
Received July 6, 2018, accepted August 12, 2018, date of publication August 29, 2018, date of current version September 21, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2867683

Optimal Task Scheduling for Distributed
Cluster With Active Storage Devices and
Accelerated Nodes
MOHAMMED S. BENSALEH1, (Senior Member, IEEE), YAMAN SHARAF-DABBAGH2,
HAZEM HAJJ2, (Senior Member, IEEE), MAZEN A. R. SAGHIR2, (Senior Member, IEEE),
HAITHAM AKKARY2, HASSAN ARTAIL2, (Senior Member, IEEE),
ABDULFATTAH M. OBEID1, (Senior Member, IEEE), AND
SYED MANZOOR QASIM 1, (Senior Member, IEEE)
1Communications and Information Technology Research Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
2Department of Electrical and Computer Engineering, American University of Beirut, Beirut 11072020, Lebanon

Corresponding author: Syed Manzoor Qasim (mqasim@kacst.edu.sa)

This work was supported in part by the King Abdulaziz City for Science and Technology and in part by the Masri Institute at American
University of Beirut.

ABSTRACT With advancements in compute-intensive and memory-bound applications, the need for faster
and more energy-efficient processing platforms continues. In support of these advancements, heterogeneous
platforms have been proposed to enhance the performance and efficiency in the cloud. These platforms
include field programmable gate arrays and graphical processing units in addition to general-purpose
processors. Furthermore, there is a strong interest in advancing active solid-state drives to support both
storage and computation. In this paper, we present a generic formulation to support the modeling of
such a heterogeneous cloud environment, without being specific to a particular cloud platform such as
Spark or Hadoop. We represent the cloud as a collection of clients, middleware control nodes, and high
performance compute nodes (HPN), where the HPNs represent the options of advanced compute technolo-
gies in a heterogeneous cloud. The objective of the paper is to present a simple and efficient formulation
for scheduling applications in such a heterogeneous cloud. Consistent with recent software modeling of
artificial intelligence applications, we propose tomap applications into directed acyclic graph representations
of tasks. The optimization problem is then formulated to infer the best scheduling of tasks on the HPNs,
while minimizing the overall execution time and data communication delays between nodes. Unlike existing
scheduling algorithms that assume equal performance across nodes, our formulation explicitly takes into
account the different compute capabilities of the heterogeneous nodes. The resulting task scheduling is
then evaluated to provide insights into the performance gains with the proposed advanced heterogeneous
cloud computing environment. The results show improved performance when comparing the proposed task-
scheduling algorithm with the genetic algorithm and heterogeneous earliest finish time algorithms. We also
show the performance gains achieved with the optimal task scheduling on a heterogeneous cloud system as
compared with a conventional CPU-only cloud system.

INDEX TERMS Distributed architectures, heterogeneous cloud system, optimization, reconfigurable
hardware, scheduling and task partitioning.

I. INTRODUCTION
The ever-increasing demand for more processing capabilities
is driving cloud service providers, like Google, Microsoft,
and Amazon, to expand their datacenter infrastructure. As a
result, datacenters’ power consumption by a large extent,
and network overheads continue to rise in proportion to the

number of nodes in these systems. An alternative solution is
to leverage special purpose hardware accelerators to provide
additional computational power to individual cluster nodes.
In addition to General-Purpose Processors (GPP), heteroge-
neous platforms have been proposed to enhance performance
and efficiency in the cloud. Such heterogeneous systems are

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

48195

https://orcid.org/0000-0002-6407-2092


M. S. BenSaleh et al.: Optimal Task Scheduling for Distributed Cluster

typically comprised of conventional cores (CPUs) and uncon-
ventional cores such as Graphical Processing Units (GPUs)
and Field-Programmable Gate Arrays (FPGAs). Such a het-
erogeneous computing system employs both conventional
and unconventional cores on different types of tasks, which
brings improved performance and power efficiency through
specialization. Furthermore, and recently, Intel unveiled a
prototype for an FPGA-accelerated storage technology [1].
The flexibility and variations in such advanced compute node
performance necessitate a simple method for modeling the
efficient scheduling of applications in such an environment,
which is the subject of this paper.

Earlier work [2], [3] has showed that data-centric [4] and
High Performance Computing (HPC) [5] applications can
benefit from different type of compute cores in order to
achieve a computational intensive goal. The benefits trans-
late into an improvement in overall power efficiency and
performance of a system. Several major examples of such
gains can be found in the ever-growing list of heterogeneous
systems on the green500 list [6]. In the last decade, scalable
and efficient frameworks have been developed to address
the continually growing needs in big data computing sys-
tems. Most common systems include Apache Hadoop [7]
and Spark [8], [9]. While these frameworks already compre-
hend many scheduling solutions that take many loading and
demand considerations into account, opportunities continue
to exist in retrofitting latest research advances that consider
future technologies.

As an example, and with the emerging trend of accelerator-
enabled datacenters, the research community is witnessing
extensive research to integrate and efficiently deploy special-
purpose hardware accelerators (GPUs and FPGAs) into these
data computing frameworks. Research efforts in [10]–[14]
target GPU integration within the Spark framework.
In [15]–[17], FPGA integration with SPARK and Hadoop are
investigated. The target of the integration is to provide a set
of programming APIs for big data processing applications
to easily utilize those accelerators. However, these solutions
have not taken full advantage of the emerging technologies,
including the use of active storage systems.

The main question that rises for such heterogeneous sys-
tems is how to efficiently schedule the application tasks.
To answer this question, researchers have typically exam-
ined a two-step process, which involves prioritization of
tasks then processor selection, while considering the spe-
cific applications and applicable environment constraints.
Thakur et al. [18] consider dynamic voltage scaling for opti-
mized energy consumption from different computing needs.
Xu et al. [19] and Shojafar et al. [20] consider custom
genetic algorithm with different priority queues for different
sub-tasks.

In this paper, we focus on shortest execution time while
considering different performance options of the heteroge-
neous compute nodes. Given an application of n tasks and
a system of m heterogeneous computational nodes, what is
the assignment of each of the n tasks to each of the m nodes

to achieve best performance? We provide a generic represen-
tation of the distributed heterogeneous system as consisting
of three layers: application layer, middleware servers’ layer,
and High Performance Nodes (HPNs) layer. Fig. 1 shows
an example of heterogeneous cluster with one client, three
middleware servers, and five HPNs.

FIGURE 1. System architecture of heterogeneous cluster.

The application layer or client layer initiates the user com-
munication with the system for data processing. The middle-
ware server layer receives the requests from the application
layer and acts as a management middle stage between the
application and HPN layers. This layer manages operation of
HPNs such as scheduling and task allocation. It also handles
control of processing with communication and aggregation
operations. Depending on the size of the cluster, the middle
layer may consist of two primary nodes as the case with small
clusters managed in a Spark environment. The HPN layer
includes the core heterogeneous components of the system
with specialized high performance nodes. A HPN consists
of a specialized hardware (FPGA, GPU, or active SSD) con-
nected to memory storage drives.

In its most general form, the problem of scheduling tasks
of a graph onto a set of different machines is an NP-complete
problem [21]. Therefore, optimal task assignments are only
tractable for relatively small problems, whereas only heuris-
tic solutions are feasible for large problems. As a result,
over several years, a number of heuristics have been devel-
oped that attempt to strike a good balance between run-
ning time, complexity and schedule quality [22]. A number
of heuristics suitable for task scheduling on heterogeneous
resources have been suggested; a comparative evaluation of
twenty different heuristics can be found in [23]. Among these
heuristics, the Heterogeneous Earliest Finish Time (HEFT)
heuristic [24] has become a good baseline for comparison,
having the advantage of simplicity and producing generally
good schedules with a short makespan [25]. The Genetic
Algorithm (GA) has also been widely reckoned as use-
ful meta-heuristics for obtaining high quality solutions for

48196 VOLUME 6, 2018



M. S. BenSaleh et al.: Optimal Task Scheduling for Distributed Cluster

a broad range of combinatorial optimization problems includ-
ing the task scheduling problem [26], [27]. The customHEFT
and the GA are implemented in this paper to solve the
task scheduling problem in a heterogeneous and distributed
cluster.

The main contributions of this paper are as follows:
• A generic abstraction and formulation of the heteroge-
neous cluster-scheduling problem is presented. It is for-
mulated as an optimization problem to map application
tasks to computational nodes in a heterogeneous cluster.

• Optimal allocation solutions for small-scale clusters and
suboptimal solutions of the algorithm with large size
clusters are provided. In the latter case, a custom GA
and HEFT heuristic solutions are used to adapt to the
proposed formulation.

• The proposed algorithm is applied on both, a conven-
tional CPU-only cluster and the heterogeneous system,
and the merits of the heterogeneous cluster as compared
with the conventional system are analyzed.

The rest of the paper is organized as follows: Section II
presents the related work. Section III describes the details of
the generic heterogeneous cluster topology and scheduling
model. In Section IV, we present the proposed optimal allo-
cation algorithm. Custom heuristic algorithms are developed
and used for comparison in Section V. Simulation results are
presented and analyzed in Section VI. Finally, conclusion is
presented in Section VII.

