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ABSTRACT The number of Web services has increased dramatically during the last few years. This has
resulted in an increase in the volume of candidate services for tasks in composition systems. This has led
to growth in the variety of nonfunctional properties in service selection, resulting in uncertainty (veracity
issues) among such properties, which has severely affected the NP-hard aspects of service selection. Despite
this, consumers in many areas would like access to a variety of selectionmethods such as linear programming
and dynamic programming techniques. An additional problem is that the composition length (the number
of tasks) of the workflow has increased, with the incorporation of research domains such as data science.
These trending composition issues are challenging the computational power of existing methods. Such
concerns have opened the door to research involving Big Data space. We propose a flexible, distributed
selection algorithm that facilitates heterogeneous-selection methods to satisfy multiobjective composition
requirements rather than rigid, specific composition requirements. However, service-selection processes
in a Big Data space will inevitably increase traffic congestion caused by the increased volume of internal
communication, particularly external traffic, such as Zipf and Pareto phenomena, and internal traffic during
shuffling. To address these concerns, we propose solutions for each case. Our experiments demonstrate that
the proposed traffic-efficient multiobjective method is well behaved when selecting services in Big Data
space.

INDEX TERMS Big Data space, multiobjective service selection, QoS preferences, rule-based, traffic-
efficient.

I. INTRODUCTION
The expansion in services has led to increased opportu-
nities. Studies show that the growth in revenue has more
than doubled in bi-annually, with an increase more than
220% in service-based data-science-related activities in the
Amazon Web Services Platform in 2015, 2016 and 2017
compared to the respective 2013, 2014 and 2015.1 In addi-
tion, studies show a doubling of the volume of services in
the ProgrammableWeb.com store each year. Moreover, Pro-
grammableWeb is becoming a popular platform for well-
known providers such as IBM, Google, and Microsoft [1].
This confirms that growth in the consumer market and the
availability of services is extensive.

There has been a dramatic surge in the availability of
candidate services, which, in turn, has led to ‘‘resource star-
vation’’ in selection processes. The variety and uncertainty

1www.statista.com/statistics/233725/development-of-amazon-web-
services-revenue

(veracity) of quality of services (QoS) among the high volume
of candidate services increases the NP-hardness in the search
for solutions [1].

Introducing new research areas such as data science (DS)
also increases the complexity of the composition system.
Lengthy processes such as data analysis (DA) for business
intelligence in a DS field typically comprise four differ-
ent phases: preparation, analysis, reflection, and dissemina-
tion [2]. In the preparation stage, data must be collected,
formatted, and cleaned. In the analysis stage, the analysis,
debugging, and inspection of substages must be cleared.
In the reflection stage, there are comparisons and calls to re-
execute the substages of the analysis stage. In the dissemina-
tion stage, steps such as displaying, deploying, and retrieving
the statistics of the detailed processmust be at least minimally
performed. Each of these substages can containmultiple tasks
and modern composition systems have lengthier processes
than do their conventional counterparts. We recognize this as
a challenge of modern service selection. In response, new DA
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research is emerging in DS, involving approaches such as Big
Data analytics (BDA) [3], which is lengthier than general DA
methods.

It is evident that the native service selection process is
a well-known NP-hard problem [35], [36]. Moreover, con-
ventional standalone processing platforms are reaching their
limits in dealingwith NP-hardness [1]. Thus, wemove toward
Big Data-related research topics. Hadoop and Spark are cur-
rently the most widely used Big Data processing platforms.
However, the Spark platform is generally regarded as involv-
ing expensive in-memory processing and lacking its own file-
management system. This hinders the study of native traffic
congestion occurring during the selection process. Hadoop
is the most popular native Big Data processing platform.
It includes its own file-management system and facilitates
a diverse range of techniques for file handling. Therefore,
it allows studying the occurring-traffic during the selec-
tion in a more effective manner. It also provides a gateway
to addressing a diverse range of problems associated with
research and industry domains in a cost-effective manner.
MapReduce (MR) is a well-known fundamental program-
ming technique in the Hadoop space. Therefore, we devised
our selection method based on MR in the Hadoop space.

Service composition is a key component of the highly
diverse DS [1], [37]–[39], including the fields of BDA
and deep learning. While facilitating these highly diverse
composition requirements, a peer user should have the
freedom to select and switch between composition require-
ments for the given problem using the given algorithm
without affecting the fundamental data structure, thereby
avoiding complex steps during decision-making or chang-
ing preferences. However, there are no existing meth-
ods that facilitate such dynamically changing composition
requirements and most have rigidly specific composition
patterns, such as optimizations that are focused only on
linear [4], [5], [40] combinatorial [6], [7], [41], [42], or multi-
variate patterns [1], [8], [43], [44]. Therefore, it is very impor-
tant to facilitate multiobjective selection methods, which are
flexible with respect to different selection requirements with-
out affecting the overall flow of the algorithm. Accordingly,
our aim is to propose amultiobjective selection algorithm that
facilitates user-driven flexibility about selection methods.

Given this aim, we propose three types of selection
approaches by considering the three main types of compo-
sition requirements, the first being based on linear program-
ming and the other two involving dynamic programming.

In some cases, users need to find the global optimal QoS
requirements from a given set of candidate services. Here,
to satisfy the linear programming requirements, we propose
a Dijkstra algorithm-based method as a novel technique for
selection domain.

In other cases, users need to satisfy a combinatorial opti-
mization of their QoS requirements with respective to a
maximum upper bound for the overall negatively affected
values, while maximizing the overall positively affected QoS
of the services. Here, we propose a 0-1 Multi-Constraint

Knapsack Problem (0-1 MCKP) [6], [7], [9] to satisfy these
requirements.

Finally, peer users may seek multivariate optimization of
their QoS parameters for their composition system. To sat-
isfy this requirement, we propose using selection criteria
based on the Artificial Bee Colony (ABC) algorithm. These
three methods are integrated into the multiobjective selection
method referred to in this paper.

Service-selection processes in Big Data spaces can involve
excessive traffic congestion because of both internal and
external factors in the MR process [10], [11]. Considering
the MR algorithm as the base, shuffling traffic called the
internal traffic occurs during the MR process, and ZipF,
Pareto traffic occurs due to the hotness of the data and outside
of the MR algorithm. Then they are called as the external
traffic perspective to the MR algorithm. We refer to these
two issues as ‘‘internal traffic’’ and ‘‘external traffic,’’ respec-
tively, throughout this paper.

Two commonly identified types of external traffic conges-
tions are the Zipf and Pareto phenomena’s [11]. They affect
negatively to the overall performance of an MR job. Both
phenomena’s occur naturally in any environment, including
local machines, local area networks, and clouds. However,
they show particularly adverse behavior in the Hadoop space.

ZipF [45]–[47] and Pareto [46], [48], [49] are native and
intrinsic traffic congestions occurring network data process-
ing. However, these two factors show adverse behavior in the
Big Data environment [11], [12].

The Zipf phenomenon in a Hadoop distributed file system
(HDFS) refers to an access pattern distribution of replicas in
a given file according to Zipf’s law. This results in a ‘‘hot’’
replica (higher access rate) among replicas available in a
given file. In the service-selection process, the aim is to deal
with QoS service preferences during this process, but the
hotness phenomena tend to favor services with lower QoS
preferences. This leads to a reduction in the accuracy of the
selection process. In addition, because of the limited number
of replica preferences, it generates heavy traffic congestion
and causes a reduction in overall performance. To address
these concerns, we propose a QoS-aware service distribution
method.

The Pareto phenomenon in general environments refers to
80% of the data usage being represented by 20% of the data.
This is known as the ‘‘80/20 rule’’ [12]. However, the Hadoop
process demonstrates the further adverse effect in the Hadoop
environment. This phenomenon causes to increase the hot
files. To address this traffic congestion phenomenon, we pro-
pose a traffic-aware service-replica distribution method.

In addition to that, service selection is a natively
NP-hard problem for finding the optimal utility (optimized
for linear, combinatorial or multivariate) values of QoS in
composition plan among services available. To address these
issues, we employed the heuristic methods to find the optimal
selection composition plan. Then it is obvious, the given
selection process always tries to achieve the global/local opti-
mal utility QoS plan among the given services. Then service
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selection also generates the ‘hot’ services and composition
plans during the selection process. Therefore, we assume,
it has more tendency to affect the intrinsic traffic congestions
which are caused by ZipF and Pareto phenomena’s than these
two traffic congestions appear in the native traffic in the
Hadoop environment.

Moreover, one of the most common reasons for internal
traffic congestion is data communication between the map
and reduce phases [10]. Usually, this shuffles a large chunk
of the map results in the reduce phase based on the key
value of the MR job, and thereby on the internal traffic of
the MR job. Service selection generates an excessive amount
of intermediate data and this tends to increase the internal
traffic. Therefore, we propose a combiner-based intermediate
MR agent to address this issue. We called this method the
intermediate MR agent. This agent procedure results in two
major benefits, firstly, this reduces traffic congestion between
mapper and reducer by reducing the intermediate data, and
secondly reduces the rest job of reducer phase. This results
in curtailing the processing time of the reducer phase. These
two are the main reasons behind the reflexing the traffic in
the shuffling stage and workload of the reducer phase.

