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ABSTRACT This paper proposes a two-stage universal adaptive stabilizer (UAS)-based optimization
technique for an accurate and efficient estimation of Li-ion battery model parameters. The first stage utilizes
an UAS-based adaptive parameters estimation (APE) technique to acquire an initial estimate of battery
model parameters. The second stage utilizes one of the three different optimization techniques, i.e., fmincon,
particle swarm optimization (PSO), and hybrid PSO to improve the accuracy of battery model parameters
obtained by the APE. The parameters estimated by the APE help in reducing the search space interval
required by the optimization technique, thus reducing the computation time of the optimization process.
Intensive computer simulation and experimentation are performed to estimate the battery terminal voltage
using the estimated parameters. The accuracy of estimated battery parameters is evaluated by comparing the
estimated and measured battery terminal voltage. The results show that the accuracy of the battery model
parameters obtained by the optimization techniques alone is poor, and the required computation time is high.
The accuracy of parameters obtained by UAS-based APE is good with very low computation time, while it
is best when UAS-based APE is used in combination with the PSO, or hybrid PSO optimization techniques
while requiring an intermediate amount of computation time.

INDEX TERMS Adaptive parameters estimation, Li-ion battery, particle swarm optimization, universal
adaptive stabilizer.

I. INTRODUCTION
An accurate state of charge (SoC) estimation is critical for
the battery energy management and protection. SoC plays a
vital role in assessing remaining battery lifetime, protection
against overcharging and accidental over-discharging, fault
detection and for a safe and reliable operation of a Li-ion
battery [1]. Different algorithms for the SoC estimation are
reviewed in [2]. Precise estimation of a battery SoC requires
an accurate battery model. Electro-chemical [3] and mathe-
matical models [4] of a battery are complex and can be com-
putationally expensive. The battery model in [5] presents an
equivalent circuit model of a battery which provides real time
voltage, current dynamics, and all other essential dynamic
characteristics. The battery model in [5] is utilized in this
work because this model captures the effect of variation of
SoC on the battery model parameters. Also as mentioned
in [1], the model from [5] can incorporate effects of tem-
perature, and number of charge-discharge cycles. Therefore,
it is simple enough to be easily implemented for control

oriented purposes, while it is detailed enough to capture
essential dynamic characteristics. However, the method sug-
gested in [5] requires a lot of experimental effort to acquire
battery model parameters. Our earlier work [1] proposed an
adaptive methodology for the parameters estimation of the
model suggested in [5], which reduces experimental effort.
The main contribution of the present work is a two-stage
Li-ion battery model parameters estimation methodology.
The proposed methodology increases the accuracy of the esti-
mated battery model parameters, and battery terminal voltage
estimation. It is also shown that the proposed battery model
parameters estimation methodology reduces the computation
time compared to using purely optimization based methods,
and increases accuracy compared to the purely adaptation
based method presented in [1].

A recently developed sensitivity-based group-wise Li-ion
battery parameters estimation strategy is reported in [6].
The term sensitivity of a parameter quantifies the signifi-
cance of a parameter on the output of Li-ion battery model.
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In [6], the parameters having similar sensitivities are identi-
fied and grouped together using sensitivity analysis and are
then identified by using the Levenberg-Marquardt algorithm.
Wang and Li [7] propose a generic approach to estimate
the Li-ion battery model parameters by utilizing the Particle
Swarm Optimization (PSO) strategy. The algorithm for Li-
ion battery parameters estimation using a Butterworth filter
is outlined in [8]. The estimation of SoC and temperature
dependent parameters of a Li-ion battery by Gauss-Newton
and PSO techniques is studied in [9]. Battery model param-
eters are obtained experimentally via discharge data interpo-
lation in [10]. A multi-objective optimization strategy to esti-
mate equivalent circuit model battery parameters is analyzed
in [11]. Non-linear least squares based battery parameters
identification is reported in [12]. Genetic algorithm (GA)
based optimization is used in [13] for battery parameters iden-
tification. But a GA is based on heuristics, and convergence
for a GA based optimizer may take a very long time, and still
may converge to a local optimum. Co-evolutionary particle
swarm optimization PSO has been developed in [14] for
optimum battery model parameters estimation. In [14], each
battery parameter is optimized separately and the acquired
optimized battery parameters are utilized in sequence, to get
the optimal solution for the remaining parameters. The results
obtained in [14] are accurate but the process is computation-
ally time consuming. The PSO strategy is used in [15] to esti-
mate an electrochemical Li-ion battery model’s parameters.
A study on convergence and stability analysis of the PSO
algorithm is reported in [16]. Extended Levenberg-Marquart
based optimization is used [17] to estimate Li-ion electrical
circuit model parameters.