II. RELATED WORK
Scheduling in distributed systems can be classified into differ-
ent categories as described in [28]. The highest level of clas-
sification is whether the allocation specifies how the tasks are
executed locally on each computing node or how the tasks are
executed globally on the whole distributed system. The sec-
ond level of categorization under the global scheduling is the
choice between dynamic and static scheduling. In dynamic
scheduling, task allocation decisions are made in real-time as
the application executes. In static scheduling, decisions are
made a priori, before running the application. Since schedul-
ing problems are NP-hard, finding an optimal allocation of
tasks is not always possible. Therefore, the third level in
the hierarchy is the choice between optimal or suboptimal
scheduling algorithms. For both the optimal and suboptimal
scheduling, the goal is to achieve the best performance, mini-
mum resource consumption, best reliability, or a combination
of the previous goals. Fig. 2 shows the taxonomy presented
before. This research work falls under the category of global-
static scheduling.We propose an optimal algorithm to achieve
the best performance along with the implementation of two
heuristics for performance maximization.

Wang et al. [29] studied task allocation on heteroge-
neous distributed systems to minimize the total energy
consumption. The authors formulated the problem as an
integer linear programing and used heuristic algorithms to
solve it. However, the formulation proposed in [29] did not
consider the case of having specialized accelerator nodes.

FIGURE 2. The main classifications of task scheduling algorithms in
distributed systems. The maximum performance algorithms in both the
optimal and suboptimal case are the focus of this work.

Other research work, such as in [30] focus on optimal
scheduling of tasks to reduce execution time. Visalakshi and
Sivanandam [30], the communication links were considered
identical and used the meta-heuristic Hybrid Particle Swarm
Optimization (HPSO) to solve the formulation. Xu et al. [31]
minimize the three goals of scheduling in one objective
function. They used the Chemical Reaction Optimization
(CRO) as a solving heuristic for the formulation. In [32],
reliability and performance were maximized, and Ant Colony
Optimization (ACO) was used in this work. Benoit et al. [33]
focused on improving the performance of running group of
tasks instead of individual tasks. The limitation in their work
is that each node can process at most one group of tasks.
In [34], the objective functions were formulated to minimize
both the execution time of the application along with mini-
mizing the workflow of the application.

Heuristic approaches were presented in [35]–[44]. In [35],
fast ordinal optimization method is introduced to find sub-
optimal task allocation schedule in a short timeframe.
Yadav et al. [36] proposed a greedy heuristic schedul-
ing algorithm. The heuristic allocates the tasks with the
heaviest communication links on the fastest link available.
Ucar et al. [37] implemented six heuristic algorithms to solve
the task assignment problem including the Genetic Algo-
rithm (GA) implemented in this work, but they assumed all
the communication links are identical. The GA algorithm
performed the best among all algorithms. Kang et al. [38]
proposed an iterative greedy algorithm to allocate tasks to
enhance performance. Attiya and Hamam [39] implemented
the Simulated Annealing (SA) heuristic algorithm to find out
the best performance of the system while taking into consid-
eration system constraints. In [40] and [41], they clustered the
tasks into different groups where each group is executed on
a computing node of the parallel system. In [42]–[44], graph
mining techniques were used to come up with the best task
allocation.

As discussed, the task allocation problems have indeed
been studied in the literature relying on static and dynamic
optimization techniques. The differences are often in the
objective functions, or the imposed constraints. Some of
the closest work to ours is the work in [45] and [46].
Wen et al. [45] presented a method to allocate applications

VOLUME 6, 2018 48197



M. S. BenSaleh et al.: Optimal Task Scheduling for Distributed Cluster

into multiple cloud processing systems to achieve high relia-
bility by choosing the most reliable cloud services available.
While the concept of different clouds is somehow similar to
having different types of processing units, the authors had
many restrictions and simplifications in their approach that
makes the problem different than ours.

First, the authors assume the workflow of the application
is completely parallelizable which limits the applicability
of the solution to such cases and makes distributing the
application into multiple cloud services simple. For example,
adding vectors is a parallelizable operation, however serial
operations where the output of one operation is required for
another operation is not fully parallel and requires sequential
steps. In their work, the formulation to assign tasks to the
systems would be to minimize the total cost without the need
to map the workflow sequence of the application tasks into
the constraints. For a completely parallel application, each
task can be assigned to any processing unit in the system
without any constraints that reflect dependencies for certain
tasks. On the other hand, we account for applications that
include branching and that need to be mapped as a workflow
highlighting the serial parts of the application and the par-
allel part of an application. Such a workflow is included in
our formulation as shown in the constraints of our objective
function. Second, the authors assumed that the cloud services
had a fully connected topology, which limits the choices of
applications.

Examples of systems that are not fully connected include
any processing system with star, ring, or bus architectures.
In all of these examples, not all processing units are connected
to each other with a direct link. In our case and as shown
in Fig. 1 in this paper, the sample processing system includes
nodes that are not directly connected to each other. Third,
the fully connected topology simplifies the problem and
eliminates the need to add constraints that map the physical
topology of the processing system. In our work, we add
a set of constraints to map the physical system with high
processing units along with standard processing units.

Zhu et al. [46] proposed an optimization formulation for
computing nodes used in automobiles. Their approach to
build the formulation has some similarity to our work, how-
ever the key elements of our work is the derivation of the con-
straints applicable to heterogeneous systems. Zhu et al. [46]
presented a solution to allocate different types of tasks
with different priorities into processing units. They used
assignment variables for each task and mapped the physical
system architecture of processing units into the constraints
of the assignment problem. Even though the authors state
that they assume heterogeneous compute resources, the con-
straints specified in the paper did not account for multiple
types of processing units’ performances. Instead, the assign-
ment of tasks was formulated as an assignment of a task
to a processing unit regardless of its type (as shown in
sections 3.2 and 3.3.1 of their paper [46]).

In our approach, we assign the tasks to units only if the
compute node constraints are satisfied. In particular, the

constraints check whether consecutive tasks should be
assigned to high performance nodes connected to the same
middleware or they need to be assigned to high performance
nodes connected to different middlewares. As an example,
tasks on high performance nodes connected with the same
middleware run parallel tasks faster than high performance
nodes connected to different middleware layers. The assign-
ment constraints in our multilayered (shown in Fig. 1 and
comprising the client, middleware, and compute nodes) sys-
tem and that consider the heterogeneous resources are pre-
sented in section IV-C of our paper.

It can be seen from the listed constraints that accounting
for multiple types of processing units increases the difficulty
of the problem and requires a solution that optimizes the
distribution of tasks to the multi-type processing unit sys-
tems. In addition to the formulation differences, our proposed
system is expected to lead better application performance
compared to solution based on formulation in [46] when task
priority is not considered. For example, in our multilayer
system, the work of [46] would consider all the nodes to be
the same and assign the tasks on all the nodes without taking
into consideration the scenario where consecutive tasks can
run faster on a high performance node compared to a standard
node in the middleware layer.

III. SCHEDULING MODEL
The objective of this work is to determine an optimal distri-
bution of tasks over a distributed cloud computing environ-
ment with specialized compute nodes capable of hardware
acceleration. Towards deriving the optimization formulation,
the problem can be described as shown in Fig. 3. Given a set of
specified inputs, the algorithm tries to determine where tasks
should be allocated to achieve the best overall performance.
The inputs of the optimization algorithm are the heteroge-
neous system topology, Data location, and Directed Acyclic
Graphs (DAG). The constraints introduced in Section IV (A)
exploit the data locality in the heterogeneous system by
assigning smaller execution costs when tasks are allocated to
the HPN where the data is stored. The decrease in cost is due
to data having the processing closer to the data storage. The
formulation explores all the different allocation scenarios,
and weights each allocation decision differently. Assigning
weights depends on how convenient are the computing nodes
to execute the tasks, and depends on the distance between the
computing nodes and the data locations.

A. HETEROGENEOUS SYSTEM TOPOLOGY
The heterogeneous system topology includes information
about the number of physical nodes, and the network topol-
ogy, which is the arrangement of physical nodes and how the
data flows between these physical nodes. The description also
includes the types of physical nodes: (Client (CL), Middle-
Ware (MW), and special high performance compute nodes
(HPN). Fig. 3 shows the heterogeneous system topology for
a system with five HPN nodes and three Middleware servers.
Fig. 3 also shows the possible seven links in the system:

48198 VOLUME 6, 2018



M. S. BenSaleh et al.: Optimal Task Scheduling for Distributed Cluster

FIGURE 3. Seven possible links in a heterogeneous cluster.

1. CL—MW - Between client and middleware: when one
of the tasks is allocated on a middleware node and the
other is on the client.

2. CL—HPN - Between client and HPN node: when one
of the tasks is allocated on a HPN node and the other
is on the client. Note that in such a case, the com-
munication cost needs to account for passing through
middleware.

3. MW—MW - Between two middleware servers: when
the two tasks are allocated on different middleware
nodes.

4. MW—HPN (dir.) - Between middleware server and
HPN node with direct connection: when one of the
tasks is allocated on a HPN node and the other on a
middleware node, and both are on the same network.

