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ABSTRACT There is a lack of early specific diagnosis and effective evaluation of sepsis, and the clinical
treatment is not timely. As a result, the mortality is high, which seriously threatens the health of the
people. Data were collected from the human blood samples of the hospital by gas chromatography mass
spectrometry. Thirty-five healthy controls and 42 sepsis patients were enrolled. Machine-learning techniques
were used to diagnose the sepsis. Using the metabolic data from the sepsis patients, the proposed method has
got 81.6% recognition rate, 89.57% sensitivity, and 65.77% specificity. A new learning strategywas proposed
to boost the performance of the kernel extreme learning machine, known as, chaotic fruit fly optimization,
and two new mechanisms were introduced into the original a fruit fly optimization, including the chaotic
population initialization and the chaotic local search strategy. To further enhance the diagnosis accuracy
and identify the most important biomarkers, we performed the feature selection using the random forest
before the construction of the classification model. The final established model, random forest-improved
fruit fly optimization algorithm-kernel extreme learningmachine, was used to effectively diagnose the sepsis.
Experimental results demonstrate that the proposed method obtains better results than other methods across
four performance metrics. We screened out five biomarkers and performed statistical analysis on these five
substances. The level of acetic acid increased (p < 0.05) in the sepsis group, while the level of linoleic acid
and cholesterol decreased (p< 0.05). The promising results suggest that the developed methodology can be
a useful diagnostic tool for clinical decision support.

INDEX TERMS Fruit fly optimization, sepsis diagnosis, random forest, chaos theory, kernel extreme
learning machine.

I. INTRODUCTION
Sepsis is a systemic inflammatory response syndrome caused
by infection [1]–[3]. Clinical manifestations are fever, tachy-
cardia, shortness of breath, and an increase in peripheral
white blood cells. Serious sepsis can cause shock and progres-
sive multiple organ failure, and it is common in clinical criti-
cally ill patients [4], [5]. An epidemiological survey showed
that the occurrence of sepsis has increased yearly (currently
approximately 78 in every 100,000 people) [6]. There is a
lack of early specific diagnosis and effective evaluation of
sepsis [7], [8], the clinical treatment is not timely, and the
mortality rate is high, which seriously threatens the health of
the people [4].

After suffering from sepsis, the patient’s metabolic mecha-
nism will change [9]–[13]. The metabolic characteristics also
change based on a certain rule that is difficult to recover
in a specific amount of time. A comprehensive analytical
study of the changes in these metabolites may identify the
chemical traces of sepsis, and a number of studies have
shown that metabolomics techniques can quickly obtain this
information [14]–[17]. This is due to the large amount of data
obtained from metabolomics and the need for robust data
processing techniques.

Research has reported metabolomics in sepsis by
GC-MS [18]–[20], liquid chromatography-tandem mass
spectrometry analysis (LC-MS) [13], [21]–[23], and nuclear
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magnetic resonance spectroscopy (NMR) [10]–[12],
[24]–[27]. However, few researches have reported using
machine-learning techniques based on metabolomics data.
Xu et al. proposed to use radial basis function neural
network for prognostic evaluation of sepsis using HPLC/
MS-based metabolites in rat serum, and a high accuracy over
94% was obtained [23]. Lin et al. constructed a model for
prognostic evaluation of sepsis using RBFNN byNMR-based
metabolites in rat serum, with an accuracy of approxi-
mately 87% [27].

In this study, we employed the kernel extreme learn-
ing machine (KELM) [28] method, to diagnose sepsis.
To the best of the authors’ knowledge, it is the first to
explore the potential use of KELM in sepsis prediction.
Using the metabolic data from sepsis patients, the devel-
oped method achieved good results with promising accuracy
of 81.6%, 89.57% sensitivity and 65.77% specificity, respec-
tively. To improve the performance of KELM, a fruit fly
optimization algorithm (FOA) [29] based on the chaos theory
was utilized to tune the hyperparameters of KELM. FOA
has many good characteristics, such as simple implementa-
tion and lightweight computation. Because of its excellent
characteristic, FOA has been recognized as a practical tool
for solving many problems [29]–[38]. However, like other
nature-inspired algorithms, traditional FOA is easy to become
trapped in the local minimum and converge slowly. To ame-
liorate the convergence speed and increase the chance to jump
out of the local optimum, we introduce two chaotic mecha-
nisms into the original FOA. First, the chaotic initialization
operation was used to improve the global search capability of
FOA. On the other hand, the chaotic local search was used to
strengthen the local search capability of FOA. The resultant
improved FOA, named CFOA, and dynamically identifies
the two parameters in KELM. To further improve the diag-
nosis accuracy and identify the most important biomarkers,
the feature selection was completed using the random for-
est (RF) [39] before the construction of the predictive model.
The final established model, RF-CFOA-KELM, was used to
effectively diagnose sepsis.