The combination of two or more strategies may produce
accurate estimates of Li-ion battery parameters, but this may
increase computational time [6], [9]. Furthermore, most of
the optimization based Li-ion battery parameters estimation
approaches are unguided, i.e. the search space, or search
interval is selected randomly. The optimization techniques
in [7], [9], [14] and [15] may substantially prolong the time
required to obtain battery parameters, when initialized with
random initial guesses, and randomly selected search inter-
vals for battery parameters. In contrast our previous work [1]
developed an adaptive parameter estimation (APE) technique
which converges fast, with reasonable accuracy, and requires
low computational time to estimate Li-ion battery parameters.
However, the initial parameter values and their respective
upper and lower bounds required by the APE technique can
affect the accuracy of parameters and thus the accuracy of
terminal voltage estimation.

This paper develops a two stage strategy for battery model
parameters estimation. The APE process, which is the first
stage of the proposed battery parameters estimation tech-
nique, helps in narrowing the search space for an optimizer
i.e. the second stage of the proposed technique. This allows
the optimization technique to quickly converge as com-
pared to initializing an optimization routine with arbitrary
guesses of initial conditions, and arbitrary search intervals.

Compared to parameters estimation done by using APE
alone, the proposed strategyminimizes the influence of initial
guesses of parameters and their upper, lower bounds. Initial
simulation results of this technique using only one optimiza-
tion routine have been shared in [18]. The current paper
provides detailed experimental results related to charging and
discharging of batteries, and also considers three different
optimization routines following the adaptive estimation pro-
cess, and further provides a comprehensive analysis of battery
parameters estimation accuracy, and the computation time
required by each approach.

The organization of this paper is as follows. The back-
ground of the APE strategy and optimization routines used in
this work is provided in Section II. Section III describes the
proposed two-stage technique for estimation of Li-ion battery
parameters. Computer simulation results for battery model
parameters estimates are provided in Section IV. Section V
presents the experimental validation, while section VI gives
the concluding remarks along with the contributions made by
this paper.

II. BACKGROUND
This work utilizes Chen and Mora’s equivalent circuit
model [5] of the Li-ion battery. Subsection II.A presents
Chen and Mora’s equivalent circuit model of a Li-ion battery,
which has been verified by rigorous experimentation in [5].
Subsection II.B presents the UAS based APE technique [1]
which is used to obtain estimated values of the Chen and
Mora’s battery model parameters. Finally, subsection II.C
presents the optimization techniques [19] that are employed
to improve the accuracy of the battery model parameters
estimated by UAS based APE.

FIGURE 1. Equivalent circuit model used for Li-ion battery.

A. EQUIVALENT CIRCUIT MODEL OF A Li-ION BATTERY
The equivalent circuit model [5] of a Li-ion battery is shown
in Fig. 1. This equivalent circuit model is easy to simulate [1],
[20], [21]. The equivalent circuit parameters of this model are
non-linear functions of battery SoC. In this model, transient
response is captured by the RC network as shown in Fig. 1.
A voltage-controlled voltage source models the dependence
of the open circuit voltage on the battery SoC. The state space
equations for Fig. 1 are described by (1)-(4).

ẋ1(t) = −
1
Cc
i(t), Cc = 3600Cf1f2f3 (1)
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ẋ2(t) = −
x2(t)

Rts(x1(t))Cts(x1(t))
+

i(t)
Cts(x1(t))

(2)

ẋ3(t) = −
x3(t)

Rtl(x1(t))Ctl(x1(t))
+

i(t)
Ctl(x1(t))

(3)

y(t) = Eo(x1(t))− x2(t)− x3(t)− i(t)Rs(x1(t)) (4)

State x1 ∈ [0, 1] denotes battery SoC, x2 and x3 repre-
sent voltage across Rts‖Cts and Rtl‖Ctl respectively. Factors
f1, f2 and f3, with values in [0, 1], account for effects due
to temperature, charge-discharge cycles, and self-discharge
respectively, which, for simplicity, are taken as 1 in this work.
Cc is the Ampere-hour (Ah) capacity of a battery and y(t)
denotes battery terminal voltage. The SoC dependent battery
equivalent circuit elements of Fig. 1 are presented by (5)-(10).