5. MW—HPN (indir.) - Between middleware and HPN
node with indirect connection: when one of the tasks is
allocated on a HPN node and the other on a middleware
node, and both nodes are on different networks.

6. HPN—HPN (dir.) - Between two HPN nodes with
direct connection: when the two tasks are allocated on
different HPN nodes but the nodes are on the same
network (connected to the same middleware).

7. HPN—HPN (indir.) - Between two HPN nodes with
indirect connection: when the two tasks are allocated
on different HPN nodes, and the nodes are on different
networks (connected to the two middleware servers).

B. APPLICATIONS REPRESENTED THROUGH DIRECTED
ACYCLIC GRAPHS (DAG)
DAGs are used to represent applications composed of tasks.
A task is a set of sequential instructions to be executed on
a single processing node. The size of the task is application
specific and depends on the developer’s choice of dividing the
application into blocks. Each vertex in the DAG represents

a task, and the weight of the vertex represents the execu-
tion cost of running the task on a computing node. Each
edge in the DAG has a weight representing the communi-
cation cost between the two vertices (tasks) connected by
the edge. As a result, changing the size of the data trans-
ferred between the tasks changes the cost of communication.
Different DAGs may exist for the same application for each
data size value. The characteristics of the communication sig-
nals between tasks, like network protocol, bandwidth, burst
transmission, or continuous transmission, are reflected in our
formulation through the weights of the edges. To obtain exe-
cution times for each task in an application, multiple profiling
tools can be used, such as [47] and [48]. Using profiling tools,
estimates on execution times for each task are obtained which
represent the weights of the vertices in the DAG.

Old approaches used matrix representation of tasks in the
application [49]. In this work, DAG will have a single entry
node and single exit node to represent the start and end times
of an application. An entry node is a node with no parent.
An exit node is a node with no child. We make the following
assumptions about the DAG:
• Since some applications may need multiple entry points
reflecting multiple starting threads, a zero weight entry
node is added to the DAG to provide the overall
entry node. This node becomes the parent of all original
entry nodes. Similarly, a zero weight exit node can be
added to support multiple exit points. The exit node
becomes the common child to all original exit nodes.

• The DAG includes information about Regular process-
ing nodes, and HPN nodes capable of high processing
acceleration. The weights associated with HPN nodes
are lower to reflect accelerated processing and faster
execution times.

C. DATA LOCALIZATION
Data localization is reflected within the DAG by adding
vertices corresponding to the locations where the data reads
and writes will be initiated. For each HPN node, an additional
vertex is added to reflect the data read or write task for that
node. The weights of the vertices for the read and write tasks
are adjusted to reflect location of the data.

IV. SCHEDULING ALGORITHM
The objective of the optimization algorithm is to map the
application tasks to the heterogeneous system physical nodes.
We formulate the optimization problem in the framework
of Mixed Integer Linear Programming (MILP), where the
inputs, DAG and system topology, are represented with vari-
ables and parameters. From these variables and parameters,
an objective function is formulated which characterizes the
optimal solution. This objective function is constrained by a
set of constraints that assure the optimal solution is feasible.

The standard MILP form is:

min f (x)

VOLUME 6, 2018 48199



M. S. BenSaleh et al.: Optimal Task Scheduling for Distributed Cluster

Subject to:

Ax ≤ b

Aeqx = beq
x ≥ 0,

where, x = (x1, . . . , xn) is the vector of decision variables,
A and Aeq are constant matrices with dimensions m1 × n and
m2 × n respectively where m1 is the number of inequality
constraints and m2 is the number of equality constraints.
b and beq are constant vectors of sizes m1 × 1 and m2 × 1
respectively.

The values of constant vectors and matrices c, A, Aeq,
b and beq define the exact problem at hand by reflecting the
specifications of the heterogeneous system and the DAG into
the optimization problem.

A. VARIABLES AND PARAMETERS
The following variables and parameters are used in the opti-
mization problem:

1) INPUT PARAMETERS
The input parameters that need to be provided for the algo-
rithm are:

DAG Representation for application tasks:

T Set of all the computational Tasks in the DAG. A
task will be represented by i ∈ T . Each task
corresponds to a node in the DAG

Li,j Link or edge between tasks (i, j) ∈ T

Li,j =


1, if there is a link from task i ∈ T to task

j ∈ T in the DAG
0, otherwise

Pi,j Indicator of task dependency between two tasks
i and j. (i, j) ∈ T

Pi,j =


1, if task i ∈ T precedes task j ∈ T in

the DAG
0, otherwise

Mapping of DAG tasks onto the heterogeneous nodes:

ei,a Execution time of task i ∈ T when executed on
node a ∈ N .

ci,j,a,b Communication time between tasks (i, j) ∈ T
when the tasks are allocated to nodes (a, b) ∈ N
respectively. Note that this depends on Ci,j the
communication load between i, j, and the
physical communication between the two
nodes (a, b).

Heterogeneous System representation of physical nodes:

N Set of all the physical Nodes in the system, each
node is a HPN, a middleware, or a client node.
Note that these are different from the DAG
nodes.

CL Label for a CLient node in the system.

MW Set of (labels for) allMiddle W are servers in
the system MW ⊂ N .

HPNm Set of (labels for) High Performance physical
Nodes in the system connected to a middleware
node m ∈ MW .

2) SUPPORTING DECISION VARIABLES
The supporting decision variables are variables in the opti-
mization problem. The values of the supporting decision vari-
ables are based on the values of the output decision variables
of the problem.

Ai,j,a,b A flag to indicate the mapping of communication
between tasks to the actual communication
between the mapped physical nodes in the
system. The value is binary.
Ai,j,a,b

=


1, if com. sig. between tasks (i, j) ∈ T is

allocated to the link between nodes
(a, b) ∈ N

0, otherwise
Oi,j A flag indicating whether two tasks overlap.

The value is binary.

Oi,j =

1, if task i ∈ T starts before task j ∈ T
finish

0, otherwise

3) OUTPUT DECISION VARIABLES
The output decision variables are the variables of the opti-
mization problem that we are trying to find.

Ai,a Allocation or Assignment variable of tasks to
physical nodes. The value is binary.

Ai,a =

{
1, if task i ∈ T is allocated to node a ∈ N
0, otherwise

Si Computed Start time of task i ∈ T relative to the
start time of the entry (first) task in the DAG for a
given set of tasks to nodes assignments (Ai,j, Ai,j,a,b,
and Oi,j). The value is an integer representing units
of time. S1 = 0 the first task to execute in the DAG
on any node.

X An artificial variable to smooth the min-max
problem into min X and added constraints problem.
This variable represents the makespan of the
application, which equals the total execution time
of the application, and indicates the finish time of
the exit task in the DAG. This is an integer value.

B. OBJECTIVE FUNCTION
The objective function characterizes the optimal solution.
The optimal solution ensures executing the given application
represented as a DAG on the given heterogeneous system as
fast as possible or with the least latency possible. Therefore,
the objective function:

min
Solution q

max
task i

(finish_timei) , (1)

48200 VOLUME 6, 2018



M. S. BenSaleh et al.: Optimal Task Scheduling for Distributed Cluster

where: finish_timei is the finish time of task iwhich equals the
sum of Si, the start time for task i and ei,a×Ai,a, the execution
time of task i.
The min-max problem can be reformulated as a smooth

minimization problem using an artificial variable we call it X ,
which also represents the makespan for the application.

min
Solution q

X (2)

Subject to:

Si + ei,a × Ai,a ≤ X ∀i ∈ T (3)

The vector of variables, associated with each scenario of
possible tasks to nodes allocations, can be represented by the
vector of n variables:[

Ai,a,Ai,j,a,b,X , Si,Oi,j
]

The size of the vector (n) is dependent on the number of
variables for allocations of tasks to nodes, the size of each
variable is:
• Ai,a: number of tasks in DAG × number of system
nodes.

• Ai,j,a,b: number of edges in DAG × number of possible
types of physical links.

where, the number of possible types of physical links= 7, for
the heterogeneous system.
• X : scalar
• Si: number of tasks in DAG - 1
• Oi,j: number of parallel tasks in the DAG (two parallel
tasks are counted as 1).

C. CONSTRAINTS
The first constraint is the smoothing constraint already men-
tioned before:

Si + ei,a × Ai,a ≤ X ∀i ∈ T (4)

The starting time of each task Si depends on two factors:
1. The time to execute tasks preceding it. For each edge

in the DAG, the start time for the task at the head
(subsequent task) of the edge is larger or equal to the
sum of the start time of the task at the tail (preceding
task) of the edge and the time to execute the task at the
tail of the edge and the time of communication between
the two nodes.

2. The time to execute tasks which are assigned on the
same node as task i. We are assuming that a given node
executes tasks sequentially. So task i has to wait for
other tasks to finish if they were already started before
task i.

To capture the constraint in the first factor, we check for each
pair of successive tasks that the start time of the later task is
larger than the finish time for the former task plus the time to
communicate signals between them:

Sj ≥ Si + ei,a × Ai,a + ci,j,a,b × Ai,j,a,b
∀ (i, j) ∈ T |Li,j = 1 (5)

To include the second factor, we need to check for each pair
of tasks executing on the same physical node, and check that
the start time of one of these tasks is larger or equal to the
finish time of the other task.