For comparison purposes, other nature-inspired
algorithms-based KELM models (including particle swarm
optimization (PSO)-based KELM, genetic algorithms (GA)-
based KELM, FOA-based KELM, and other popular learning
algorithms including artificial neural networks (ANN) and
support vector machines (SVM)) were also used in this study
for the diagnosis of sepsis. The contributions of this paper are
three-fold: (1) the proposal of an excellent method for sepsis
diagnosis based on the metabolic information from patients
with sepsis; (2) the proposal of an effective approach based
on a chaos enhanced FOA evolutionaryKELM for diagnosing
sepsis; and (3) identification of the most important biomark-
ers with the assistance of the random forest.

The remainder of this paper is structed as follows.
Section 2 gives a description on the clinical data involved
in this study. The detailed flowchart of the proposed method
is presented in sections 3 and 4. Section 5 provides the

detailed experimental settings. The experimental results and
related discussion are presented in section 6 and Section 7,
respectively. Finally, we conclude the paper in section 8.

II. BACKGROUND
A. KERNEL EXTREME LEARNING MACHINE (KELM)
FOR CLASSIFICATION
The extreme learning machine (ELM) [40] is different from
the traditional learning and training process of the neural
network. ELMs do not need to adjust the hidden layer thresh-
old and the connection weight between the input and hidden
layers. It only needs to adjust the number of nodes in the
hidden layer. The optimal solution can be obtained after the
number of hidden nodes of the hidden layer is determined.
The ELM is a three-level ANN, which includes an input, out-
put, and hidden layer. The hidden layer maps the input sam-
ples from the low-dimensional space to the high-dimensional
space, and it transforms the linear-inseparable problem into a
linear-separable one. However, there is a ‘‘dimensional disas-
ter’’ in the operation of the high-dimensional feature space.
The kernel function can replace this mapping to transform
the linear inequalities into linear-separable problems and
solve the ‘‘dimension disaster’’ problem. Compared with the
ELM, the KELM [28] improves the robustness and nonlinear
approximation ability of the whole system. KELM includes
parameter sensitivity problems, such as RBF kernel-based
KELM, that re mainly affected by kernel width and a penalty
coefficient. This study focuses on these two parameters and
proposes a new FOA strategy for tuning the two key parame-
ters of KELM.

B. FRUIT FLY OPTIMIZATION ALGORITHM (FOA)
FOR OPTIMIZATION
Fruit fly optimization algorithm (FOA) was developed by
Pan [33]. Compared with other species, the fruit fly has
more advantages in terms of sensory perception, especially
smell and vision. The olfactory organs of fruit flies collect
all kinds of odors in the air, including food sources that are
40 kilometers away. After flying to the food position, they use
sharp vision to find the location of it and the position where
their companions are gathering together, and they fly to that
direction. The steps of the fruit flies searching for food are
outlined as follows:

Step 1: Initialize the fruit fly population randomly.
Step 2: Initialize the random distance and direction for

individual flies to search for food using their olfactories.
Step 3: Since it is impossible to know the location of food,

the distance from the origin is first estimated. The determina-
tion value of the flavor concentration is then calculated, which
is the inverse of the value of the distance.

Step 4: Substitute the value of the flavor concentration
into the flavor concentration function to determine the flavor
concentration of the individual’s position.

Step 5: Determine the fruit fly with the highest flavor
concentration in the population.
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Step 6: Keep the best flavor concentration values in the
coordinates of X and Y , at which point the fruit fly population
flies to the position using vision.