Experimental results show that our solution is well adapted
to Big Data spaces. A shortened form of this paper has been
presented previously in conference papers [5], [12]. Here,
we expand on the theoretical and evaluation aspects of the
optimization model and propose a multiobjective service-
selection algorithm for Big Data spaces. We are among the
first to propose bidirectional (internal and external) traffic
optimization based on QoS awareness for multiobjective
service-selection algorithms in a distributed environment.
Our main contributions are:

- The Multiobjective service-selection algorithm in a dis-
tributed environment.

- QoS-aware rule-based traffic solutions to optimize traf-
fic caused by the ZipF and the Pareto.

- Combiner based traffic solution on optimizing the traffic
in shuffling stage.

The remainder of the paper is structured as follows.
In Section II, we introduce some preliminaries and formu-
late the problem statement. In Section III, we present our
proposed solutions for multiobjective selection requirements
and bidirectional traffic concerns. Section IV discusses the
proposed traffic-efficient multiobjective selection algorithm.
In Section V, we discuss evaluation, and Section VI considers
related work. Section VII concludes the paper.

II. PRELIMINARIES AND PROBLEM STATEMENT
In Section A, we introduce some preliminaries to selection-
requirement issues. In Section B, we elaborate on the selec-
tion data flow in the MR process. Section C formulates the
selection traffic problem for Big Data space.

A. PRELIMINARIES
In this subsection, we describe preliminary studies in the
problem domain. First, we define the types of selection

requirements and traffic congestion. Next, we define a prob-
lem statement for selection in the Big Data domain andmodel
the selection problem under the external and internal traffic
concerns.

We define service-selection requirements that are iden-
tified as three of the most common types. We use these
three requirements to show the adaptability of the proposed
method. One of these three requirements will be used in the
relevant selection scenario during the MR process in the Big
Data space.

- QoS values for web services (WS) that are affected
positively by the performance of the service are denoted
by QoSP, and there will be x QoS constraints for the
given WS WS ij. Here, x, i, j > 0, i represents the ith

task in a composition planner, and the j represents the
jth candidate service for the given ith task.

- QoS values of WS that are affected negatively by the
performance of the service are denoted by QoSN , and
there will be y QoS constraints for the given WS WS ij.
Here, y, i, j > 0 and x+ y represents the total number of
QoS values for the given WS ij.

- The weight values of QoSP and QoSN are represented
by w∝ and wβ , respectively, such that

∑x
∝=1 w∝ +∑y

β=1 wβ = 1 and 0 < w∝.wβ < 1.
- T is the number of tasks in the workflow, such that
0 < i ≤ T . vavg∝ is the average value of the particular
QoS attribute among the given candidate services and
vmax∝ andvmin

∝
are the maximum and minimum values of

the respective attributes.

QConstraintsAll is the collective value of negatively affected
QoS attributes set by the user, with QConstraintsβ being an
individual constraint.

Based on these notations, we define the heterogeneous-
selection problem using Definitions (and Scenarios) 1, 2, and
3 below.
Definition 1 (Linear Optimal Service Selection): Select the

composition plan that represents the global optimal solution
with the most profitable overall QoS criteria.
Scenario 1: Users need to find the global optimal service

composition sequence that maximizes the overall profit of
QoS criteria as shown in Eq. 1.

Max
T∑
i=1

(
x∑
∝=1

(
V (wsi∝)− v

avg
∝

vmax∝ − vmin∝

)
w∝

+

y∑
β=1

(
1−

V (wsiβ )− v
avg
β

vmaxβ − vminβ

)
wβ

 (1)

We propose a solution to the linear optimal service-
selection requirement based on the Dijkstra algorithm
described in Section III-A.
Definition 2 (Combinatorial Service Selection): Select the

composition plan that satisfies the QoS requirements, namely
the upper limit of negatively affected QoS criteria and maxi-
mum normalized QoS criteria.
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Scenario 2: Users need to find the global optimal service
composition sequence that maximizes the overall profit and
sets the maximum upper bound for negatively affected QoS
criteria as shown in Eq. 2 and Eq. 3.

Max
T∑
i=1

(
x∑
∝=1

(
V (wsi∝)− v

avg
∝

vmax∝ − vmin∝

)
w∝

+

y∑
β=1

(
1−

V (wsiβ )− v
avg
β

vmaxβ − vminβ

)
wβ

 (2)

Subject to
T∑
i=1

 y∑
β=1

(
V (wsiβ )− v

avg
β

vmaxβ − vminβ

)
wβ

 ≤ QConstraintsAll

(3)

We propose a solution to the combinatorial service-
selection requirement based on the 0-1 MCKP algorithm
described in Section III-B.
Definition 3 (Multivariate Optimal Service Selection):

Select the composition plan that satisfies the combinatorial
QoS-constrained set of each service, which is the resultant
service in the composition plan that satisfies the respective
minimum upper limit for negatively affected QoS criteria
with respect to the maximum normalized QoS criteria.
Scenario 3: Users need to find the global optimal service

composition sequence that maximizes each profit as shown
in Eq. 4 subject to the maximum upper limits for each of
the negatively affected QoS criteria as shown in Eq. 5. Here,
the user sets a number β of constraints forβ QoS attributes
for candidate WSs for the jth task. Here 1 ≤ k ≤ β.

Max
x∑
∝=1

(
V (wsi∝)− v

avg
∝

vmax∝ − vmin∝

)
w∝

+

y∑
β=1

(
1−

V (wsiβ )− v
avg
β

vmaxβ − vminβ

)
wβ (4)

Subject to

(
V (wsik )− v

avg
k

vmaxk − vmink

)
wj ≤ QConstraintk

Here 1 ≤ k ≤ β (5)

We propose a solution to the multivariate service-selection
requirement based on the ABC algorithm described in
Section III-C.

The main constraint behind a successful selection process
is optimal resource utilization. However, traffic congestion is
one of the most constraining factors behind optimal resource
utilization in a Big Data environment. This accounts for
considerable inefficiencies in the overall process. According
to our literature review, we identified two key types of traffic
congestion that affect the MR process internally and exter-
nally.We, therefore, define key traffic congestion in these two
categories as follows.
Definition 4 (External Traffic Congestion—The Zipf Prob-

lem): This refers to the fact that the relative probability of
access or processing requests for the ith most popular data

block is proportional to 1/1θ . When θ = 1, the data block-
request distribution strictly follows Zipf’s law. Otherwise,
it follows a more general Zipf-like distribution. Generally,
it follows a Zipf-like distribution for Hadoop in the corre-
sponding data blocks [13], [14].

Chen et al. [11] described the Zipf distribution of an
MR job for both the input and output files of the MR job.
They experimentally demonstrated and discussed the result-
ing unusual phenomena in terms of Zipf’s law. Zipf generates
hot files (higher access rate) and cold files (lower access
rate) during the MR job. This causes an increase in the
internal traffic and considerably reduces the performance of
the overall MR job. Henceforth, we will use the term hot
for more popular files and the term cold for not so popular
files. We propose a traffic solution to the Zipf problem in
Definition 7 of Section III-D-1.
Definition 5 (External Traffic Congestion—The Pareto

Problem): The Pareto problem refers to the 80/20 rule. From
a Hadoop perspective, the Pareto problem says that 80% of
access or processing happens in 20% of the most popular
data blocks. However, in actual cases, this 80/20 rule varies
somewhat, becoming an ‘‘80/10’’ rule. It can then severely
affect internal data communication and traffic in the MR
job, increasing the ratio of hot vs cold files. Zipf and Pareto
problems severely imbalance the data population in HDFS.
This leads to increased traffic to hot data and dramatically
affects the overall traffic of the MR process. We propose
a traffic solution to the Pareto problem in Definition 8 of
Section III-D-1.
Definition 6 (Internal Traffic Congestion-The Shuffling

Problem):Themapper generates large chunks of intermediate
data that are passed on to the reducer for further process-
ing, which leads to massive network congestion. Shuffling
data account for 58.6% of the cross-pod traffic and amounts
to over 200 petabytes of data in an analysis of SCOPE
jobs [10]. For shuffle-heavy MR tasks, this high traffic can
incur a considerable performance overhead of up to 30–40%,
as described in [15]. Therefore, we propose a traffic solution
to internal traffic congestion in Section III-D-2.

B. SERVICE-SELECTION DATA FLOW IN THE MR PROCESS
Fig. 1 shows the typical anatomy of an MR process. Accord-
ing to the figure, part of the selection operation is scheduled
in the given MR job. The input split constrains information
about the candidate services for the first tasks in the given
composition requirement, combined with mapper, then con-
tinues a portion of the overall selection operation. Respective
files are then split, merged, copied, and sorted before being
fed to the reducer phase. A different set of intermediate keys
are assigned to each respective reducer node. These sets are
the input to the reduce tasks. Reduce tasks are responsible
for reducing the value associated with intermediate keys.
Therefore, a set of intermediate keys are sorted on a single
node before being fed to the reducer.

The respective outputs of the reducers represent an opti-
mal composition planner for the given selection criteria.
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FIGURE 1. Anatomy of a typical MR process.