Sj ≥ Si + ei,a × Ai,a ∨ Si ≥ Sj + ej,a × Aj,a
∀a ∈ N ,∀ (i, j) ∈ T |Pi,j = 0,Ai,a = Aj,a (6)

This ‘‘OR’’ conditional constraint can be alternatively repre-
sented using the big ‘‘M’’ notation. Therefore, the equivalent
for the previous conditional constraint is:

Sj − ei,a × Ai,a − Si ≥ −M × Oi,j (7)
Sj − ei,a × Ai,a − Si < M ×

(
1− Oi,j

)
∀ (i, j) ∈ T |Pi,j = 0 (8)

The two tasks i, j overlap when the values of Oi,j =
Oj,i = 1. To ensure tasks run sequentially (not overlap) on
a node, the tasks must not be allocated to execute on the
same node at the same time. We need to ensure

(
Oi,j 6= Oj,i

)
.

Therefore, we add the following constraint:

Ai,a + Aj,a + Oi,j + Oj,i ≤ 3

∀ (i, j) ∈ T , ∀a ∈ N |Pi,j = 0 (9)

An important constraint is to make sure all the tasks are
allocated, and each task is allocated to one physical node
only: ∑

a∈N

Ai,a = 1 ∀i ∈ T (10)

To account for hardware topology, we add the following
set of constraints:

For each two consecutive tasks (i, j) in a serial route, there
is one mapping for an edge to the physical communication
between two nodes:∑
(a,b)∈N

Ai,j,a,b ≤ 1 ∀(i, j) ∈ T , ∀(a, b) ∈ N |Li,j = 1 (11)

If the two consecutive tasks (i, j) are allocated to the same
node (but not executing at same time), the communica-
tion between them is set to zero (all Ai,j,a,b are zeros,
including Ai,j,a,a):

2− Ai,a − Aj,a ≥
∑

(a,b)∈N

Ai,j,a,b

∀ (i, j) ∈ T ,∀ (a, b) ∈ N |Li,j = 1 (12)

If the two consecutive tasks (i, j) are allocated to two differ-
ent HPN nodes a and b, then the allocation variable Ai,j,a,b
must be equal to 1 indicating they are physically connected.
Furthermore, for the case, where both these nodes are con-
nected to the same middleware server, we can check over
nodes connected as such, where (a, b) belong to the set of
HPN nodes connected to the same middleware:∑
a∈HPNm

Ai,a +
∑

b∈HPNm

Aj,b − 1 ≤ Ai,j,a,b

∀ (i, j) ∈ T ,∀m ∈ MW , a ∈ HPNm, b ∈ HPNm
∣∣Li,j = 1

(13)

VOLUME 6, 2018 48201



M. S. BenSaleh et al.: Optimal Task Scheduling for Distributed Cluster

If the two consecutive tasks (i, j) are allocated to two different
HPN nodes a and b, then the allocation variable Ai,j,a,b must
be equal to 1 indicating they are physically connected. This
case is different than the previous case in, that nodes a and
b are connected to different middleware servers. Where a
belong to the set of HPN nodes connected to a middleware
m, and b belong to the set of HPN nodes connected to mid-
dleware n, where m 6= n:∑
a∈HPNm

Ai,a +
∑

(n∈MW |n 6=m)

∑
b∈HPNn

Aj,b − 1 ≤ Ai,j,a,b (14)

∑
(n∈MW |n 6=m)

∑
a∈HPNn

Ai,a +
∑

b∈HPNm

Aj,b − 1 ≤ Ai,j,a,b

∀ (i, j) ∈ T , ∀ (m, n) ∈ MW ,

a ∈ HPNm, b ∈ HPNn|n 6= m (15)

If the one of the consecutive tasks (i, j) is allocated to an
HPN node and the other task is allocated to a middleware
server, then the allocation variable Ai,j,a,b must be equal to
1 indicating they are physically connected. Furthermore, for
the case where a belong to the set of HPN nodes connected
to the middleware b:∑
a∈HPNm

Ai,a + Aj,m − 1 ≤ Ai,j,a,m (16)

Ai,m +
∑

a∈HPNm

Aj,a − 1 ≤ Ai,j,m,a

∀ (i, j) ∈ T , ∀m ∈ MW , a ∈ HPNm
∣∣Li,j = 1 (17)

If the one of the consecutive tasks (i, j) is allocated to an
HPN node and the other task is allocated to a middleware
server, then the allocation variable Ai,j,a,b must be equal
to 1 indicating they are physically connected Furthermore,
for the case where a belong to the set of HPN nodes con-
nected to a middleware m other than the middleware b,
(m 6= b):∑
a∈HPNm

Ai,a +
∑

n∈MW |n 6=m

Aj,n − 1 ≤ Ai,j,a,n (18)

∑
n∈MW |n 6=m

Ai,n +
∑

a∈HPNm

Aj,a − 1 ≤ Ai,j,n,a

∀ (i, j) ∈ T , ∀ (m, n) ∈ MW , a ∈ HPNm∣∣n 6= m,Li,j = 1 (19)

If the two consecutive tasks (i, j) are allocated to two different
middleware servers a and b, then the allocation variable
Ai,j,a,b must be equal to 1, indicating they are physically
connected:∑
m∈MW

Ai,m +
∑
n∈MW

Aj,n − 1 ≤ Ai,j,m,n

∀ (i, j) ∈ T , ∀ (m, n) ∈ MW
∣∣Li,j = 1 (20)

If the one of the consecutive tasks (i, j) is allocated to a
middleware server and the other task is allocated to a client
node, then the allocation variable Ai,j,a,b must be equal to 1

indicating they are physically connected:∑
m∈MW

Ai,m + Aj,a − 1 ≤ Ai,j,m,a (21)

Ai,a +
∑

m∈MW

Aj,m − 1 ≤ Ai,j,a,m

∀ (i, j) ∈ T , m ∈ MW
∣∣Li,j = 1 , a = CL (22)

If the one of the consecutive tasks (i, j) is allocated to an
HPN node and the other task is allocated to a client node, then
the allocation variable Ai,j,a,b must be equal to 1 indicating
they are physically connected:∑

m∈MW

∑
b∈HPNm

Ai,b + Aj,a − 1 ≤ Ai,j,b,a (23)

Ai,a +
∑

m∈MW

∑
b∈HPNm

Aj,b − 1 ≤ Ai,j,a,b ∀ (i, j) ∈ T ,

m ∈ MW , b ∈ HPNm
∣∣Li,j = 1 , a = CL (24)

V. HEURISTIC ALGORITHMS
Since task scheduling is an NP-hard problem [8], we resort to
heuristic algorithms to find fast suboptimal solutions for large
problems. The Genetic algorithm (GA) and the Heteroge-
neous Earliest Finish Time algorithm (HEFT) are employed
to solve the optimization problem.

A. GENETIC ALGORITHM
Genetic Algorithms (GAs) have been widely used and proven
to obtain high quality solutions [37]. GA searches for a solu-
tion in an initial population of solutions. During the iterative
search process, new solutions are created through a mating
process. A fitness function is used to measure the quality of
each candidate solution. One of the biggest advantages of the
GA algorithm is the scalability relative to the problem size.

1) INITIAL POPULATION AND REPRESENTATION OF
SOLUTIONS
The most commonly used representation of solutions is an
array of tasks for each machine [50]. For simplicity, each
machine is represented by a number from 1, . . . ,N where
N is the total number of machines in the system. Each cell in
the array of tasks will have a value representing the machine
number where the task will be executed on. For example,
if we have a DAG with 5 tasks and a system with a total
of 3 nodes, then a sample encoding of a solution would be
as in Fig. 4.

Random initialization of population is usually used to gen-
erate the initial set of solutions. Heuristics are used also to
generate the initial population for the GA algorithm. In this
work, beside the randomly generated set of solutions, we add
three possible solutions to the population, we add initial
solutions where all tasks are allocated on the HPN nodes,
since the system’s HPN nodes are likely to have the data
stored on them compared to other system nodes, such as
MW nodes.

48202 VOLUME 6, 2018



M. S. BenSaleh et al.: Optimal Task Scheduling for Distributed Cluster

FIGURE 4. Sample chromosome in the genetic algorithm representing
possible distribution of 5 tasks in a system of 3 physical nodes.

2) FITNESS FUNCTION
The fitness function of the genetic algorithm evaluates each
possible solution at every iteration of the genetic algorithm.
Given the solution, the allocation of tasks to nodes, the fitness
function simulates the running of the application with the
expected communication costs based on the given allocation.

Algorithm 1 presents the main steps of the genetic algo-
rithm used.

Algorithm 1 Genetic Algorithm
Input: initial population of possible solutions
Output: task to node allocation
Evaluate the initial population using the fitness function
Repeat

Apply crossover and mutation functions to generate a
new child generation of solutions.

Evaluate the child generation
Save the solutions from the child and parent genera-

tions with the least fitness function cost.
The saved solutions form the new parent generation.