Step 7: Enter iterative optimization by repeating steps 2-5,
and estimate whether the current flavor concentration is supe-
rior to the previous iterative one. If it is, then go to step 6.

C. RANDOM FOREST (RF) FOR FEATURE SELECTION
Random forests (RF) [39] is a classifier that contains multiple
decision trees. It is a combined classification model that is
composed of many decision tree models. The basic idea is
to first use bootstrap sampling to extract k samples from
the original training set, where the sample capacity should
be consistent with the original training capacity. Second,
a decision tree model is established for each sample to obtain
k classification results. The final classification is performed
by voting according to the k classification results. An impor-
tant characteristic of the RF is the ability to compute the
importance of a single feature.

The importance of a feature X in the RF is calculated as
follows:

1: For each decision tree in the RF, use the corresponding
out of bag (OOB) data to calculate its OOB error, denoted as
errOOB1.
2: Randomly add noise interference to the feature X of all

samples of the OOB (the value of samples at the feature X
can be changed randomly), and calculate its OOB error again,
which is recorded as errOOB2.
3: Suppose there are Ntreetrees in the RF. Ntree specifies

the number of decision trees contained in random forests,
with a default value of 500. Then the importance of feature
X is

∑
(errOOB2− errOOB1)/Ntree, and this expression

can be used to measure the importance of the corresponding
feature. If a certain feature randomly adds noise, then the
accuracy of the OOB data is greatly reduced, which indicates
that this feature has significant influence on the classification
result of the sample, that is, its importance is relatively high.

III. PROPOSED CFOA STRATEGY
This study proposed the CFOA learning strategy, in which
two new mechanisms were introduced into the original FOA:
the chaotic population initialization and chaotic local search
strategy. The flowchart of the CFOA is displayed in Figure 1.

A. CHAOTIC LOCAL SEARCH
The applications of chaotic sequences to various metaheuris-
tic optimization algorithms have attracted more attention in
recent years. In [41], a novel GA with chaotic mutation
was presented by replacing the Gaussian mutation operator
in real-coded with a chaotic mapping. In [42], the chaotic
initialization and chaotic sequences were introduced into sim-
ulated annealing (SA) instead of the Gaussian distribution.
Other metaheuristic optimization algorithms also use chaos
theory [43]–[45] to enhance the search performance.

FIGURE 1. Flowchart of CFOA.

The chaotic sequence using logistic mapping can be pro-
duced as follows:

chi+1 = µchi ∗ (1− chi) i = 1, . . . ,S− 1 (1)
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where µ is the control parameter and µ = 4. We set
0 < ch1 < 1 and ch1 6= 0.25, 0.5, 0.75, 1. It is not difficult
to prove that when µ = 4, the system is completely in chaos.
S is the number of fruit fly populations.

It should be noted that the chaotic search usually reduces
its performance when exploring a large search space. To over-
come this, a strategy for the search space of the chaotic local
search is introduced. Due to the randomness characteristic
of the chaotic local search, the search process can eliminate
premature convergence and local optima issues [46].

The expression of chaotic local search is presented as
follows:

X ′(c)k = (1− λ)X∗ + λ(LB+ βk (UB− LB)) (2)

whereX ′(c)k is the kth new position vector produced by chaotic
local search. X∗ is the position vector of the best solution
obtained so far. βk is kth chaotic value in chaotic sequence.
LB and UB are the upper and lower bounds of the search
space respectively. λ is the shrinking scale expressed as fol-
lows:

λ =
Maxiter − l + 1

Maxiter
(3)

where Maxiter represents the maximum number of iteration
and l means the current number of iteration.

FIGURE 2. Flowchart of RF-CFOA-KELM.

IV. PROPOSED RF-CFOA-KELM DIAGNOSTIC METHOD
The flow chart of the established RF-CFOA-KELM is pre-
sented in Figure 2. The proposed method is composed of
two stages. The first stage contains the feature selection and

parameter optimization tasks. The feature selection was first
executed by the RFmethod, and the two parameters of KELM
were dynamically optimized by the proposed CFOA through
five-fold cross validation (CV) analysis. The purpose of the
first stage is to obtain the optimal feature subset and param-
eter pair. The main objective of the second part is to evaluate
the classification performance of the proposed method. The
final optimal parameters and features in the first stage were
input into the KELMmodel in the outer loop through ten-fold
CV. It should be noted that this inner fivefold CV and outer
ten-fold CV scheme was adopted in many works [47], [48].