This executes the respective key-related results from the
reducers and outputs the respective optimal planner associ-
atedwith each key (servicing the first tasks in the composition
requirement).

C. TRAFFIC PROBLEM STATEMENT
According to the network traffic and the data flow of the
selection process in the MR job, we can state the problem as
follows, in terms of an effective-selection job. Fig. 2 shows
the anatomy of an MR job. It has to pass rigorous steps in
the data flowwhile facing severe constraints, namely, internal
and external traffic. CMRi is the cost of the i

th job of the MR
process for the selection. CJoint i is the traffic cost that affects
the ith job of the MR process. In addition, CSeli is the cost
of the selection process during the ith job of the MR process.
We can then describe the cost of the ith job of the MR process
as shown in Eq. 6.

CMRi = CJoint i + CSeli + a1 (6)

Here, CSeli = CMapi + CRed i involves the map and reduce
phases during selection. CJoint i is mainly affected via internal
and external traffic during the process. Therefore, we can give
Eq. 7 as the traffic cost of the ith job of the process.

CJoint i = CInt i + CExt i + a2 (7)

Here, CInt i is the internal traffic cost of the ith job of the
process andCExt i is the external traffic cost of the i

th job of the
process. These external and internal costs can then be further
divided and expressed by Eq. 8 and Eq. 9 as follows.

CInt i = CSi + a3 (8)

CExt i = CZi + CPi + a4 (9)

CSi , CZi and CPi are the costs of the shuffling, Zipf,
and Pareto, respectively, of the ith job of the MR process,
respectively, and ai:i = 1, 2, 3, 4, 5 is constant. We can then
represent CJoint i as shown in Eq. 10. Here, c is a constant.

CJoint i = CSi + CZi + CPi + a5 (10)

Therefore, to have an effective and efficient selection pro-
cess, we have to address the concerns described in Eq. 10.
This means that the respective CMapi , CSi , CRed i , CZi and CPi
values need to be reduced to reduce the respectiveCJoint i . This
directly affects CMRi , as shown in Eq. 6.

FIGURE 2. MapReduce job vs main traffic observed during the process.

We can then deduce the Eq. 11 to show the effects of traffic
congestion in reducing the overall traffic. This implies that
we can reduce the overall execution cost of the MR job of the
selection process when we minimize the collective internal
and external traffic congestions, as shown below. Here γ is
the number of jobs in the MR process.

min
i∈γ

(∑(
CSi + CZi + CPi

))
leads to min

i∈γ

∑
CMRi

(11)

We prove this as a joint optimization of the traffic problems
in Section III-D-3.

III. PROPOSED SOLUTION
In this section, we present our proposed solutions to the issues
described in Section II. In Sections III-A, III-B, and III-C,
we present the proposed solutions formultiobjective selection
requirements. In Section III-D, we develop the proposed
solution for bidirectional traffic concerns.

A. PROPOSED SOLUTION FOR A LINEAR OPTIMAL
SERVICE-SELECTION REQUIREMENT
We propose using a graph-theory-based linear program-
ming technique to address the scenario described in Def-
inition 1 in Section II. This is a novel approach to the
service-selection domain. First, we prepare a directed acrylic
graph (DAG) network from the candidate services, as shown
in Fig. 3, and then use our proposed algorithm to calculate
the longest path between the first and last vertex, as described
by Zeng et al. [4]. Dijkstra employed a longest-path-finding
algorithm to calculate the optimal selection composition plan
for such a DAG network. Table 1 shows the respective QoS
utility representations for the Dijkstra method.

Plans are made by the given candidate services. We use
Eq. 12 to calculate the distance of vertices (services) between
the ith and the (i + 1)th tasks containing any two services,
which is called the L(Si, Si+1). According to the Fig. 3 shown
DAG graph, it does not allow to create edges in between
services in the same task. Fig. 3 DAG allows edges between
adjacent tasks only, where c is a constant. For service Si+1,
its utility value USi+1 is given by Eq. 13.

L (Si, Si+1) = c+ USi+1 (12)
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FIGURE 3. DAG network created by candidate services of each task.

TABLE 1. Tasks vs utility values of candidate services used in Dijkstra.
Here, n is the number of candidate WSs and m is the number of tasks in
the work flow.

USi+1 =
x∑
∝=1

(
V (wsi∝)− v

avg
∝

vmax∝ − vmin∝

)
w∝

+

y∑
β=1

(
1−

V (wsiβ )− v
avg
β

vmaxβ − vminβ

)
wβ (13)

Here, we have taken c = 0. A DAG network is defined
as a source task (Task 1) to the last task, which Task m
services. This graph connects exactly m services. Each ser-
vice represents a vertex and the distance between two ser-
vices is calculated from Eq. 12. It does not create edges
between services in the same Task itself. We define the graph
G (V, E), in which V is created from Si and E is calculated by
L(Si, Si+1). Source nodes are represented by Task-1 services
and target nodes are represented by end-task services. If the
cost of the (ij)th service is represented as Eij, we have to
maximize

∑
ij∈E Eij.Sij, subject to S ≥ 0, for all i.

B. PROPOSED SOLUTION FOR A COMBINATORIAL
SERVICE-SELECTION REQUIREMENT
We propose a dynamic programming technique to address the
combinatorial selection requirement. We use 0-1 MCKP to
simulate the scenario described in Definition 2 in Section II.
The utility-value calculations that represent the profit and
weight used in 0-1 MCKP are given by Eq. 14 and Eq. 15.
Table 2 shows the respective weights and profit consumption
in the selection scenario.

TABLE 2. Task vs utility values of candidate services used in 0-1 MCKP.
Here, n is the number of candidate WSs and m is the number of tasks in
the work flow.

Table 2 shows the number m of Tj (i ≤ m) tasks in the
workflow. Each Tj contains n candidate services Sij (i ≤ n,
j ≤ m). The profit that can be gained from Sij services is
represented as UPℵ

ij and the weight as UNℵ
ij . The custom QoS

requirement is called the capacity, denoted as C.
Our 0-1 MCKP requirement is then expressed as fol-

lows. To maximize the normalized utility QoS Pu, Pu =∑m
i=1

∑n
j=1 Ui,j:P, subject to

∑n
j=1 Ui,j:N .Sij ≤ C , where

i ∈ M {1, 2, . . . ,m}. Moreover,
∑m

i=1 Sij = 1, j ∈
N {1, 2, . . . , n}, and Sij = 0 or 1, where i ∈ M , j ∈ N . Ui,j:P
positively affects the utility QoS of the jth candidate WS of
the ith task. Ui,j:,N negatively affects the utility QoS of the jth

candidate WS of the ith task.

Ui,j:P =
T∑
i=1

(
x∑
∝=1

(
V (wsi∝)− v

avg
∝

vmax∝ − vmin∝

)
w∝

+

y∑
β=1

(
1−

V (wsiβ )− v
avg
β

vmaxβ − vminβ

)
wβ ) (14)

Ui,j:,N =
T∑
i=1

(
y∑

β=1

(
V (wsiβ )− v

avg
β

vmaxβ − vminβ

)
wβ ) (15)

C. PROPOSED SOLUTION FOR A MULTIVARIATE
SERVICE-SELECTION REQUIREMENT
The WS selection requirement defined by Definition 3 in
Section III is simulated using the ABC algorithm [16]. The
utility functions for the positively affected QoS (profit) and
negatively affected attributes are represented by Eq. 16 and
Eq. 17, respectively. Table 3 gives the respective value dis-
tributions across the candidate services for the given task.
The utility QoS of the jth candidate WS of the ith task
is positively affected by Ui,j:P, whereas Ui,j,β:,N is the βth
negatively affected utility QoS of the jth candidate WS of the
ith task. The user sets β constraints for the β QoS attributes
for candidate WS of the jth task.

Initially, the ABC algorithm initializes the generated ‘‘food
source’’ randomly. Here, it uses Eq. 16 and Eq. 17 to set the
respective utility values for the food sources.

Next, it sends the employed ‘‘bees’’ to the food sources
(identified plans) and determines the amount of ‘‘nectar’’
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TABLE 3. Task vs utility values of candidate services used in ABC. Here, n
is the number of candidate WSs and m is the number of tasks in the
work flow.

(overall profit). It then calculates the fitness values for each
food source. Greedy selection is applied to the current solu-
tion and its mutant. If the mutant solution is an improvement,
it replaces the previous solution and the trial counter of the
solution is reset. If a better solution cannot be found, the trial
counter is incremented.

The algorithm then calculates the probability of the fit-
ness value. Here, it evaluates the nectar information from
all employed bees and chooses a food source (identified
solution) with a probability related to the amount of nectar
(overall profit). If it cannot find a better solution, then it
enjoins a ‘‘scout bee’’ to find a new food source in the same
way as does the employee bee. It continues this process until
the termination condition is reached.

Ui,j:P =
x∑
∝=1

(
V (wsi∝)− v

avg
∝

vmax∝ − vmin∝

)
w∝

+

y∑
β=1

(
1−

V (wsiβ )− v
avg
β

vmaxβ − vminβ

)
wβ (16)

Ui,j,k:N =

(
V (wsik )− v

avg
k

vmaxk − vmink

)
wk Here 1 ≤ k ≤ β (17)

D. PROPOSED SOLUTION FOR BIDIRECTIONAL
TRAFFIC CONCERNS
In this subsection, we present the proposed solutions for the
bidirectional traffic concerns. We first describe a solution
for external traffic and then for internal traffic. Finally, in
Section III-D-3, we present a joint optimization of bidirec-
tional traffic concerns.