Until the stopping criterion is reached

B. HETEROGENEOUS EARLIEST FINISH TIME ALGORITHM
In this algorithm, a task with the highest rank would be
allocated to the computing node, which minimizes its finish
time. The ranking for the tasks is called an upward rank. The
upward rank is calculated by taking the largest sum of the
computation mean cost and communication mean cost along
any path from the task to an exit node. The algorithm starts
with highest upward rank task and down.

VI. EVALUATION
To evaluate the performance of the proposed algorithm,
we resort to a simulation framework where the proposed
algorithm to allocate tasks to compute nodes is compared to
the performance of GA, HEFT and the same algorithm but on
a conventional (homogeneous multiprocessors) system. The
following factors are considered:

1. Hardware system configurations:

a. Number of processing nodes: takes value from
3 to 37 processing nodes.

b. Ratio of HPN nodes to MW servers: takes value
from 1 HPN for each MW server to 11 HPNs for
each MW server.

c. Acceleration speed of the HPN nodes: takes val-
ues from 1x to 20x. We changed the values from
1x to 20x to cover the average possible accelera-
tion speeds.

2. Application complexity as represented by its DAG
Size. This includes the number of tasks or nodes in
the DAG, and the amount of dependency among tasks
reflected in the number of edges. To reflect the size of
the DAG in the experiments we varied the number of
tasks from 10 to 50 tasks.

Fig. 5 shows the set of conducted simulations. The first
three columns represent the different options for hardware
configuration. The fourth column represents the size of the
DAG. The experiments consider different combinations of the
values in these different columns. To show the effect of each
factor mentioned before, we vary the value of the parameter
under study while other parameters take fixed values. The red
bolded line represents the fixed values that each parameter
would take when it is not under study. For example, in the
case where we assess the ratio parameter, the value of the
ratio parameter changes from 1/1 to 1/11 whereas the rest of
the parameters (number of nodes, acceleration and number of
tasks) are set to the values of 13, 4 and 50 respectively.

FIGURE 5. Set of conducted experiments.

A. SIMULATION SETUP
The proposed algorithm is implemented and evaluated in
a simulated environment. The experiments were intended
to run on DAGs representing data analytics applications,
however due to their lack of availability, the experiments
were performed on a set of benchmarking DAGs gener-
ated by Davidovic and Crainic [51], and commonly used
for performance analysis. The DAGs provided by Davi-
dovic feature both task execution costs and communication
costs, whereas other benchmarking DAGs like the Standard
Task Graph set (STG) [52] do not include communication
costs in their DAGs tasks. Each test case was repeated
10 times and the average cost function value was calculated.
IBM ILOG CPLEX was used as the Mixed Integer Linear

VOLUME 6, 2018 48203



M. S. BenSaleh et al.: Optimal Task Scheduling for Distributed Cluster

Programming (MILP) solver running on a Lenovo ThinkSta-
tion, Intel Xeon CPU E5-2620 2.00GHz, 24GB of RAM.

One important feature in the DAG is level of task depen-
dencies among tasks, which is also reflected by the maximum
parallelism [53]. The level of parallelism limits the perfor-
mance of running the DAG on the system since we cannot
exceed the maximum speedup that can be achieved even as
the number of compute nodes are increased. The structure
of the DAG and the number of parallel tasks determine how
much parallelism the DAG has. To better show the effect
of increasing the number of nodes in the system on overall
performance, we chose the DAGs from the benchmarking
dataset with the biggest parallelism factor.

The parallelism can be measured by the following
equation:

Parallelism = Time(1)/Time(∞) (25)

Where, Time(1) represents the work, which is the total run-
ning time of the application when allocated to a single pro-
cessing node which is the time spent for the application to
run sequentially. Time(∞) is the span that consists of the
time needed to run the most expensive path in the application
from beginning to end; it is also called the critical path
length. Fig. 6 provides a visual illustration of the parallelism
in a DAG. Both DAGs in Figure 6a and Fig. 6b have the
same number of tasks, but the DAG in Fig. 6a has more
dependencies than the DAG in Fig. 6b. As a result, the DAG
in Fig. 6a has more sequential tasks. These differences are
reflected in the level of parallelism. The DAG in Fig. 6a has
a parallelism factor of 5 where the DAG in Fig. 6b has a
15.4 parallelism factor. The DAG in Fig. 6b has a maximum
of three sequenced tasks shown in the figure as three levels
of tasks.

FIGURE 6. Parallelism in DAGs. (a) DAG with 50 tasks and parallelism
factor of 4.979. (b) DAG with 50 tasks and parallelism factor 15.4.

B. IMPACT OF THE NUMBER OF COMPUTE NODES
In this set of experiments, we varied the number of nodes
from 3 to 37, with other parameters (ratio of HPNs to MWs,
acceleration and number of tasks) are set to the values of 1/5,
4 and 50 respectively. The results are shown in Fig. 7, which
shows that the heterogeneous system is on average 2 to
3 times better than a conventional system without the HPNs.
The improvement in performance takes an exponential curve
instead of linear slope curve as nodes are increased. The
exponential drop is due to the increase of communication
costs as more physical nodes are used to run the application.

FIGURE 7. Impact of increasing the number of computing nodes.

We also notice that as the number of nodes becomes larger
than 19, the performance improvements tend to saturate.
This is due to the parallelism limit of the DAG. Therefore,
increasing the number of nodes in the heterogeneous system
enhances the performance and decreases the running time of
the application, but the improvement is limited by the level of
parallelism in the application.

Increasing the number of nodes in the system enhances the
performance of the system up to the point that all possible par-
allel tasks can be handled. Additional nodes beyond that point
will cause nodes to be in idle states during the run time of the
application. From this set of experiments, we observe that to
achieve better performance more compute nodes should be
used up to the point where the number of HPN nodes is close
to the parallelism factor.

C. IMPACT OF THE RATIO OF MW SERVERS TO
HPN NODES
In this set of experiments, we compared the performance
of the system with multiple ratio configurations. The ratio
between the number of MW nodes and the number of
HPNnodes can takemultiple values for the same total number
of nodes in the system. In this set of experiments, we varied
the ratio from one MW node for each HPN node (1/1), to a
ratio of one MW node for each 11 HPN nodes (1/11). The
total number of nodes in the heterogeneous system was fixed
at 13 nodes. The acceleration factor and number of tasks are
fixed to 4 and 50, respectively.

Performance results for this set of experiments are illus-
trated in Fig. 8. Results show that the smaller the ratio,
the better the performance. This result is consistent with the
expectation that processing on an HPN node is faster than
processing on a conventional MW node. The smaller ratios
indicate a higher number of HPN nodes. It is worth noting that
the higher number of HPN nodes imply additional communi-
cation costs between HPN nodes, but with the assumption of
sufficient acceleration on the HPN nodes, the performance of
the nodes still outweighs the slowness of the communication.
When the total number of HPN nodes is larger than the
application’s parallelism factor, any additional reduction in
the ratio will have minimal effect on the performance, since
the additional HPN nodes will remain idle. Another factor
that affects the ratio parameter is the cost of communication

48204 VOLUME 6, 2018



M. S. BenSaleh et al.: Optimal Task Scheduling for Distributed Cluster

FIGURE 8. Impact of the ratio of MW servers to HPN nodes.

between the tasks in the DAG. If the average communication
cost is high, large ratio values will result in fewer number of
HPNs connected to each other through one MW server and
most of the data exchanges will need to hop through multiple
MW servers. On the other hand, smaller ratio will save some
of the communication costs by connecting multiple HPNs to
the same MW server.

This set of experiments shows that the best ratio to use
is the smallest ratio possible. The smallest ratio corresponds
to the largest number of HPN nodes connected to one MW
servers and reduces communication costs since HPNs can
communicate directly through the common MW server. The
smallest ratio may not always be possible to achieve because
of the limitation on the maximum number of HPNs that can
be connected to one MW server. The limitation is due to
the inability to connect many computing nodes to one mid-
dleware server without severe degradation in communication
performance. For example, geographic locations of HPNs
might restrict connecting them to one middleware server.

D. IMPACT OF HPN ACCELERATION
In this set of experiments, we studied the effect of acceler-
ation in the HPN nodes on the performance of the system.
We increased the acceleration rate from 1x to 20x while the
other parameters (number of tasks, ratio of HPNs to MWs,
and number of tasks) are set to the values of 13, 1/5, and
50 respectively. Fig. 9 shows the impact of acceleration on
the system performance. The figure also includes as base-
line comparison the performance of a conventional system.
We assume that a conventional system has the same number
of computing nodes as the system with the HPN nodes.
However, the compute nodes in a conventional system are
homogeneous, where the processing speeds of the compute
nodes equal the processing speeds of the middleware servers.
Additionally, all the processing nodes in the conventional
system are connected to each other with the same bandwidth.

The overall performance improvement of the system fol-
lows an exponential growth with the acceleration factor. The
nonlinearity in the slope is attributed to the fact that while
computation improvements are linearly proportional to accel-
eration, communication remains proportional to the count and
ratio configuration of HPN nodes in the system. Therefore,
for DAGs with large communication costs, systems with

FIGURE 9. Impact of the acceleration multiplier of the HPN nodes.