V. EXPERIMENTAL DESIGNS
A. PATIENTS AND BLOOD SAMPLES
A total of 42 sepsis patients with a mean age of 42.5 (±20.2)
years were enrolled into this study (52.2% of whom were
male) from the emergency department or intensive care
unit (ICU) of The Second Affiliated Hospital of Wenzhou
Medical University between January 2015 and January 2016.

Patients were less than 18 years old and those with venous
nutrition or a metabolic disease were excluded. The sam-
ples for measurement were fasting blood that was obtained
within 24 hours after sepsis diagnosis. The 35 healthy con-
trols were randomly selected in the medical examination
center over the same period.

Blood samples were collected from the healthy controls
and sepsis group. The sample preparation process was pre-
viously published in our precious work [49]–[52].

B. GC-MS ANALYSIS
Analysis was conducted using Agilent Technologies
6890N-5975B GC-MS. The HP-5 MS column was at the
ambient temperatures of 80◦C for 5 min. The column
oven temperature was increased to 260◦C at a constant
speed (10◦C/min) and the temperature remained stable for
10 min [9]. The data gathered are exported toMicrosoft Excel
for analysis [53], [54].

C. STATISTICAL ANALYSIS
Version 18.0 SPSS software was applied to detect significant
differences between two groups.

D. PARAMETER SETTING
MATLAB 2014a was used for simulation on a Windows 7
system. We chose the back propagation neural net-
work (BPNN) with the Levenberg-Marquardt training algo-
rithm. The KELM classifier was adopted from Huang at
http://www3.ntu.edu.sg/home/egbhuang. The LIBSVM was
developed by Chang and Lin [55]. We implemented the
FOA, PSO, and GA from scratch. RF code was from
http://code.google.com/p/randomforest-matlab.

Prior to classification, data normalization was used to
convert all data to numbers between [−1,1]. k-fold CV
was used to assess the accuracy of the classification to
obtain unbiased estimates of the generalization accuracy [56].
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Commonly used assessment criteria including Matthews cor-
relation coefficients (MCC), classification accuracy (ACC),
sensitivity and specificity were used to evaluate the quality
of the experiments. The ACC is the most common evaluation
index. It is easy to understand that the number of samples
divided into the correct is divided by the number of all
samples. In general, the higher the ACC was, the better the
classifier obtained. The MCC characterizes the relevance of
the data to a feature classification. Sensitivity represents the
proportion of all positive cases that are correctly classified,
which measures the ability of the classifier to recognize
positive cases. Specificity represents the proportion of all
negative cases that are correctly classified, and it measures
the classifier’s ability to identify negative cases.

VI. RESULTS
A. BENCHMARK FUNCTION VALIDATION
In this section, 12 classical functions are presented in Table 1,
which are used to validate the optimization capability of
CFOA. These functions are divided into two parts. The first
part includes seven unimodal functions and the second part
includes five multimodal functions. The boundary of the
function’s search space (range) and the optimal value of the
functions (fmin) are shown in Table 1.

TABLE 1. Benchmark functions.

To explore the benefits of the CFOA, its performance
has compared to the conventional FOA and nine success-
ful metaheuristics: moth flame algorithm (MFO) [57], bat
algorithm (BA) [58], dragonfly algorithm (DA) [59], flower
pollination algorithm (FPA) [60], grasshopper optimization
algorithm (GOA) [61], sine cosine algorithm (SCA) [62],
particle swarm optimization (PSO) [63] and multi-verse opti-
mization algorithm (MVO) [64]. In addition, the parameters
that were set in all the experiments for 10 algorithms are
shown in Table 2. To form a fair judgment, all algorithms
are performed in the same testing environment and each
benchmark function performs 30 independent runs. In this
experiment, the dimension is set to 30, the population size
and maximum number of iterations is set to 20 and 500 for
all of the functions.

