where V̂b(k) and Yb(k − 1) represent the estimated velocities
and stacked measurements of the UAV during the horizons,
respectively.

By defining the error term as Ṽb(k) = Vb,ref (k) − V̂b(k),
(39) can be reformulated as follows:

Ṽb(k + 1) = ÂbṼb(k)− B̂b[UH (k)

+ B̂−1b (ÂbVb,ref (k)− Vb,ref (k + 1))]. (40)

From (40), a new system in terms of the error term can be
designed through a new control input defined as ŨH (k) =
−UH (k)− B̂

−1
b (ÂbVb,ref (k)− Vb,ref (k + 1)) as follows:

Ṽb(k + 1) = ÂbṼb(k)+ B̂bŨH (k). (41)

The cost function is considered as follows:

J =
∞∑
k=0

Ṽ T
b (k)Q̄Ṽb(k)+ Ũ

T
H (k)P̄ŨH (k), (42)

where Q̄ and P̄ are diagonal matrices and design parameters
that can improve the convergence performance of the ith state.
The control law to minimize the cost function is expressed as
follows:

ŨH (k) = −KṼb(k), (43)

where K represents a controller gain. Therefore, (41) can be
rewritten in a closed loop system by substituting the control
law (43) into (41) as follows:

Ṽb(k + 1) = (Âb − B̂bK )Ṽb(k), (44)

where the K should be designed to make the eigenvalues of
(Âb − B̂bK ) have a negative real part: the Hurwitz matrix.
The controller gain K can be calculated from the equation as
follows:

K = (P̄+ B̂T P̃B̂)−1(B̂T P̃Â), (45)

where P̃ is the unique positive definite solution of the Riccati
equation [29], [30]. From (45), the control inputUH (k) of the
original system (38) can be reformulated as follows:

UH (k) = K (Vb,ref (k)− V̂b(k))

− B̂−1b (ÂbVb,ref (k)− Vb,ref (k + 1)). (46)

The block diagram of the proposed control strategy,
FMOFC, can be seen in Fig. 2. The estimated state V̂b(k)
can be obtained by stacking the augmented measurement
of the x-, y-, and z-positions and yaw angle up to the aug-
mented horizon size, as shown in (23). Furthermore, the con-
troller is designed to minimize the error term Ṽb(k) between
the estimated state and reference value, as shown in (42).
Finally, the control input is calculated and generated from the
FMOFC which is formulated in (46).

III. EXPERIMENT
This section is divided into two subsections: the experimental
setup and experimental results. One covers the experimental
equipment in detail and explains the experimental goals.
The other shows the experimental results to demonstrate
the robust performance of the proposed control strategy,
FMOFC.
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FIGURE 2. Block diagram of finite memory output feedback control.

A. EXPERIMENTAL SETUP
The experiments were conducted throughMATLAB to main-
tain three kinds of given paths in the presence of disturbance:
hovering, rectangular motion, and circular motion experi-
ments. For the experiments, the following equipment was
used; a computer, a Local Area Network (LAN) card, and an
AR. Drone 2.0. The computer for the ground station commu-
nicated with the drone to send control inputs or receive sensor
data. Intel(R) Core(TM) i7-7700 CPU@3.60Hz and 16.0GB
were used for the processor and RAM of the ground station,
respectively. The system type was a 64-bit operating system.
The LAN card was used to improve communication between
the ground station and drone. The NEXT-1200AC was used
for the LAN card, which complied with the IEEE 802.11ac,
IEEE 802.11a, IEEE 802.11n, IEEE 802.11g, and IEEE
802.11b standards and provided a USB 3.0 port. Furthermore,
it provided a 300/867Mbps receiving rate and 300/867Mbps
sending rate.

B. EXPERIMENTAL RESULTS
In this section, the four performed experiments are intro-
duced: the determination of the augmented horizon size of
the finite memory estimator, hovering, rectangular motion,
and circular motion experiments. Through the experimental
results, the robust performance of the proposed control strat-
egy is demonstrated in the case of unexpected disturbance.

1) DETERMINATION OF HORIZON SIZES
The proper augmented horizon size of the finite memory
estimator was obtained from the minimum value of the root
mean square errors (RMSEs) defined for each of the four
independent states as follows:

JNi =

√√√√√ tfinal∑
k=tinit

(x̂i(k)− xi,ref (k))2, (47)

where

N =
[
Nx1 Nx2 Nx3 Nx4

]
,

with i = 1, 2, 3, 4 for the x-, y-, and z- velocities and yaw
rate. In (47), tinit is the initial time of the experiment and
tfinal is the final time of the experiment, which were set to
zero and 100 seconds, respectively, and the RMSEs were
obtained from the results during 100 seconds, a difference
between tinit and tfinal . x̂i(k) and xi,ref (k) represent the value
of the ith current estimated state of the UAV and reference
state at time k , respectively. In addition, the term x̂i(k) −
xi,ref (k) represent the errors between the ith estimated state
and the reference state. The proper horizon size for each ith
state can be obtained at the minimum value of the RMSEs
with the Monte Carlo method, and the results are shown in
Fig. 3: (a), (b), (c), and (d).

As shown in Fig. 3, the graphs of the RMSEs over various
horizon sizes are represented in a convex form and showmin-
imum values at the horizon sizes 4, 3, 4, and 4, respectively,
for each independent state. Consequently N can be obtained
as follows:

N =
[
4 3 4 4

]
.

2) HOVERING EXPERIMENT
In the hovering experiment, the reference values were set for
the drone to hover at a height of 1 meter. A sine curve with
an amplitude of 0.1 meters and an impulse with a value of
0.1 meters were injected overall in the hovering experiment
as disturbance signals.