HPN nodes with small acceleration factors will still
give lower performance compared to a system without
HPN nodes.

From this set of experiments, we conclude that the best
performance is achieved by using the largest acceleration
factor possible, which is application dependent. The het-
erogeneous cloud design configuration can only provide as
much parallelism and pipeline streaming execution as the
application design can benefit from. Beyond a certain point
and according to Amdahl’s law, the application is limited by
certain task sequencing, and this, in turn, limits the possible
acceleration.

E. IMPACT OF THE NUMBER OF APPLICATION TASKS
The characteristics of the application to be executed on the
heterogeneous cloud system affect the overall performance.
In addition to the parallelism factor discussed earlier, themost
important characteristic is the number of tasks. Fig. 10 com-
pares the results of executing different applications with dif-
ferent number of tasks. The plot compares the performance
to conventional nodes, and shows that the cost function
increases exponentially with the increase in the number of
tasks. In this particular example, the application parallelism
factor was 15.7. This indicates that the application can bene-
fit, on average, from having 16 compute nodes run in parallel.
As the number of tasks increases significantly beyond 16,
the application will have more sequential execution, which
in turns increases the total execution time. As expected,
the plot shows consistent results. When the number of tasks is
below 20, the application is able to benefit from parallelism,
and a minor rise is observed in the cost of running the
application.

F. ALGORITHM PERFORMANCE
Since the algorithm seeks to find an exact solution to the
optimization problem, the complexity of the algorithm grows
with the increase in problem size. The complexity of the
problem is of order O(n2) where n is the size of the input of
the problem. The input of the problem depends on the DAG’s
number of vertices, DAG’s number of edges, DAG’s number
of parallel nodes, and number of computing nodes.

Fig. 11 shows the effect of increasing the number of nodes
and the number of tasks on the complexity of the problem.

VOLUME 6, 2018 48205



M. S. BenSaleh et al.: Optimal Task Scheduling for Distributed Cluster

FIGURE 10. Impact of the number of tasks in the DAG.

FIGURE 11. Evaluation of the algorithm running performance.

As the number of tasks or nodes increases, the total number
of variables and constraints increase impacting algorithm
performance. The figure shows that increasing the number
of nodes in the system has a more dramatic impact on the
complexity of the problem rather more than increasing the
number of tasks in the DAG. The algorithm complexity
increases exponentially with the increase of either the number
of nodes or the number of tasks. As expected, for large prob-
lems, finding the optimal solution is not practically feasible.
Therefore, heuristics can be used to find the best mapping
of tasks to nodes in larger problems. The cost of running the
algorithm offline is affordable in the case of repetitive jobs,
because small time savings after each iteration add up to a
great total latency savings.

The optimal allocation algorithm cannot reach an optimal
solution for large problems since the task allocation problem
is NP-hard. The optimal search algorithm can be used for
mid-size problems to give an initial guess for a subopti-
mal solution by limiting the time of running the optimal
search. In our benchmarking datasets, we assume mid-size
problems range from 50 to 150 tasks. Popular choices for
heuristics include HEFT and GA. Table I shows the results
for running larger datasets (includes DAGs of 100, 200 and
500 tasks). Results show that on large problems the optimal
algorithm and after sufficient running time suggest subop-
timal solutions close to the results of the heuristics. The
table also shows that the heuristics were able to scale to the
problem size efficiently. The results of the genetic algorithm

TABLE 1. The percentage degradation from the optimal solutions for
large benchmarking dataset.

are close to the HEFT algorithm because default crossing
and mutation functions were used, and no system specific
initialized population were generated.

VII. CONCLUSION
In this paper, the problem of task allocation on the nodes of
a heterogeneous and distributed multi-tiered system is first
formulated as an optimization problem. An optimal task allo-
cation algorithm is then presented. Since the problem of task
allocation is NP-complete, two heuristic algorithms based on
the GA and the HEFT are proposed to find feasible solutions
for large problems. The analysis of the results provide the
following insights about the performance of heterogeneous
cloud system:
• Parallelism limit is reached when the number of HPN
nodes is close to the parallelism factor.

• Connecting multiple HPNs to the same MW server
achieves better performance compared to distributing
the HPNs to multiple MW servers.

• In poor acceleration scenarios, the system with HPN
nodes perform worse than conventional systems due to
the increase in communication costs in the HPN based
system.

• The running of the allocation algorithm is directly pro-
portional to the number of tasks in the application and to
the total number of computing nodes.

• For large problem sizes, the optimal algorithm fail to
reach an optimal solution and could provide suboptimal
feasible solution after some run time of the algorithm.

• Heuristics scale on large applications and provide solu-
tions for large problems in which finding an optimal
solution is not feasible.

It is worth noting that the proposed optimal scheduling algo-
rithm can be scaled by grouping the computational nodes
into clusters and grouping tasks into blocks of tasks. The
problem of assigning tasks into computing nodes is trans-
formed into assigning blocks of tasks into computing clusters.

48206 VOLUME 6, 2018



M. S. BenSaleh et al.: Optimal Task Scheduling for Distributed Cluster

Using this approach, the problem is divided into two tiers:
First, allocating blocks of tasks into computing clusters using
the scheduling algorithm presented in this paper. Second, for
each block of tasks, we allocate the tasks within the block into
the computing nodes within the cluster. Hence, the allocation
problem is hierarchically addressed by iteratively considering
clusters and clusters within clusters.

REFERENCES
[1] Media Alert: Intel FPGA-Accelerated Storage Technology to be Featured

at Flash Memory Summit, Intel Newsroom, Santa Clara, CA, USA, 2017.
[2] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai, ‘‘Single-chip hetero-

geneous computing: Does the future include custom logic, FPGAs, and
GPGPUs?’’ in Proc. 43rd Annu. IEEE/ACM Int. Symp. Microarchitecture,
Dec. 2010, pp. 225–236.

[3] S. Huang, S. Xiao, andW. Feng, ‘‘On the energy efficiency of graphics pro-
cessing units for scientific computing,’’ in Proc. IEEE Int. Symp. Parallel
Distrib. Process. (IPDPS), Washington, DC, USA, May 2009, pp. 1–8.

[4] S. Chalamalasetti, M. Margala, W. Vanderbauwhede, M. Wright, and
P. Ranganathan, ‘‘Evaluating FPGA-acceleration for real-time unstruc-
tured search,’’ in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw.
(ISPASS), Apr. 2012, pp. 200–209.

[5] L. Gan et al., ‘‘Accelerating solvers for global atmospheric equations
through mixed-precision data flow engine,’’ in Proc. IEEE 23rd Int. Conf.
Field Program. Logic Appl. (FPL), Sep. 2013, pp. 1–6.

[6] (Nov. 2017). The Green500 List. [Online]. Available: https://www.top500.
org/green500/lists/2017/06/

[7] (Mar. 2017). Apache Hadoop. [Online]. Available: https://hadoop.
apache.org

[8] S. Salloum, ‘‘Big data analytics on Apache Spark,’’ Int. J. Data Sci. Anal.,
vol. 1, no. 3, pp. 145–164, Nov. 2016.

[9] Spark Programming Guide. Accessed: Jun. 1, 2017. [Online]. Available:
http://spark.apache.org/docs/latest/programming-guide.html

[10] P. Li, Y. Luo, N. Zhang, and Y. Cao, ‘‘HeteroSpark: A heterogeneous
CPU/GPU Spark platform for machine learning algorithms,’’ in Proc. 10th
IEEE Int. Conf. Netw. Archit. Storage (NAS), Aug. 2015, pp. 347–348.

[11] M. Grossman and V. Sarkar, ‘‘SWAT: A programmable, in-memory, dis-
tributed, high-performance computing platform,’’ in Proc. 25th ACM Int.
Symp. High-Perform. Parallel Distrib. Comput., 2016, pp. 81–92.

[12] Y. Ohno, S. Morishima, and H. Matsutani, ‘‘Accelerating Spark RDD
operations with local and remote GPU devices,’’ in Proc. 22nd IEEE Int.
Conf. Parallel Distrib. Syst. (ICPADS), Dec. 2016, pp. 791–799.

[13] B. Schmidt and A. Hildebrandt, ‘‘Next-generation sequencing: Big data
meets high performance computing,’’DrugDiscovery Today, vol. 22, no. 4,
pp. 712–717, 2017.

[14] Y. Yuan, M. F. Salmi, Y. Huai, K. Wang, R. Lee, and X. Zhang, ‘‘Spark-
GPU: An accelerated in-memory data processing engine on clusters,’’
in Proc. IEEE Int. Conf. Big Data, Washington, DC, USA, Dec. 2016,
pp. 273–283.

[15] A. Kaitoua et al., ‘‘Hadoop extensions for distributed computing on recon-
figurable active SSD clusters,’’ ACM Trans. Archit. Code Optim., vol. 11,
no. 2, Jun. 2014, Art. no. 22.

[16] M. Huang et al., ‘‘Programming and runtime support to blaze FPGA
accelerator deployment at datacenter scale,’’ in Proc. 7th ACM Symp.
Cloud Comput., Santa Clara, CA, USA, Oct. 2016, pp. 456–469.