TABLE 2. Parameters setting of different algorithms.

FIGURE 3. Convergence curves of some functions in F1-F12.

The results of different algorithms on the F1-F12 are
shown and compared in Table 3, while Figure 3 shows the
convergence tendencies in terms of the best fitness value
of each algorithm. The table shows the mean (Avg) and
standard deviation (Stdv) of the final values determined by
each algorithm in all 30 independence runs. As shown from
Table 3, the CFOA is the best algorithm and is superior to all
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TABLE 3. Results of 12 benchmark functions.

other algorithms in addressing all cases (F1-F12). According
to all metrics, the performance of the CFOA outperforms
the conventional FOA method. Inspecting the rank results
of the algorithms in Table 3, the overall ranks (in order) are
the CFOA, FOA, MFO, BA, DA, FPA, GOA, SCA, MVO,
and PSO algorithms, respectively.

As shown in Figure 3, the convergence tendency of the
CFOA optimizer is better than other methods in all unimodal
cases (F1-F7). For F2, the function value of the CFOA is
smaller than the basic FOA and other popular algorithms
all of the time. For F1, F3, and F4, the FOA has the effect
of convergence, while the fastest convergence speed belongs
to the proposed FOA-based optimizer. However, competitors
such as MFO, BA, DA, FPA, GOA, SCA, MVO, and PSO
algorithms fall into local optimum when solving F3 and
F4 problems over the course of iterations. For F6, all of the
methods are competitive, but the CFOA provides the best
solution. In addition, the curve shows that F6 has fallen into
a local minimum and eventually entered a stagnant state.
The statistical results of the CFOA for F5 and F7 are shown
in Table 3. It can be determined that the FOA and MVO
give competitive results, but the best value is obtained by
the CFOA.

According to the ranks of algorithms as shown in Table 4,
the proposed CFOA is the best algorithm for addressing
F8-F12 problems. The performance of the CFOA is superior

TABLE 4. Ranks of algorithms.

to all algorithms in dealing with F8. As shown in Figure 3,
the CFOA attained the exact optimal solutions for the
30-dimension problems F9 in all 30 runs. It is demonstrated
that the chaotic strategy in the CFOA method improved the
quality of solutions effectively. In F10, the function value of
the CFOA is smaller than the basic FOA and other popular
algorithms all of the time. F1 has a competitive performance
compared to conventional FOA, but it converges to a better
result after 200 iterations. The CFOA has attained the best
solutions, while the basic FOA is stagnating during the whole
iteration in addressing F12. In general cases, the ranks are
approximately calculated as follows: CFOA>FPA>MVO>
BA>GOA>SCA>PSO>FPA>DA>MFO. Comprehensiv-
ely, the CFOA can realize enriched results, compared with
other methods in this experiment.

TABLE 5. P-values of the Wilcoxon’s signed-rank test of the CFOA results
versus other algorithms.

The Wilcoxon signed-rank test [65] is used to judge if
the meaningful improvement of the proposed method of
FOA is statistically significant. When the p-value is less
than 0.05 (non-bold face in Table 5), it can be determined
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that the results of the comparison of the proposed algo-
rithm are statistically significant. If not, the result is not
statistically significant. This comparison of the proposed
method is done with respect to the competitors (as shown
in Table 5), such that if the CFOA is the proposed method,
comparison is performed between CFOA-FOA, CFOA-
MFO, CFOA-BA, CFOA-DA, and so on. From Table 5,
it can be seen that the CFOA outperforms other algo-
rithms for the majority of the benchmark problems. For
F8-F12, all p-values are less than 0.05. It can be detected
that the results of the CFOA are statistically significant.
Considering all p-values in Table 5, the comparison results
of the CFOA and other methods, including the FOA, is statis-
tically significant for all 12 problems, except F8. This proves
that the conventional FOA has been meaningfully improved
by the strategy utilized in this work.

FIGURE 4. The importance of the features evaluated by the RF.