1) EXTERNAL TRAFFIC SOLUTION
We now describe our proposed solutions for the two external
traffic concerns, namely the Zipf and Pareto problems.

a: ZIPF PROBLEM: QoS-AWARE SERVICE
DISTRIBUTION (QSD RULE)
We propose an efficient, rule-based traffic technique to
address the concerns that occur during the selection process
in an MR job. From our observations, Zipf raised the most
concerns, especially in the split and map stages of the MR
process shown in Fig. 2. These areas are highly correlated
with specific files and their replica access for specific needs
in the selection process, incurring Zipf phenomena and hot
files. To address this concern, we propose the QSD rule.
Definition 7 (QSD Rule): Service distribution according

to the proportional values of the normalized utility QoS are
inversely proportional to the hotness caused by the Zipf phe-
nomena during the selection process.

Let f be the functional representation of the proportional
distribution of services and ϕ the functional representation
of the hotness that occurs from Zipf during service selection.
The rules are formulated in Eq. 18 and Eq. 19.

f ∗ (Si, Si+1) =
QoS (Si+1)
QoS (Si)

(18)

f ∗ (Si, Si+1) =
ϕ (Si+1)
ϕ (Si)

(19)

Here, f ∗(Si, Si+1) is the optimal proportional replica distri-
bution of Si and Si+1 services according to their normalized
QoS proportions, as shown in Eq. 18, and ϕ(Si+1)

ϕ(Si)
is the

proportional value of the hotness caused by the Zipf of Si and
Si+1 services, as shown in Eq. 19.

We prove the QSD rule in terms of Theorem 1, Lemma 1,
and Lemma 2, as below.
Theorem 1: Traffic caused by Zipf is proportional to the

normalized QoS criteria of the services.
Proof: Consider that there are services called

S1, S2, . . . , Sn, and their respective normalized QoS are
QoSS1 ,QoSS2 , . . . ,QoSSn . The functional representation of
the QoS distribution is given as ∅

(
US1 ,US2 , . . . ,USn

)
. Traf-

fic occurring by Zipf for respective S1, S2, . . . , Sn services is
denoted as T ZS1 ,T

Z
2 , . . . ,T

Z
n , and the functional representa-

tion of the hotness distribution is given as T (S1, S2, . . . , Sn).
Zipf occurs at the splitting and map stages. At the split stage,
it is trying to find an accessible replica of a given service from
among the available replicas.

Here, it is most actively and exhaustively used for the
highest normalized QoS replicas. This means that the highest
traffic occurs for the highest QoS replicas, and the lowest
traffic for the lowest QoS replicas received.

In turn, this implies that the splitting stage traffic for the
ith job of the MR, TMRi,ZSj,split , is directly proportional to its USj ,
where k1 and c1 are constants.
Therefore,

TMRi,ZSj,split = k1 ∗ USj + c1, (20)

In addition, the mapper part is working hard to achieve the
optimal composition plan among the given list of plans,
as described in Sections III-A, III-B, and III-C. Here, expo-
nential traffic occurs to the highest QoS because all three
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native techniques are designed to follow the optimal QoS.
Therefore, the mapper stage traffic for the ith job of the MR,
TMRi,ZSj,Map , is directly proportional to its USj . That is,

TMRi,ZSj,Map = k2USj + c2, (21)

Where k2 and c2 are constants. We now consider both
Eq. 19 and Eq. 20:

TMRi,ZSj,Map + T
MRi,Z
Sj,split = k3USj + c3,

Where k3 = k1 + k2 and c3 = c1 + c2 are constants.
This means that traffic caused by jth services for the ith job

is given by Eq. 22:

TMRi,ZSj = k3USj + c3 (22)

Moreover, based on Eq. 22, traffic caused by all services of
the ith job can be expressed as shown in Eq. 23. Here, N is
the number of services and γ is the number of jobs in the MR
process.

N∑
j=1

TMRi,ZSj = k3
N∑
j=1

(USj + c4) (23)

Finally, based on (22), traffic caused by all services of all jobs
contained in the MR process is given by Eq. 24:

γ∑
i=1

N∑
j=1

TMRi,ZSj = k3

γ∑
i=1

N∑
j=1

(USj + c5) (24)

According to Eq. 24, therefore, the overall traffic caused by
Zipf is proportional to the normalized utility QoS of services.

According to Eq. 22, assuming services Sj and Sj+1 and
their USj > USj+1, the traffic imposed by Zipf for the ith MR
job is shown by Eq. 25:

TMRi,ZSj > TMRi,ZSj+1
(25)

According to Eq. 25, traffic to Sj and Sj+1 caused by Zipf for
the entire MR process is:

γ∑
i=1

TMRi,ZSj >

γ∑
i=1

TMRi,ZSj+1
(26)

Services that have higher normalized QoS have more traffic
during the MR selection process. Then, from Eq. 24 and
Eq. 26, traffic increments of Sj and Sj+1 are proportional to
their normalized QoS. This is represented by Eq. 27.

TMRi,ZSj+1

TMRi,ZSj

=
USj+1
USj

(27)

Lemma 1: Traffic caused by Zipf is inversely proportional
to the service distribution in the normalized QoS.

Proof: According to the Eq. 27, traffic in the given
service increases with increasing QoS. It then seeks more
file instances of that service to overcome the demand. Let
f (Si) = f (Si+1) be the initial service distribution of Si
and Si+1 services, with their QoS being USi > USi+1.

Then, according to Eq. 25, Zipf traffic for these services
is T 1

Si > T 1
Si+1

. This implies that Si suffers more demand
than Si+1. These demands are proportional to their utility
QoS because Zipf traffic is proportional to their QoS. The
new file distribution is then f ∗, with f ∗ (Si)/f ∗ (Si+1) =
USi /USi+1. New traffic on Si and Si+1 is redeemed in the
same proportional manner: T 2

Si < T 1
Si , T

2
Si+1

< T 1
Si+1

and
T 2
Si/T

2
Si+1
= T 1

Si/T
1
Si+1
= USi+1 /USi . This means that Zipf

traffic is inversely proportional to the f ∗. We can express this
as Eq. 28:

T 2
Si/T

2
Si+1 = T 1

Si/T
1
Si+1 = USi+1/Ui (28)

Lemma 2: Traffic occurring with Zipf is proportional to the
hotness caused by Zipf for a given service.

Proof: According to Definition 4, Zipf hotness refers to
the popularity generated by Zipf. Nevertheless, ‘‘very hot’’
implies more traffic, ‘‘average hot’’ implies average traffic,
and ‘‘not hot’’ implies no traffic. This means that the hotness
(caused by Zipf) is equally proportional to the traffic (caused
by Zipf) on that service.H1

Sj is the hotness caused by the Zipf.
Then, according to Eq. 28 and Eq. 29 below, it proves

Definition 7 and can be expressed as Eq. 30.

T 1
Sj/T

1
Sj+1 = H1

Sj/H
1
Sj+1 (29)

H1
Sj/H

1
Sj+1 = USj+1/USj (30)

�

b: PARETO PROBLEM: TRAFFIC-AWARE REPLICA
DISTRIBUTION (TRD RULE)
The Pareto raised most of its concerns in the split and map
stages of the MR process. These areas are highly correlated
with specific replica accesses for specific needs when Pareto
phenomena and hot replicas occur. To address this concern,
we propose the TRD rule.
Definition 8 (TRD Rule): Hotness caused by the Pareto is

inversely proportional to the traffic-aware replica distribu-
tion.

We prove the TRD rule based on Theorem 1 above and
Lemmas 3 and 4 below.
Lemma 3: Availability vs traffic: increasing the availability

of densely hot services (caused by the Pareto replicas) is
inversely proportional to the overall traffic.

Proof: We can apply Theorem 1 to the Pareto traffic in
services, which is proportional to the normalized QoS criteria
of the services. However, replicas in the HDFS represent
particular services. Therefore, we can extend Theorem 1 to
the replica level of the Sj service, assuming Sj is replicated
by r1, r2, .., rn, with n being the default replication factor
in the HDFS. According to the Pareto rule, it makes hot
replicas from available replicas among the given services. In
addition, according to Theorem 1, we can address this traffic
by increasing the number of instances of a particular file. This
implies that an increment of hot replicas according to their
popularity (hotness) is inversely proportional to the traffic.
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Lemma 4: Traffic occurring with Pareto is proportional to
the hotness caused by Pareto for the given replicas.

Proof: According to Lemma 2, the hotness caused
by a particular replica will be directly proportional to
the traffic. This can be applied to Pareto, where the hot-
ness caused by the Pareto is directly proportional to the
traffic.