The hovering results of the UAV are indicated in a
three-dimensional coordinate system, as shown in Fig. 4: (a)
LQG control and (b) the proposed control strategy, FMOFC.
In Fig. 4(a), the LQG control eventually returns to the original
hovering position; however, it shows large amounts of over-
shoot. When the disturbance signals were injected, the LQG
control shows that the x or y positions reached the point with a
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FIGURE 3. RMSEs for various horizon sizes: (a) x velocity, (b) y velocity,
(c) z velocity, and (d) yaw rate.

value of 0.1. On the other hand, the proposedmethod returned
to the original position with smaller amounts of overshoot
than the LQG control, as shown in Fig. 4(b). The results
can be more clearly seen in Table 1, the RMSE comparison
table in terms of the x and y positions. As shown in Table 1,
the RMSE value of the proposed control strategy is approxi-
mately four times lower than the LQG control strategy both

FIGURE 4. Hovering experiment results in 3-dimensional coordinate
system: (a) LQG control and (b) FMOFC (proposed).

TABLE 1. RMSE comparison in hovering experiment.

in the x and y positions. As a result, the FMOFC shows a
robust performance against the disturbance in the hovering
experiment.

3) RECTANGULAR MOTION EXPERIMENT
In the rectangular motion experiment, the reference values
were set to move the drone in the shape of a square with a
length of 1 meter on each side while maintaining a height
of 1 meter. Impulse signals with a value of 0.3 meters were
injected as disturbance signals when the UAV reached each
corner of the square.

The experimental results of the UAV are indicated in a
three-dimensional coordinate system as shown in Fig. 5: (a)
LQG control and (b) the proposed control strategy, FMOFC.
From Fig. 5(a), even in the case of disturbance, the UAV with
LQG control returned to the original position at each corner
of a given path. However, significant amounts of overshoot
occur when the signals with a value of 0.3 meters were
injected as disturbance signals, so that it nearly reached the
position of 1.5 meters in both the x and y positions. In the
end, the LQG control showed the divergence phenomenon
without returning to the initial position due to the accumu-
lation of errors and unexpected disturbance. On the other
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FIGURE 5. Rectangular motion experiment results in 3-dimensional
coordinate system: (a) LQG control and (b) FMOFC (proposed).

hand, the proposed method returned to the given position
with smaller amounts of overshoot occurring when the ampli-
tude of the injected disturbance signals and reached only
approximately 1.2 meters. The results can be more clearly
seen in Table 2, the RMSE comparison table in terms of the
x and y positions. As shown in Table 2, the RMSE value
of the proposed control strategy was approximately seven
and five times lower than the LQG control strategy in the
x and y positions, respectively. As a result, the FMOFC shows
a robust performance even in the presence of disturbance.

TABLE 2. RMSE comparison in rectangular motion experiment.

4) CIRCULAR MOTION EXPERIMENT
In the circular motion experiment, the reference values were
set to move the drone in the shape of a circle with a radius
of 0.5 meters while maintaining a height of 1 meter. A sine
curve with an amplitude of 0.1 meters and an impulse with
a value of 0.1 meters were injected as disturbance signals
during the entire experiment.

The experimental results of the UAV are indicated
in a three-dimensional coordinate system, as shown
in Fig. 6: (a) LQG control and (b) the proposed method,
FMOFC. As shown in Fig. 6(a), initially, the UAV with LQG
control maintained a circular path, but significant amounts of

FIGURE 6. Circular motion experiment results in 3-dimensional
coordinate system: (a) LQG control and (b) FMOFC (proposed).

overshoot occured in the case of disturbance. However, in the
end, the given path was not maintained and the LQG control
shows a divergence phenomenon due to the accumulation of
errors and the unexpected disturbance. On the other hand,
the proposed method maintained the given path even in the
presence of disturbance with only small amounts of overshoot
as shown in Fig. 6(b). The results can be more clearly seen
in Table 3, the RMSE comparison table in terms of the x and y
positions. As shown in Table 3, the RMSE value of the
proposed control strategy was approximately 11 times lower
than the LQG control strategy in the x and y positions. As a
result, the FMOFC shows a robust performance against the
disturbance.

TABLE 3. RMSE comparison in circular motion experiment.

IV. CONCLUSION
In this paper, a novel control strategy, FMOFC, for UAV
is proposed considering only four independent states (i.e.,
the x, y, and z velocities in the vehicle coordinate system
and yaw rate). The proposed control strategy was designed
with the estimated states composed of the velocities in the
vehicle coordinate system and the yaw rate from the pro-
posed control law that minimizes the weighted sum of error
terms. The controller gain was determined to stabilize the
reconstructed dynamical system model in respect of the error
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terms. Furthermore, the control inputs to the UAV were
derived by obtaining auxiliary control inputs for the recon-
structed dynamical system model. The estimated states used
for the FMOFC were obtained from the finite memory esti-
mator with the augmented form of four independent states
under constraints: the unbiased condition and finite memory
structure. Through the definition of the horizon size and
augmented horizon size, the FMOFC was derived with the
property that the corresponding horizon size for each state
could be different and exhibited a finite memory structure.
From the final structure of the finite memory estimator with
the augmented state, parallel relationships among indepen-
dent states were demonstrated. The fast convergence and
robust performance of the FMOFC under unexpected distur-
bance were demonstrated through the experimental results:
hovering, rectangular motion, and circular motion experi-
ments. Therefore, the FMOFC is considered to be an appro-
priate control strategy for UAVs in harsh environments such
as unexpected disturbance. The proposed control strategy
is expected to be applied to various plants and situations,
such as formation and flocking systems, by extending the
augmented horizon size and augmented state concept to the
networked systems or nodes based on the graph theory.
Moreover, the FMOFC is expected to guarantee stability and
safety through future studies regardless of harsh environ-
ments, including uncertainties and couplings.
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