B. CLASSIFICATION RESULTS ON THE
DIAGNOSIS OF SEPSIS
First of all, the RF feature selection was employed to assess
the importance of the 160 features in the sepsis dataset. The
result is shown in Figure 4. As shown, only a few of the
160 features have an effect on the diagnosis, andmost features
are redundant. Therefore, it is necessary to perform feature
selection before training the model for higher diagnostic
accuracy. After using the incremental selection method to
test the feature combination of the best features, we found
that the test result of the feature subset consisting of the
five most important features (D-xylose, acetic acid, linoleic
acid, D-glucopyranosiduronic acid, and cholesterol) is the
best. Therefore, the best feature subset was used to train the
learning model.

In this stage, we evaluated the effectiveness of the
RF-CFOA-KELM model on the optimal feature subset.
The detailed results are shown in Table 6. On aver-
age, RF-CFOA-KELM obtained results of 81.60% ACC,
0.7766 MCC, 89.57% sensitivity and 65.77% specificity,
respectively.

TABLE 6. Classification performance of RF-CFOA-KELM in terms of ACC,
MCC, sensitivity and specificity.

FIGURE 5. Classification performance achieved by the involved methods.

To validate the proposed approach, we conducted a
comparative study of five other efficient models, includ-
ing RF-FOA-KELM, RF-PSO-KELM, RF-GA-KELM,
RF-SVM, and RF-BPNN. The detailed comparison of the
six methods is shown in Figure 5. It is revealed that
the RF-CFOA-KELM model is better than the original
RF-FOA-KELM model in four evaluation indexes. For the
MCC metric, RF-CFOA-KELM achieved the best result
and smallest standard deviation. RF-FOA-KELM achieved
second place, followed by RF-PSO-KELM, RF-GA-KELM,
and RF-SVM. The result obtained by RF-BPNN is the worst.
For the sensitivity metric, RF-CFOA-KELM achieved the
best result. RF-FOA-KELM was the second best, followed
by RF-GA-KELM, RF-PSO-KELM, and RF-SVM. The
result obtained by RF-BPNN is the worst. For the speci-
ficity metric, RF-CFOA-KELM still achieved the best result
and RF-FOA-KELM achieved the second best, followed by
RF-SVM, RF-PSO-KELM, and RF-GA-KELM. The result
obtained by RF-BPNN is still the worst. For the ACC metric,
RF-CFOA-KELM obtained the best result. RF-FOA-KELM
achieved the second-best result, followed by RF-PSO-
KELM, RF-GA-KELM and RF-SVM. The result obtained
by RF-BPNN is the worst. In summary, we observe that the
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proposed RF-CFOA-KELM can obtain better results or very
competitive results than other involved counterparts across
four performance metrics.

FIGURE 6. Convergence trends of the involved methods.

To verify the good convergence effect of the proposed
RF-CFOA-KELM method, we recorded the convergence
trend of various methods. In Figure 6, we found that
RF-CFOA-KELM has achieved the best accuracy with a
fast convergence speed, which means that CFOA has strong
search ability and can force it to escape from local opti-
mum. The main reason is that chaotic local search technology
provides a strong search capability for FOA. Inspecting the
curves in the figure, the RF-FOA-KELM model requires
more iteration to converge, and the solution obtained is
smaller than the RF-CFOA-KELMmodel. The GA algorithm
has a weak global search capability, takes a long time to find
the best solution and the result of RF-GA-KELM is not good.

VII. DISCUSSION
In this study, an accurate prediction model has been suc-
cessfully established for discriminating between the healthy
controls and the sepsis patients based on the metabolic data.
Sepsis is a common clinical disease. It is very common in
critically ill patients and is one of the common causes of
death. The occurrence of sepsis will lead to excessive inflam-
mation, endothelial damage, increased vascular permeability,
oxygen utilization disorders, immune dysfunction, and high
metabolic state, resulting in high morbidity and treatment
costs. Therefore, sepsis has always been one of the focuses
of medical research in critical illness. As a new subject after
genomics, transcriptomics, and proteomics, metabolomics
has been widely used in the study of various clinical diseases
and has wide application prospects in clinical medicine.