[17] H. Artail et al., ‘‘Speedy cloud: Cloud computing with support for hard-
ware acceleration services,’’ IEEE Trans. Cloud Comput., to be published.

[18] S. S. Thakur, S. Singh, P. Singh, and A. Goyal, ‘‘Optimized task scheduling
using differential evolutionary algorithm,’’ in Advances in Computer and
Computational Sciences. Singapore: Springer, 2017, pp. 509–516.

[19] Y. Xu, K. Li, J. Hu, and K. Li, ‘‘A genetic algorithm for task scheduling
on heterogeneous computing systems using multiple priority queues,’’ Inf.
Sci., vol. 270, pp. 255–287, Jun. 2014.

[20] M. Shojafar, M. Kardgar, A. A. R. Hosseinabadi, S. Shamshirband, and
A. Abraham, ‘‘TETS: A genetic-based scheduler in cloud computing to
decrease energy and makespan,’’ in Proc. 15th Int. Conf. Hybrid Intell.
Syst. (HIS). Cham, Switzerland: Springer, 2016, pp. 103–115.

[21] D. P. Bovet, P. Crescenzi, and D. Bovet, Introduction to the Theory of
Complexity. London, U.K.: Prentice-Hall, 1994.

[22] Y.-K. Kwok and I. Ahmad, ‘‘Static scheduling algorithms for allocating
directed task graphs to multiprocessors,’’ ACM Comput. Surv., vol. 31,
no. 4, pp. 406–471, 1999.

[23] L.-C. Canon, E. Jeannot, R. Sakellariou, and W. Zheng, ‘‘Comparative
evaluation of the robustness of DAG scheduling heuristics,’’ inProc. Integr.
Res. Grid Comput. CoreGRID Integr. Workshop, Hersonissos, Greece,
Apr. 2008, pp. 63–74.

[24] H. Topcuoglu, S. Hariri, and M.-Y. Wu, ‘‘Performance-effective and
low-complexity task scheduling for heterogeneous computing,’’
IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274,
Mar. 2002.

[25] L. F. Bittencourt, R. Sakellariou, and E. R. M. Madeira, ‘‘DAG schedul-
ing using a lookahead variant of the heterogeneous earliest finish time
algorithm,’’ in Proc. 18th Euromicro Conf. Parallel, Distrib. Netw.-Based
Process., Pisa, Italy, Feb. 2010, pp. 27–34.

[26] A. S. Wu, H. Yu, S. Jin, K. C. Lin, and G. Schiavone, ‘‘An incremental
genetic algorithm approach to multiprocessor scheduling,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 15, no. 9, pp. 824–834, Sep. 2004.

[27] F. A. Omara and M. M. Arafa, ‘‘Genetic algorithms for task scheduling
problem,’’ J. Parallel Distrib. Comput., vol. 70, no. 1, pp. 13–22, Jan. 2010.

[28] F. Dong and S. G. Akl, ‘‘Scheduling algorithms for grid computing: State
of the art and open problems,’’ School Comput., Queens Univ., Kingston,
ON, Canada, Tech. Rep. 2006-504, Jan. 2006.

[29] Y. Wang, K. Li, H. Chen, L. He, and K. Li, ‘‘Energy-aware data alloca-
tion and task scheduling on heterogeneous multiprocessor systems with
time constraints,’’ IEEE Trans. Emerg. Topics Comput., vol. 2, no. 2,
pp. 134–148, Jun. 2014.

[30] P. Visalakshi and S. N. Sivanandam, ‘‘Dynamic task scheduling with
load balancing using hybrid particle swarm optimization,’’ Int. J. Open
Problems Compt. Math., vol. 2, no. 3, pp. 475–488, 2009.

[31] J. Xu, A. Y. S. Lam, and V. O. K. Li, ‘‘Chemical reaction optimization for
task scheduling in grid computing,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 22, no. 10, pp. 1624–1631, Oct. 2011.

[32] S. Guo, H.-Z. Huang, Z. Wang, and M. Xie, ‘‘Grid service reliability
modeling and optimal task scheduling considering fault recovery,’’ IEEE
Trans. Rel., vol. 60, no. 1, pp. 263–274, Mar. 2011.

[33] A. Benoit, L. Marchal, J.-F. Pineau, Y. Robert, and F. Vivien, ‘‘Scheduling
concurrent bag-of-tasks applications on heterogeneous platforms,’’ IEEE
Trans. Comput., vol. 59, no. 2, pp. 202–217, Feb. 2010.

[34] K. Bessai, S. Youcef, A. Oulamara, C. Godart, and S. Nurcan, ‘‘Multi-
objective resources allocation approaches for workflow applications in
cloud environments,’’ in On the Move to Meaningful Internet Systems:
OTM 2012 Workshops (Lecture Notes in Computer Science), vol. 7567,
P. Herrero, H. Panetto, R. Meersman, and T. Dillon, Eds. Berlin, Germany:
Springer, 2012, pp. 654–657.

[35] F. Zhang, J. Cao,W. Tan, S. U. Khan, K. Li, and A. Y. Zomaya, ‘‘Evolution-
ary scheduling of dynamic multitasking workloads for big-data analytics
in elastic cloud,’’ IEEE Trans. Emerg. Topics Comput., vol. 2, no. 3,
pp. 338–351, Sep. 2014.

[36] P. K. Yadav, M. P. Singh, and K. Sharma, ‘‘An optimal task allocation
model for system cost analysis in heterogeneous distributed computing
systems: A heuristic approach,’’ Int. J. Comput. Appl., vol. 28, no. 4,
pp. 30–37, Aug. 2011.

[37] B. Ucar, C. Aykanat, K. Kaya, and M. Ikinci, ‘‘Task assignment in hetero-
geneous computing systems,’’ J. Parallel Distrib. Comput., vol. 66, no. 1,
pp. 32–46, Jan. 2006.

[38] Q. Kang, H. He, and H. Song, ‘‘Task assignment in heterogeneous comput-
ing systems using an effective iterated greedy algorithm,’’ J. Syst. Softw.,
vol. 84, no. 6, pp. 985–992, Jun. 2011.

[39] G. Attiya and Y. Hamam, ‘‘Task allocation for minimizing programs
completion time in multicomputer systems,’’ in Proc. Int. Conf. Comput.
Sci. Appl. (ICCSA), in Lecture Notes in Computer Science, vol. 3044,
A. Laganá, M. L. Gavrilova, V. Kumar, Y. Mun, C. J. K. Tan, and
O. Gervasi, Eds. Berlin, Germany: Springer, 2004, pp. 97–106.

[40] Q.-S. Hua, Z.-G. Chen, and F. C. M. Lau, ‘‘A new method for independent
task scheduling in nonlinearly DAG clustering,’’ in Proc. 7th Int. Symp.
Parallel Archit., Algorithms Netw., May 2004, pp. 187–192.

[41] I. Ahmad, Y.-K. Kwok, and M.-Y. Wu, ‘‘Analysis, evaluation, and com-
parison of algorithms for scheduling task graphs on parallel processors,’’
in Proc. 2nd Int. Symp. Parallel Archit., Algorithms, Netw., Jun. 1996,
pp. 207–213.

[42] M. Katsev, J. Yu, and S. M. LaValle, ‘‘Efficient formation path planning
on large graphs,’’ in Proc. IEEE Int. Conf. Robot. Automat., Karlsruhe,
Germany, May 2013, pp. 3606–3611.

VOLUME 6, 2018 48207



M. S. BenSaleh et al.: Optimal Task Scheduling for Distributed Cluster

[43] S. Frey and T. Ertl, ‘‘PaTraCo: A framework enabling the transparent and
efficient programming of heterogeneous compute networks,’’ in Proc. 10th
Eurograph. Conf. Parallel Graph. Vis., Norrköping, Sweden, May 2010,
pp. 131–140.

[44] R. Bellman, ‘‘On a routing problem,’’ Quart. Appl. Math., vol. 16, no. 1,
pp. 87–90, 1958.

[45] Z. Wen, J. Cała, P. Watson, and A. Romanovsky, ‘‘Cost effective, reliable
and secure workflow deployment over federated clouds,’’ IEEE Trans.
Services Comput., vol. 10, no. 6, pp. 929–941, Nov./Dec. 2017.

[46] Q. Zhu, H. Zeng,W. Zheng, M. Di Natale, and A. Sangiovanni-Vincentelli,
‘‘Optimization of task allocation and priority assignment in hard real-
time distributed systems,’’ ACM Trans. Emb. Comput. Syst., vol. 11, no. 4,
Dec. 2012, Art. no. 85.

[47] D. F. da Silva, G. Juve, M. Rynge, E. Deelman, and M. Livny, ‘‘Online
task resource consumption prediction for scientific workflows,’’ Parallel
Process. Lett., vol. 25, no. 3, pp. 1541003-1–1541003-25, Sep. 2015.

[48] Z. Zhang, L. Cherkasova, and B. T. Loo, ‘‘Benchmarking approach for
designing a mapreduce performance model,’’ in Proc. 4th ACM/SPEC Int.
Conf. Perform. Eng., Prague, Czech Republic, Apr. 2013, pp. 253–258.