According to Lemmas 3 and 4, we can conclude that the
hotness caused by Pareto is inversely proportional to the
traffic-aware replica distribution. �

2) INTERNAL TRAFFIC SOLUTION
According to our observations, the shuffling stage of the
selection process faces heavy traffic congestion because of a
large number of intermediate results. To address this concern,
we propose a middle agent for the MR process that uses a
combiner. This job-wise combiner method allows us to sort
and short-list the shuffling results of each job for both the
mapping and reducing sides. The result is a considerably
reduced overall job in the reducer phase. We call this the
intermediate MR (IMR) agent.
IMR Agent: The mapper phase generates large chunks of

intermediate data that are passed on to the reducer phase for
further processing. At the beginning of the reducer phase,
large chunks of intermediate data are shuffled to facilitate
reducer processing. This leads to massive network conges-
tion. To address this, we propose to introduce an IMR agent
that reduces network congestion and relieves the workload
of the reducer phase. The IMR agent mainly handles the
task of shuffling the intermediate chunks, which is separated
from the reducer phase and plays a crucial role in reducing
network congestion. It is important to note that the primary
job of the IMR Agent is to process the output data from the
mapper before being passed to the reducer phase to reduce the
workload of the reducer phase and minimized the shuffling
data chunk. Therefore, IMR results in two major benefits,
firstly, it accomplishes the part of the workload of the reducer
phase, and secondly, it reduces the shuffling data traffic.
We have employed a combiner to implement the IMR Agent
class.

3) JOINT OPTIMIZATION FOR THE TRAFFIC
PROBLEM STATEMEN
Section II-C contains the problem statement for overall traffic
congestion. According to Eq. 8, we have to minimize the
traffic concerns occurring during the selection stage of the
MR process. These are expressed as

∑
CMRi , where i is the

ith job of theMR process. In terms of the proposed techniques
explained earlier in Section III-D, we minimize the overall
traffic concerns as follows.

According to the Definition 7, by distributing services
according to the QRD rule, we will obtain:

min
i∈γ

∑
CZi

Then, according to the Definition 8, by distributing
the service replicas according to the TRD rule, we will
obtain:

min
i∈γ

∑
CPi

Finally, by considering the internal traffic congestion by
using the IMR agent, we will obtain:

min
i∈γ

∑
CSi

By aggregating these three techniques for overall external
and internal traffic, we minimize the overall traffic caused by
the selection process. That is, we obtain:

min
i∈γ

(∑(
CSi + CZi + CPi

))
This represents a solution to the problem expressed by

Eq. 11 in Section II-C.

IV. QoS-AWARE TRAFFIC–EFFICIENT ALGORITHM
This section describes the proposed algorithm for service
selection in Big Data space. Finding the optimal service com-
position sequence is a cumbersome task, mainly because of
the complex composition requirements sought within a large
search space. It requires high-performance infrastructure to
complete such a resource-intensive heavy-duty job. We pro-
pose an MR algorithm that aims to meet heterogeneous-
selection requirements, achieve global optima for linear
and combinatorial selection requirements, and near-optimal
multivariate-selection requirements.

According to the definition 1, 2 and 3, the proposed
solutions for the multiobjective selection requirements are
described in previous section III-A, B, and C. The selection
solutions are running behind the distributed environment.
In addition to that, traffic solutions are applied. Section A
describes the initial setup and overall flow, which is called
as driver procedure; Section B describes the algorithm of the
mapper; Section C describes the algorithm of the IMR agent;
Section D describes the algorithm of the reducer and retrieve
the final output.

A. SELECTION PROCEDURE: FLOW OF THE DRIVER
Selection procedure represents the driver of the MR process.
Let’s define the scenario for the better understanding the
process.
Scenario 4:As shown in Fig. 3; Consider a case comprising

four tasks (m = 4) and n candidate services for each task.
Assume p batches are processed by each mapper. Let Ui
be the normalized utility QoS. Next, assume that we have
services S1, S2, and S3, with respective Ui values: U1 = 0.5,
U2 = 0.75, and U3 = 0.25. The proportional values of these
three utilities will then be U1:U2:U3 = 2:3:1.
Initial Setup: First, we prepared the availability of the

service as follows. The HDFS needs to contain the respec-
tive service information according to Definitions 7 and 8 in
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Section III-D. According to the QRD rule, we follow the ser-
vice distribution of each batch of services as follows. S1 has
a C × 2 replications, S2 has C × 3 services, S3, and S4 have
C × 1 replications. Here, C is a constant and represents the
replication factor for the TRD rule. This is the preparation of
the environment to address the external traffic.

Next, it decides the types of QoS-awareness (linear opti-
mal, combinatorial and multivariate) need for the composi-
tion. If he needs the linear optimal then he should use the
Dijkstra method and doesn’t have to do anything, just need
to start the selection process. If he needs combinatorial, then
he should use the 0-1 MCKP and define the minimum lower
bound for the collective value of negatively affected criteria’s
as shown in Eq. 3. If he needs multivariate, then he should
use the ABC and define the minimum lower bound for each
of negatively affected criteria’s as shown in Eq. 5. Finally,
the user sets the above parameters in the selection Procedure
1 line 3. Procedure 1 shows the flow of selection procedure
and arrangement of the driver of the MR process. Lines 2 to
9 contains the driver with three sections: n number of the
mappers, an IMR Agent, and the reducer. At the beginning of
the Selection (Line 3), value for the Threshold_Plans and the
Type of Selection are assigned. Next, n number of mappers
are specified (Line 5). Line 6 includes the IMR Agent in
the procedure, which is responsible for reducing the traffic
in the shuffling stage and thereby reducing the burden on
the reducer stage. Line 7 includes the reducer class, which
processes intermediate results given by the IMR Agent and
outputs the optimal (or near-optimal) composition service
sequences.

B. MAPPER ALGORITHM
Algorithm 1 represents the proposed mapper algorithm for
the selection procedure. Lines 1 - 15 represents the k th

mapper of the Procedure 1 of the n number of mappers.
In Line 2, it generates possible plans for the given search
space. Next, Lines 3 to 14 show looping through the set of
plans according to the arranged number of threshold plans.
During this process, the procedure executes the selection
Selection_Requirement that was initially set by the user. This
generates a set of possible optimal planners for respective
batches of plans. Lines 4 to 6 involve the linear optimal
selection requirement and the Dijkstra algorithm is invoked.
Lines 7 to 9 involve the combinatorial selection require-
ment and the 0-1 MCKP algorithm is invoked. Lines 10 to
12 involve the multivariate-selection requirement and the
ABC algorithm is invoked. The inputs and outputs of all
three algorithms are synchronized to the same data structure,
thereby facilitating smooth operation throughout the selection
process without compromising the overall selection criteria.
Each job of the mapper results in a chunk of composition
results, initiated from the given candidate service of the first
task. Line 13 writes the set of resulting plans to the context.

For the above example, the results are in the form of Level
id vs optimal service selection sequence#profits, for 1 ≤ k ≤
n, as follows.

1: S11@S21@S31@S41#2.964
<Results of all possible combinations from S11 to 4th Task

of n mapper of p batches>
2: S12@S2n@S3n@S4n#1.460
<Results of all possible combinations from S12 to 4th Task

of n mapper of p batches>
. . .

k: S1k@S23@S34@S4k#2.960
<Results of all possible combinations from S1k to 4th Task

of n mapper of p batches>
. . .

n: S1n@S2n@S3k@S4n#1.360
<Results of all possible combinations from Sn1 to 4th Task

of n mapper classes of p batches>

C. IMR ALGORITHM
Algorithm 2 represents the algorithm for IMR Agent.
This procedure receives batches of intermediate results of
the selection. Two main objectives are involved in the
IMR. Reduce the shuffling traffic congestion, and reduce
the workload of the reducer phase. This leads to a dra-
matic reduction in internal traffic and the multiple reduc-
ers. In Line 2, the procedure initializes the optimal profit
and optimal plan sequence values. Lines 3 to 8 loop to
find optimal profit under the given key value and find
the optimal plan sequence under the key. Line 9 writes
the key with the concatenated optimal plan and profit to the
MR context.

During the IMR Agent class, the context is processed as an
intermediate process, below is sample output from the IMR
Agent. The information is KEY string value vs optimal plan
sequence with the profit value for the given sequence, namely
KEY vs optimal service selection sequence#profits, for 1 ≤
k ≤ n.
KEY: S11@S21@S31@S41#2.964 // This is the optimal

sequence among all possible combinations from S11 to 4th

Task of the 1st mapper.
<Results of all possible combinations from S11 for n

mapper>
KEY: S12@S2n@S3n@S4n#1.460 // This is the optimal

sequence among all possible combinations from S12 to 4th

Task of the 2nd mapper.
<Results of all possible combinations from S12 for n

mapper>
. . .