To compensate for the lack of energy supply, the body
during sepsis is forced to mobilize sugar, protein, and
fat to provide more energy. Therefore, metabolites asso-
ciated with the metabolism of sugar, protein, and fat can
change significantly. We used the random forest algorithm

to screen out five biomarkers (D-xylose, acetic acid, linoleic
acid, D-glucopyranosiduronic acid, and cholesterol) and
performed statistical analysis on each. The results of
this study showed that the level of acetic acid increased
(p < 0.05) in the sepsis group, while the level of linoleic
acid and cholesterol decreased (p < 0.05), D-xylose and
D-glucopyranosiduronic acid did not have statistically signif-
icance change (p > 0.05).

After sepsis, glucose metabolism increased significantly,
resulting in large amounts of pyruvic acid [27]. Pyruvate is
converted to acetyl-CoA by oxidative decarboxylation, which
in turn produces acetyl phosphate, which ultimately produces
acetic acid. Therefore, elevated levels of blood acetic acid
may reflect hyperactivity of sugar and protein after sepsis.

After sepsis, the body is forced to carry out fat mobiliza-
tion, resulting in a substantial increase in the production of
free fatty acids and glycerol in the body [66], [67]. However,
the results of this study indicate that, after sepsis, the levels
of linoleic acid that is mainly involved in oxidative energy
supply are significantly reduced. This may be related to a
significant increase in free fatty acid (FFA) clearance in
peripheral blood after sepsis [68]. The level of FFA in periph-
eral blood mainly depends on the rate of FFA production and
clearance [69]. Although the FFA after sepsis is increased,
the overall level of FFA is reduced in blood, due to the fact that
endotoxin and inflammatory factors up-regulate the expres-
sion of fatty acid transporters and FAT/CD36 genes, allowing
FFA in blood to be rapidly transported to muscle or other
tissues [70]. In addition, lower FFA levels in the peripheral
blood also indicate the body’s energy supply and demand
status. The lower the level of FFA, themore serious the imbal-
ance is of the body’s energy supply and demand. Because the
imbalance of energy supply and demand is closely related to
the prognosis of sepsis, the level of blood linoleic acid could
be used to evaluate the condition of sepsis [23].

Cholesterol is an important structural component of cell
membranes; it is also an important source of many steroid
hormones and certain vitamins. During stress, the body
releases a large number of steroid hormones andmaintains the
stability of the cell membrane, all of which need to consume
cholesterol, while new cell synthesis uses total cholesterol to
increase [71], [72]. Therefore, sepsis may cause a decrease
in the total cholesterol level in the blood [73], [74]. The
mortality of patients with sepsis is significantly associated
with cholesterol levels. The lower the cholesterol concen-
tration, the mortality rate will be the higher [73], [75]. The
results of the study showed that the cholesterol level in severe
sepsis patients was significantly correlated with death. The
cholesterol level was progressively decreased; the risk of
death was increased, indicating that cholesterol could also be
used as a prognostic factor for severe sepsis.

VIII. CONCLUSIONS
We proposed to use KELM to diagnose sepsis. Using the
metabolic data from the sepsis patients, the proposed method
has achieved a predictive accuracy of 81.6%. To enhance
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the performance of KELM, a new learning mechanism,
the CFOA is proposed. We introduced two new mechanisms
into the original FOA, including the chaotic population ini-
tialization and the chaotic local search strategy. To further
promote the classification performance and identify the most
important biomarkers, we performed the feature selection
using the random forest prior to construct the classification
model. The final established model, RF-CFOA-KELM, was
used to diagnose the sepsis in an effective manner. We used
the RF to screen out five biomarkers (D-xylose, acetic
acid, linoleic acid, D-glucopyranosiduronic acid, and choles-
terol), and we performed statistical analysis on these five
substances. For comparison purposes, other nature-inspired
algorithm-based KELM models and other popular machine-
learning algorithms (including SVM and BPNN) were also
used in this study for diagnosis of sepsis. In summary,
we find that the proposed RF-CFOA-KELM can achieve
better results or more competitive results than other involved
counterparts across four performance metrics.

In the future, we will collect more relevant samples to
establish more accurate sepsis severity prediction model.
In addition, building an effective sepsis diagnosis decision
support system based on the proposed model is also one of
the future research directions.
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