[49] S. D. Eppinger, D. E. Whitney, R. P. Smith, and D. A. Gebala, ‘‘Organizing
the tasks in complex design projects,’’ in Proc. Comput.-Aided Coop-
erat. Product Develop. (WCACPD). Berlin, Germany: Springer, 1989,
pp. 229–252.

[50] H. Z. Jia, A. Y. C. Nee, J. Y. H. Fuh, and Y. F. Zhang, ‘‘A modified genetic
algorithm for distributed scheduling problems,’’ J. Intell. Manuf., vol. 14,
nos. 3–4, pp. 351–362, Jun. 2003.

[51] T. Davidović and T. G. Crainic, ‘‘Benchmark-problem instances for
static scheduling of task graphs with communication delays on homo-
geneous multiprocessor systems,’’ Comput. Oper. Res., vol. 33, no. 8,
pp. 2155–2177, 2006.

[52] T. Tobita and H. Kasahara, ‘‘A standard task graph set for fair evaluation
of multiprocessor scheduling algorithms,’’ J. Scheduling, vol. 5, no. 5,
pp. 379–394, 2002.

[53] C. E. Leiserson, ‘‘The Cilk++ concurrency platform,’’ J. Supercomput.,
vol. 51, no. 3, pp. 244–257, Mar. 2010.

MOHAMMED S. BENSALEH (SM’13) received
the Ph.D. degree in electrical engineering from
North Carolina Agricultural and Technical State
University, Greensboro, NC, USA, in 2005. He is
currently an Associate Professor and the Director
of the National Center for MEMS Technology,
King Abdulaziz City for Science and Technol-
ogy. His current research interests include cloud
computing, low-power design, computer archi-
tecture, reconfigurable computing, and wireless
sensor networks.

YAMAN SHARAF-DABBAGH received the B.E.
degree in electronic and electrical engineering
from the University of Aleppo, Aleppo, Syria,
in 2011, and theM.E. degree in electrical and com-
puter engineering from the American University
of Beirut (AUB), Beirut, Lebanon, in 2014. He
is currently pursuing the Ph.D. degree in electri-
cal and computer engineering with the Virginia
Polytechnic Institute and State University (Vir-
ginia Tech), Blacksburg, VA, USA. Prior to joining

Virginia Tech in 2015, he was a Research Assistant with AUB, where he was
involved in the application layer and scheduling for a distributed systems.
His current research interests include machine learning, distributed systems,
task scheduling, and optimization.

HAZEM HAJJ (SM’08) received the bachelor’s
degree (Hons.) from the American University of
Beirut (AUB) and the Ph.D. degree from the Uni-
versity of Wisconsin-Madison in 1996. Over the
years, he has established a strong mix of both
industry and academics backgrounds. He joined
AUB in 2008, where he is currently an Associate
Professor. He was a Visiting Associate Professor
with The University of Texas at Austin, Austin, for
one year. Before joining AUB, he was a Principal

Engineer with Intel Corporation, where he spent 12 years. His research was
funded by local and international funding sources, including the funding
from Intel Corporation, King Abdulaziz City for Science and Technology,
and Qatar National Regional Fund.

He has over 100 research publications in reputable journals and inter-
national conferences. His research interests include machine learning and
energy-aware computing, with special interests in context-aware sensing,
vision systems, and emotion recognition. Over the years, he was a recipient
of numerous academic and industry awards.

MAZEN A. R. SAGHIR (SM’12) received the B.E.
degree in computer and communication engineer-
ing from the American University of Beirut (AUB)
in 1989 and the M.A.Sc. and Ph.D. degrees in
electrical and computer engineering from the Uni-
versity of Toronto in 1993 and 1998, respectively.
He is currently a Visiting Associate Professor of
electrical and computer engineering at AUB. His
research interests include reconfigurable comput-
ing, computer architecture, compilers, EDA tools,

and embedded systems design.

HAITHAM AKKARY received the B.S. and M.S.
degrees in electrical engineering from Louisiana
State University in 1981 and 1983, respectively,
and the Ph.D. degree from Portland State Univer-
sity in 1998. He is currently a Research Asso-
ciate Professor with the Electrical and Computer
Engineering Department, American University of
Beirut. Before becoming a Professor, he was
a Principal Research Scientist with Intel Labs.
While working at Intel Labs for 20 years, he con-

tributed to the design and development of seven different generations of
Intel microprocessors. He has co-authored over 50 technical papers and over
50 U.S. patents. His research interests include microprocessor architecture,
architecture support for parallel programming, and computer security.

HASSAN ARTAIL (SM’09) received the B.S.
degree (Hons.) and the M.S. degree in electri-
cal and computer engineering from the Univer-
sity of Detroit in 1985 and 1986 respectively,
and the Ph.D. degree from Wayne State Univer-
sity in 1999. He is currently a Professor with the
Department of Electrical and Computer Engineer-
ing, American University of Beirut (AUB), where
he is involved in the research in mobile comput-
ing, vehicle ad hoc networks, 5G, and Internet of

Things. Prior to joining AUB, he was a SystemDevelopment Supervisor with
the Scientific Labs, DaimlerChrysler, MI, USA, where he was involved in the
field of software and system development for vehicle testing applications
for 11 years. Since joining AUB, he has published over 200 articles in rep-
utable journals and top conferences. He received several awards, including
the Research Excellence Award from the Lebanese National Council for
Scientific Research in 2012 and the Career Excellence in Scientific Research
Award from the Lebanese Association for the Advancement of Science
in 2017.

48208 VOLUME 6, 2018



M. S. BenSaleh et al.: Optimal Task Scheduling for Distributed Cluster

ABDULFATTAH M. OBEID (SM’14) received
the Ph.D. degree in electrical and information
engineering from the Technical University of
Darmstadt, Germany, in 2006. He is currently an
Associate Professor with the King Abdulaziz City
for Science and Technology and the General Man-
ager of Electronics Unit, TAQNIA.

He played a dominant role in establishing a
national IC design center in Saudi Arabia. Under
this role, he formed long-term strategic partner-

ships with a number of international private and public organizations for the
implementation of various projects of national importance. These projects
were mainly related to the design and development of digital, mixed-signal
ASICs, and inertial MEMS sensors for different applications. He was a Key
Member (Coordinator of the electronics, communications, and photonics
strategic technology) of the Implementation Committee that drafted the
National Science, Technology and Innovation Plan for Saudi Arabia.

He has co-authored several technical papers in refereed international
conferences and journals. His research interests include hardware/software
co-design, reconfigurable computing, computer architecture, and wireless
sensor networks. He is a member of ACM. He has served on the technical
committee of several IEEE conferences and workshops.

SYED MANZOOR QASIM (SM’12) received the
B.Tech. and M.Tech. degrees (Hons.) in elec-
tronics engineering from the Z. H. College of
Engineering and Technology (ZHCET), Aligarh
Muslim University, India, in 2000 and 2002,
respectively. He is currently working as a Senior
Research Consultant at King Abdulaziz City for
Science and Technology (KACST). Prior to this,
he was a Research Engineer with King Saud Uni-
versity, a Consultant with the Technology Devel-

opment Center, KACST, and the Manager of Research and Development
with the National Center for Electronics and Photonics Technology, CITRI,
KACST. He has published over 100 papers in peer-reviewed journals and
conferences. He has three U.S. patents, with several other pending patents.
His current research interests include system-on-chip design, digital IC
design, computer architecture, reconfigurable computing, FPGA design,
machine learning, cloud computing, and Internet of Things. He is a Life
Member of the Institution of Electronics and Telecommunication Engineers,
India, and the International Association of Engineers, Hong Kong.

VOLUME 6, 2018 48209


	INTRODUCTION
	RELATED WORK
	SCHEDULING MODEL
	HETEROGENEOUS SYSTEM TOPOLOGY
	APPLICATIONS REPRESENTED THROUGH DIRECTED ACYCLIC GRAPHS (DAG)
	DATA LOCALIZATION

	SCHEDULING ALGORITHM
	VARIABLES AND PARAMETERS
	INPUT PARAMETERS
	SUPPORTING DECISION VARIABLES
	OUTPUT DECISION VARIABLES

	OBJECTIVE FUNCTION
	CONSTRAINTS

	HEURISTIC ALGORITHMS
	GENETIC ALGORITHM
	INITIAL POPULATION AND REPRESENTATION OF SOLUTIONS
	FITNESS FUNCTION

	HETEROGENEOUS EARLIEST FINISH TIME ALGORITHM

	EVALUATION
	SIMULATION SETUP
	IMPACT OF THE NUMBER OF COMPUTE NODES
	IMPACT OF THE RATIO OF MW SERVERS TO HPN NODES
	IMPACT OF HPN ACCELERATION
	IMPACT OF THE NUMBER OF APPLICATION TASKS
	ALGORITHM PERFORMANCE

	CONCLUSION
	REFERENCES
	Biographies
	MOHAMMED S. BENSALEH
	YAMAN SHARAF-DABBAGH
	HAZEM HAJJ
	MAZEN A. R. SAGHIR
	HAITHAM AKKARY
	HASSAN ARTAIL
	ABDULFATTAH M. OBEID
	SYED MANZOOR QASIM