KEY: S1k@S23@S34@S4k#2.960 // This is the optimal
sequence among all possible combinations from S1k to 4th

Task of the k th mapper.
<Results of all possible combinations from S1k for n

mapper> . . .
KEY: S1n@S2n@S3k@S4n#1.360 // This is the optimal

sequence among all possible combinations from S1n to 4th

Task of the nth mapper.
<Results of all possible combinations from S1n for n

mapper>
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D. REDUCER ALGORITHM
Algorithm 3 represents the flow of the reducer. This finds
an optimal plan for the given key by splitting the optimal
plan and profit string resulting from the IMR Agent. Part of
the reducer job already completed by the IMR agent. Lines
3 to 8, procedure find the optimal plan and profit value for
the particular key. Line 9 writes the plan and profit to the
MR context. Below is sample output from the reducer. The
information is an optimal (or nearP= optimal) plan sequence
vs profit value for the given sequence, where 1 ≤ k ≤ n.
S1k@S21@S31@S41 vs 2.960

Procedure 1 Selection Procedure
1: Setup initial service data according to the

- QSD Rule to address the Zip
- TRD Rule to address the Pareto

2: Selection Class {
3: // Set initial parameters

Threshold_Plans←Number of Plans per EachBatch

Selection_Requirement← Type of Selection &
QoS constraints

4: Driver Class {
5: // Set n number of Mapper Classes under the

MultipleInputs
MultipleInputs.addInput(job, Input_file_1,
Mapper_1.class)
MultipleInputs.addInput(job, Input_file_2,
Mapper_2.class)
. . .
MultipleInputs.addInput(job, Input_file_n,
Mapper_n.class)

6: // Set Combiner Class
job.setCombiner(IMR_Agent.class)

7: // Set Reducer Class
job.setReducer(Reducer.class)

8: }end Driver Class
9:}end of Selection Class

V. EVALUATION
We conducted experiments to evaluate the proposed method.
We considered two key research metrics, namely the effi-
ciency of the proposed method and the effectiveness of the
heterogeneous-selection approaches in the Big Data space.
We, therefore, performed experiments in these two main
areas.
Efficiency: To evaluate the efficiency, we conducted exper-

iments that observed the internal, external, and jointly opti-
mized traffic efficiencies of multiobjective selection methods
while increasing the number of plans and data nodes in the
Hadoop cluster.
Effectiveness: To evaluate the effectiveness, we conducted

experiments that observed, in terms of computational com-
plexity, the internal, external, and jointly optimized traf-
fic effectiveness of multiobjective selection methods while

Algorithm 1 Mapper_k
1:procedure Map (key, service Information)
2: setup ()← Create all possible plans from initial

tasks to end task
3: for all plan_num < Threshold_Plans do
4: if Selection_Requirement = Linear Optimal then
5: Mapper_Result← Execute Dijkstra Algorithm
6: end if
7: else if Selection_Requirement = Combinatorial

then
8: Mapper_Result← Execute 0-1 MCKP

Algorithm
9: end else if
10: else then //Selection_Requirement =Multivariate
11: Mapper_Result← Execute ABC Algorithm
12: end else
13: context.write (Mapper_Result←Task_1 service, opti-
mal_plan#profit)
14: end for
15:end of Map() procedure

Algorithm 2 IMR Agent
// Designed to avoid multi cross shuffling, and continue
same Key of Mapper
// used in as the Key of Reducer to address shuffling stage
traffic concerns
1:procedure IMR Agent (key, values, context)
2: initialize optimal_profit and optimal_plan
3: for all values do
4: if existing_profit < new_profit then
5: optimal_profit = new_profit
6: optimal_plan = new_plan
7: end if
8: end for
9: context.write (‘‘KEY’’, optimal_plan#profit)
10:end of IMR Agent procedure

Algorithm 3 Reducer
1:procedure reducer (key, values, context)
2: initialize optimal_profit and optimal_plan
3: for all values do
4: if existing_profit < new_profit then
5: optimal_profit = new_profit
6: optimal_plan = new_plan
7: end if
8: end for
9: context.write (optimal_plan, profit)
10:end of reducer procedure

increasing the number of plans and data nodes. In particular,
we observed the precision of the proposed methods.

The experiments were conducted in CentOs 7, with
Hadoop 2.2 and Java 1.8 installed on a four-node Hadoop
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cluster. The master node contained an Intel Core i7 3.4-GHz
8-core processor and 8 GB RAM. Each data node contained
an Intel Core i5 3.0-GHz 4-core processor and 8 GB RAM.
Dataset:We conducted our experiments with a real-world

dataset provided by Al-Masri and Mahmoud [17] called the
QWS dataset, which contained 2500 items of real service
information for 10 types of QoS data. For our testing pur-
poses, we use two negatively affecting QoS criteria (response
time, and latency) and three positively affecting QoS criteria
(availability, throughput, and reliability). We repeated each
test case 30 times to obtain the average values for that test
case. We prepared 2,000,000 to 10,000,000 planners in a Big
Data environment from the QWS data.
Evaluation Metrics: Our aim was to evaluate the effi-

ciency and effectiveness of the internal, external, and joint
traffic optimizations of multiobjective selection methods in a
Hadoop environment. To achieve this, we defined four modes
(Mode 1, Mode 2, Mode 3, and Mode 4) and their respective
computational complexities (P, Q, R, and S) as shown in
Eq. 31, Eq. 32, Eq. 33, and Eq. 34.

Next, based on the computational complexities of Eq. 31,
Eq. 32, Eq. 33, and Eq. 34, we defined three traffic metrics
CInt , CExt , and CJoint in Eq. 35, Eq. 36, and Eq. 37.

P = Computational complexity of Mode 1 (Default) :

No external and internal traffic solutions are

applied (31)

Q = Computational complexity of Mode 2 :

Internal solution is applied but external traffic

solutions are not applied (32)

R = Computational complexity of Mode 3 :

External solutions are applied but internal traffic

solution is not applied . (33)

S = Computational complexity of Mode 4 :

External solutions and internal traffic solutions

are applied . (34)

CInt = R− S (35)

CExt = Q− S (36)

CJoint = P− S (37)

To calculate these measures, we executed multiobjective
selection methods for the various modes by increasing the
number of plans while increasing the number of nodes of the
Hadoop environment. We maintained a default mode (Mode
1) with minimal replica and block distribution and no IMR
agent. Modes 2, 3, and 4 were devised to satisfy particular
traffic solutions as follows.

In Section III-D-1, we proposed two approaches to address
the key external traffic congestions occurring during selec-
tion.We integrated these twomethods to conduct experiments
that evaluated the efficiency of the proposed method under
multiobjective selection approaches. First, we sorted theWSs
based on their utility QoS values and partitioned the dataset

into n sets. We then took the average QoS of each batch and
found their proportional values. We set the default mode as
one and the remaining batches according to their proportional
values. This is simulated in the QSD rule defined in Section
III-D. Next, we multiplied the respective proportional values
bym to simulate the TRD rule, also defined Section III-D.We
then observed the traffic-aware replica distribution across the
network (here, m and n are positive integers). According to
these results, we distributed services and their replicas across
the HDFS. We conducted experiments in Mode 3 and 4 with
external traffic solutions to obtain the respective metrics.

In Section III-D-2, we proposed an IMR agent approach to
address the key internal traffic congestion occurring during
selection. We conducted experiments in Modes 2 and 3 with
an IMR agent to obtain the respective metrics.

A. EFFICIENCY
We calculated the efficiency of the proposed internal,
external. and jointly optimized methods as E(TInternal),
E(TExternal), and E(Tjoint ), respectively, based on the compu-
tational complexities of four modes (Eq. 31, Eq. 32, Eq. 33,
and Eq. 34) and three basic traffic metrics (Eq. 35, Eq. 36,
and Eq. 37).

Based on Eq. 38, Eq. 39, and Eq. 40, we can evaluate
the traffic efficiencies of the three multiobjective selection
methods, as follows.

E(CInt ) = CInt/R (38)

E(CExt ) = CExt/Q (39)

E(CJoint ) = CJoint/P (40)

1) INTERNAL TRAFFIC EFFICIENCY
We considered the internal traffic efficiency of the three
selection methods, namely Dijkstra, 0-1 MCKP, and ABC.
We calculated the internal traffic efficiencies using Eq. 38
above. Tables 4, 5, and 6 give results for the internal traf-
fic efficiencies for each method. Here, M represents the
number of plans, in millions. Fig. 4 shows the processing
costs for Mode 1. This can be used as a reference for the
processing costs for the various methods in the Hadoop
environment.

For all three methods, the efficiency is suddenly reduced
as the number of plans changes from 2M to 4M. The number
of plans is increased by changing the number of mappers.
For 2M, a single mapper is used. For 4M, two mappers
are used. If a single mapper is used, the internal efficiency
will be higher than when two mappers are used because
using two mappers will generate more internal traffic. That
is, increasing the number of plans will increase the number
of mappers, thereby increasing the internal traffic. In our
experiments, we gradually increased the number of mappers
and the number of data nodes in the selection process. The
internal traffic should increase when increasing the num-
ber of mappers because of the increased cross shuffling in
the selection process. However, by using an IMR agent,
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TABLE 4. Internal traffic efficiencies for the 0-1 MCKP method.

TABLE 5. Internal traffic efficiencies for the ABC method.

TABLE 6. Internal traffic efficiencies for the Dijkstra method.

FIGURE 4. ‘P’ values for two data nodes of the Hadoop cluster.

the internal traffic efficiency is increased, from two mappers
upwards. That is, as the internal traffic of the selection process
increases, the IMR agent causes an increase in the internal
traffic efficiency of the selection process. We found that,
across the two-node, three-node, and four-node modes, the
0-1 MCKP method improved from an average 16% internal
traffic efficiency to 23%. For Dijkstra, it was from 10.8% to
11.2%. For ABC, it was from 10.8% to 15.6%.

The 0-1 MCKP method demonstrated a higher traffic
efficiency than the Dijkstra and ABC methods. According
to our investigation of the internal data used in the shuf-
fling stage, 0-1 MCKP generated more internal data than
the other two methods. This implies that the IMR agent
works more effectively when increasing the internal data
of the process. More generally, the proposed IMR agent
works efficiently when increasing the number of data nodes,
the number of mappers, and the internal data in the selection
process.

2) EXTERNAL TRAFFIC EFFICIENCY
We now consider the external traffic efficiency for the three
selection methods. We calculated the external traffic efficien-
cies using Eq. 39 above. Tables 7, 8, and 9 give results for the
external traffic efficiencies for the Dijkstra, 0-1 MCKP, and
ABC methods, respectively. Again, M represents the number
of plans, in millions.

As for internal traffic efficiency, a sudden reduction in
efficiency occurs when the second mapper is introduced,
as the number of plans increases from 2M to 4M. However,
efficiency is increased as the number of mappers is further
increased. In our experiments, we gradually increased the
number of mappers and the number of data nodes in the selec-
tion process. This means that the popularity of the service
data of the previous user case and the test case will directly
affect the following test case. According to our hypothesis,
popularity should be proportional to the hotness of the service
data, which implies that increasing the popularity of service
data should reduce external traffic. We observed that the
proposed rules for external traffic successfully reduced the
overall traffic for the selection process. We found that, across
the two-node, three-node, and four-node modes, the ABC
method improved from an average 21.2% external traffic
efficiency to 30.4%. For 0-1 MCKP, it was from 12.2% to
22.6%. For Dijkstra, it was from 10.4% to 21.6%.

The ABC method demonstrated a higher traffic efficiency
than the other two methods. According to Fig. 4, ABC also
has the highest processing cost. This implies that ABC should
have the highest external traffic. Therefore, the proposed
method for external traffic efficiency works best for increased
external traffic in the selection process.

TABLE 7. External traffic efficiencies for the ABC method.

TABLE 8. External traffic efficiencies for the 0-1 MCKP method.

TABLE 9. External traffic efficiencies for the Dijkstra method.
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3) JOINT OPTIMIZATION OF TRAFFIC EFFICIENCY
Finally, we consider the efficiency of joint optimization of the
internal and external traffic for the three selection methods.
We calculated the jointly optimized traffic efficiencies using
Eq. 40 above. Tables 10, 11, and 12 give results for the
jointly optimized efficiencies for the three methods while
increasing the number of plans and the data nodes in the
Hadoop environment. Again, M represents the number of
plans, in millions.

We found that, across the two-node, three-node, and four-
node modes, the 0-1 MCKP method improved from an aver-
age 18.2% jointly optimized traffic efficiency to 36.2%. For
ABC, it was from 20.4% to 31.6%. For Dijkstra, it was from
15.8% to 19.6%.

The 0-1 MCKP method demonstrated the highest joint
optimization among the methods, with ABC being next best.
The 0-1MCKPmethod could achieve 49% efficiency by joint
optimization when the number of data nodes was increased
to four. For ABC, 40% could be achieved and Dijkstra could
achieve a maximum of 28%. The selection process usually
reduces the efficiency of joint optimization when the process
introduces a second mapper. However, the process increases
efficiency as the number of plans in the process increases.
This implies that the proposed method for jointly optimized
traffic-aware selection can work efficiently.

TABLE 10. Jointly optimized traffic efficiencies for 0-1 MCKP.

TABLE 11. Jointly optimized traffic efficiencies for ABC.

TABLE 12. Jointly optimized traffic efficiencies for Dijkstra.

B. EFFECTIVENESS
For this metric, we mainly considered the computational
complexities and the precision of the three methods in the
Hadoop space.

1) EFFECTIVENESS OF THE TRAFFIC SOLUTION
We calculated the effectiveness of the respective internal
(CInt ) , external (CExt ), and jointly optimized (CJoint ) methods
by taking the average values for the various numbers of plans,
(2 M, 4 M, 6 M, 8 M, and 10 M) in all three test cases (2, 3,
and 4 data nodes). For example, we consider 2 million plans
for all three data-node numbers in calculating the respective
CInt as CInt,a, CInt,b, and CInt,c values for ABC. We then
specify the average traffic effectiveness for ABC in Hadoop
as (CInt,a + CInt,b + CInt,c)/3. Likewise, we calculate the
average values for all numbers of plans for the three selection
methods.

The results are shown in Figs. 5, 6, and 7, with respect
to their internal, external, and jointly optimized traffic costs.
All three graphs maintain the same pattern with only slight
deviations. The average line graph for ABC is concave in
shape, whereas 0-1 MCKP and Dijkstra maintained a nearly
linear relationship with execution time. This means that the
derivative of the ABC line graph increases with an increasing

FIGURE 5. Average processing time gain by internal traffic solution for
multiobjective selections in a multinode Hadoop cluster.

FIGURE 6. Average processing time gain by external traffic solution for
multi-objective selections in a multi-node Hadoop cluster.

FIGURE 7. Average processing time gain by joint traffic solution in
multiobjective selections in the multinode Hadoop cluster.
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number of plans, but the other two methods do not show
such an exponential increment. That is, internal, external,
and jointly optimized ABC traffic effectiveness for the ABC
method increases exponentially, whereas the increase is linear
for the other two methods. This is because the ABC method
has a multiobjective selection requirement, in contrast to
combinatorial and linear selection requirements. Numbers of
service plans are directly affected to increase traffic in all
three methods.

The 0-1 MCKP method maintained relatively high traffic
costs for the various traffic types. This is because 0-1 MCKP
has to solve combinatorial selection requirements, unlike the
Dijkstra method. This implies that the linear optimal selection
requirement solved by the Dijkstra method causes it to gener-
ate the lowest possible traffic cost among the three methods.

These three graphs plotted the caused and solved the aver-
age traffic for the various selectionmethods, implying that the
proposed traffic solutions work effectively with respect to the
various traffic concerns occurring with the various methods.

2) EFFECTIVENESS IN PRECISION
In Section IV, we proposed a threshold plan for each batch,
which is an approach that addresses the precision of the pro-
posed method by reducing the search space and segmenting
it in terms of batchwise content. To evaluate the proposed
method from the perspective of the efficiency of the results,
we conducted two different tests with two data sets.

The Dijkstra and 0-1 MCKP methods always result in a
globally optimal solution. Therefore, we needed to consider
only the ABC method to measure the precision of the com-
position plan for multivariate optimization. We conducted
experiments using the QWS dataset under various types of
candidate services to find the average precision of the given
result results for the ABC algorithm. We found the respective
error deviations, as shown in Eq. 41 and calculated the aver-
age precision, as shown in Eq. 42. Here,Dsum is the deviation
from the ascending ordered result and n is the number of
attempts.

Dsum =
n∑
i

Deviated Result (41)

Average Precision = 100− Dsum/n (42)

FIGURE 8. Comparison of the precision with and without the batchwise
operator.

Fig. 8 shows the results with and without the batchwise
operator for the QWS data set. It shows that the proposed
method consistently maintained a relatively high precision,
whereas the alternative would have a drastic reduction in
precision. This indicates that the batchwise operator is the
main reason for maintaining the effectiveness of the results
in a consistent manner.

Summaries of the respective methods are discussed in the
following. To find the summarized average values of the
respective methods, first we calculate the average values of
three rows separately and then calculate the average of the
respective three average values of Table 4 to 12.

Internal traffic efficiencies of each method are 19% by
0-1 MCKP, 13% by ABC and 11% by Dijkstra. The highest
internal traffic efficiency is earned by the 0-1MCKP and low-
est by the ABC. That means, for combinatorial requirement
(0-1 MCKP) result in the highest number of intermediate
results while multivariate requirement (ABC) has minimal
intermediate results during the process. All three methods
show relatively low increment value while increasing number
of nodes for a particular number of plans and increasing the
number of plans for a particular number of nodes.

External traffic efficiencies of each method are 26% by
ABC, 18% by 0-1 MCKP and 17% by Dijkstra. The highest
external traffic efficiency is earned by the ABC and lowest
by the Dijkstra. That means, during the execution of the
multivariate algorithm (ABC), process earned the highest
external traffic efficiency compared to the other twomethods.
Relatively ABC has an exponential increase of processing
cost and this is caused by the computation complexity of
multivariate composition requirement. However, ABC results
in more hot data due to the highest computation complexity
than the other two methods. In return, ABC results in the
highest efficiency as well. This implies, proposed external
traffic solution works better while the presence of more hot
data in Big Data space. Meantime, Dijkstra has minimal
computation complexity compared to the other two methods
and it results in relatively lowest efficiency. This means the
computation complexity of the objective function shows a
roughly proportional relationship to the external traffic.

Joint traffic efficiencies of each method are 28% by 0-1
MCKP, 25% by ABC and 17% by Dijkstra. The highest joint
traffic efficiency is earned by the 0-1 MCKP and minimal
by the Dijkstra method. Dijkstra has minimal computation
complexity, therefore linear optimal algorithm earned min-
imal joint traffic benefits. However, joint traffic efficiency
doesn’t show the proportional relationship to the computation
complexity of the objective function.

ABC shows the highest traffic effectiveness compared
to the other two methods. It maintains a considerable
gap between the other two methods. This caused by the
computation complexity of the ABC method. Respectively
0-1 MCKP and Dijkstra show relatively low and increment in
all three methods (internal, external and joint) while increas-
ing the number of plans in the environment as shown in
Fig. 5, 6 and 7.
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According to the Fig 4, the highest computation cost is
shown by the ABC and lowest by the Dijkstra. However, ABC
shows exponential growth and the considerable gap in the
processing time compared to the other two methods.

VI. RELATED WORK
This section provides an overview of the corresponding con-
tributions related to this work. Service selection based on Big
Data space is scarce. Wang et al. [1] proposed the BigData
Space service selection, a method based on heterogeneous
QoS-aware and trust values. It focused on accumulating
both qualitative and quantitative values into a single trade-
off model. It can be considered a comprehensive qualita-
tive and quantitative approach. However, it does not con-
sider heterogeneous-selection requirements, which is the key
difference in our approach. It considers a multi-CPU IBM
high-end server for a Big Data space, but not traffic issues.
In contrast, we have used one of the most populated Big
Data space, the Hadoop multicluster approach, as our Big
Data environment. In addition, their method does not have
the ability to deal with dynamic selection requirements. In our
case, we have analyzed our solution for three distinct selec-
tion requirements. Moreover, they proposed qualitative and
quantitative QoS-aware static service selection, whereas we
propose a quantitative QoS-aware dynamic service selection.

A traffic-efficient Big Data processingmodel has been pro-
posed by Xia et al. [18]. They proposed an architecture that
could deal with both the front-end and back-end traffic in a
Big Data space. Lin et al. [19] discussed the issues that occur
because of the Zipf phenomena in a case study. It focused
on the limitations to the parallelization of the MR job. The
Pareto phenomenon is the naturally observable concern in
most cases.

Kim and Doh [20] proposed a solution that can select
services based on QoS and trust. A two-layered preference
service-selection solution was proposed. It had to pass two
distinct phases because of the two-layered approach. The
overall process was layered, and this is also a qualitative
and quantitative QoS-aware service-selection solution, but it
is not a framework. A further advanced approach has been
proposed by Wahab et al. [21], which focuses on providing
a precise reputation-assessment mechanism in an open envi-
ronment. This reputation-evaluation process is interesting,
and it offers a means of manipulating the reputation for
overall service selection. Wan et al. [22] proposed a cloud-
based service-selection method. It also discussed trending
concerns in the service domain and proposed an architecture
for discussing how to deal with cloud services. Huang [23]
proposed a QoS estimation method through online communi-
cation. This might be very useful during the selection process
because of the QoS preferential estimation that reduces the
overall selection time. It is based on both qualitative and
quantitative concerns. However, none of these methods are
designed to cope with Big Data space.

Kang et al. [24] proposed a method that considered
globally optimal service selection for multiple competitive

peer users. They also discussed an interesting topic, namely
resolving conflicting requests and allowing them to find their
optimal selection within the range of service distributions.
They proposed an agent as a solution, which also features in
our proposal. It is the key element in avoiding conflicts in
the selection scenario. El Hadad et al. [25] proposed a QoS
broker architecture to find the optimum WS, which can be
a provided service, based on user queries. They proposed a
selection solution that can offer automatic service composi-
tion (ASC), which is also one of the trending requirements in
the industry. It focused on the transactional constraints of the
ASC process and aimed to satisfy the selection requirements
while considering the functional requirements, transactional
properties, and QoS characteristics.

Gao et al. [26] proposed a QoS-aware service selection
based on a genetic algorithm that was mainly oriented toward
trust in the QoS. They designed a trust-oriented genetic algo-
rithm called TOGA, and their aim was to find a near-optimal
plan for the composition system. Zhang et al. [27] proposed
an ant-colony-based service-selection algorithm for large-
scale QoS preference selection. They proposed a clustering-
guided method that uses a skyline-guided process to filter
the candidate service classes and cluster them by shrinking.
These methods are based on intelligent agent-based service
selection. In our approach, we proposed a middle agent (not
an AI agent) to address traffic congestion during the selection
process. Moreover, we proposed ABC for multivariate QoS
optimization in the service selection.

An interactive analytical process was proposed for Hadoop
space by Chen et al. [11]. They focused on addressing the
traffic congestion caused by Zipf and Pareto phenomena.
They proposed a solution based on a cross-industry study
of the efficient management of MR workloads. Ke et al. [28]
proposed a traffic-aware partition-based Big Data method
that focused on reducing internal traffic congestion during
an MR job. They proposed an intermediate data-partition
solution to address these concerns. Their solution used a
decomposition-based distributed algorithm to deal with large-
scale optimization. However, none of these solutions were
related to service selection but were discussed as the internal
and external traffic solutions to MR jobs. We are proposing
a solution that can cope with both internal and external traf-
fic congestion in an efficient manner. In addition, we have
applied this solution to practical application areas such as the
service selection domain.

Traffic occurrence and optimization beyond the data cen-
ter has been studied by Ersoz et al. [29]. They considered
cluster-based network traffic characterization for multi-tier
data centers. Their focus was the characteristics of network
behavior within a clustered, multi-tiered data center with
respect to the interarrival-time distribution of requests to
individual server nodes and tiers. This approach gave insights
about low-level traffic handling and communication between
tiers.

Traffic and communication optimization in Big Data
infrastructures has been studied by various scholars.
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Zhang et al. [10] proposed a method for optimizing data
shuffling in parallel computation by user-defined functions
in an MR process. In addition, they proposed a framework
called SUDO, which is an optimization framework that rea-
sons about data-partition properties, functional properties,
and data shuffling. This differed from our work, where we
proposed shuffling and data utilization in the parallel pro-
cessing of the MR process. Aledhari et al. [30] proposed a
deep-learning-based data-minimization algorithm for the fast
and secure transfer of big genomic data. They focused on
maximizing the channel utilization by decreasing the bits
needed for transmission of the dataset. They proposed a
novel deep-learning CNN-based algorithm thatminimizes the
dataset during transfer and protects the data from middle-
man attacks and other types of attack, such as changing
the binary representation of the dataset. Zhao et al. [31] pro-
posed a distributed graph-parallel computing system with
lightweight communications. Their system, called Ligraph,
processes large-scale graph data in a distributed mode with
optimal communication overhead. Yan et al. [32] proposed
heterogeneous data-storage management with deduplication
for cloud computing. They focused on encrypted data stor-
age, management, and the deduplication process across the
cloud environment. Comparing our method with this method,
we selected a Big Data environment and the MR process
because of their lightweight data and extensive resource-
starvation processing with minimal overhead traffic for solv-
ing heterogeneous-selection optimization problems.

For threshold-based policies, service selection and
scheduling are both NP-hard problems. Scheduling problems
are applicable to many domains including services, com-
munication, and planning. Chen et al. [33] proposed buffer-
aware scheduling with the adaptive transmission, which
focused on obtaining the optimal trade-off between the aver-
age delay and power consumption. We focused on the QoS
when aiming for optimal traffic efficiency. X. Chen et al.
modeled the problem based on a Markov decision process
and proposed an algorithm to obtain the optimal solution.
Asadi et al. [34] surveyed scheduling in wireless commu-
nication, describing opportunistic scheduling from various
perspectives such as capacity, QoS, fairness, and distributed
scheduling. Our proposal also considered if the processing-
resource capacity for Big Data, with linear, combinatorial and
multi-objective QoS, and with distributed computing would
be satisfied with respect to resource starvation.

VII. CONCLUSION
We have proposed a multiobjective serviceselection solution
that considers external and internal traffic congestions in Big
Data space. Proposed method addresses the concerns arising
from the flooding of services and then the selection processes
can be handledmore efficiently in BigData space. Data traffic
caused by the ZipF and Pareto are called as the external traffic
congestions. Data traffic caused by the shuffling stage of
the MR process is identified as the internal traffic. We have
proposed a complete model for traffic control while dealing

with the selection process in MR jobs. Novel QoS-aware
traffic-efficient methods have been proposed for external
traffic congestion. In addition, we have introduced a middle
agent to address the internal traffic congestion, which eases
the reducer workload in an efficientmanner.We adopted three
selection criteria’s for the multiobjective selection methods,
which are linear optimal, combinatorial and multivariate
QoS optimizations. These methods are based on both lin-
ear programming and dynamic programming. The proposed
distributed algorithm can adapt easily to dynamic selection
requirements. Our experimental results demonstrate that the
proposed method handles traffic congestions efficiently and
effectively in producing composition plans for multiobjec-
tive selection requirements. Internal traffic efficiency shows
relatively low compared to the external traffic efficiency.
Only external traffic efficiency shows a nearly proportional
relationship to the computation complexity of the objective
functions. The Proposed method is a well-behaved QoS-
aware rule-based traffic-efficient service-selection method
for Big Data space. In future work, we aim to investigate
qualitative QoS criteria and uncertainty in the QoS values for
the selection method.
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