Eo(x1(t)) = −p1e−p2x1(t) + p3 + p4x1(t)

− p5x21 (t)+ p6x
3
1 (t) (5)

Rts(x1(t)) = p7e−p8x1(t) + p9 (6)

Rtl(x1(t)) = p10e−p11x1(t) + p12 (7)

Cts(x1(t)) = −p13e−p14x1(t) + p15 (8)

Ctl(x1(t)) = −p16e−p17x1(t) + p18 (9)

Rs(x1(t)) = p19e−p20x1(t) + p21 (10)

Voltage relaxation tests (see [1]) are required to obtain
the open circuit voltage curve for a battery. After this, curve
fitting is used to obtain the parameters p1, . . . , p6 in (5).
The parameters of (5), for a 4V, 275mAh Li-ion battery
obtained via curve fitting in [1] are p1 = 1.031, p2 =
35, p3 = 3.685, p4 = 0.2156, p5 = 0.1178, p6 = 0.3201.
The remaining Li-ion battery model parameters described
by (6)-(9) are obtained by the APE technique (see [1]).
After estimating the battery parameters p7, . . . , p18 using
APEmethod, the battery series resistance parameters p19, p20
and p21 can be obtained from theRs(x1(t)) vs SoC curve using
curve fitting as described in [1].

B. UAS BASED ADAPTIVE PARAMETER ESTIMATION
The Mittag-Leffler (ML) function [22] is described by (11).

Eα(z) =
∞∑
k=0

zk

0(kα + 1)
(11)

Where 0(z + 1) = z0(z), z > 0 is the standard Gamma
function. UAS strategies have employed the ML function
as a Nussbaum switching function [23] because fast error
convergence is observed. ANussbaum function is a piecewise
right continuous function N (·) : [k ′,∞) → R, k0 > k ′, if it
satisfies (12) and (13), [24].

sup
k>k0

1
k − k0

k∫
k0

N (τ )dτ = +∞ (12)

inf
k>k0

1
k − k0

k∫
k0

N (τ )dτ = −∞ (13)

FIGURE 2. Mittag-Leffler function Eα(−λtα) as a Nussbaum switching
function for λ = 1 and α = 2.5.

The ML function Eα(−λtα) is a Nussbaum function if
α ∈ (2, 3] and λ > 0 [25]. In this work, we select λ = 1 and
α = 2.5, a detailed examination of effects of α, λ are left
for future efforts. The ML function is implemented as a
Nussbaum switching function in MATLAB in [26] and
an example is illustrated in Fig. 2. The circuit elements,
described by (14)-(17), are estimated via the APE method
using (19) which estimates the parameters p̂7, . . . , p̂18.
Where p̂n > 0 for n ∈ {7, 8, . . . , 18}. The adaptive equa-
tion (19) requires the steady-state upper, lower bounds and
their respective confidence levels for each parameter.

R̂ts (̂x1(t)) = p̂7e−̂p8x̂1(t) + p̂9 (14)

R̂tl (̂x1(t)) = p̂10e−̂p11x̂1(t) + p̂12 (15)

Ĉts (̂x1(t)) = −̂p13e−̂p14x̂1(t) + p̂15 (16)

Ĉtl (̂x1(t)) = −̂p16e−̂p17x̂1(t) + p̂18 (17)

R̂s (̂x1(t)) = p̂19e−̂p20x̂1(t) + p̂21 (18)
˙̂pn(t) = e2(t)+λxn (pnu−p̂n(t))+λyn (pnl−p̂n(t)) (19)

The upper and lower bounds of the steady-state value of
each parameter in (19) are pnu and pnl respectively; and λxn,
λyn represent the confidence levels in upper and lower bounds
respectively. The upper and lower bounds represent limits
on the final steady-state value of the parameters p̂n. The
state space model given by (20)-(23), is a high-gain adaptive
estimator used in the APE method. Where x̂1 is the SoC, and
is the same as x1, x̂2 and x̂3 are the estimates of x2 and x3,
and ŷ is the estimated battery terminal voltage.

˙̂x1(t) = −
1
Cc
i(t) (20)

˙̂x2(t) = −
x̂2(t)

R̂ts(̂x1(t))Ĉts(̂x1(t))
+ u(t), x̂2(t) > 0 (21)

˙̂x3(t) = −
x̂3(t)

R̂tl (̂x1(t))Ĉtl (̂x1(t))
+ u(t), x̂3(t) > 0 (22)

ŷ(t) = Êo (̂x1(t))− x̂2(t)− x̂3(t) (23)

The term u(t) required by the observer equations (20)-(22)
is calculated using (24)-(27).The error e(t) between actual
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FIGURE 3. Adaptive parameter estimation methodology.

voltage y(t), and estimated terminal voltage ŷ(t) is given
by (24). The error e(t) is used in (24) to adjust the growth
rate of the adaptive gain i.e. k(t). The value of λ and α in (26)
are taken as 1 and 2.5 respectively.

e(t) = y(t)− ŷ(t) (24)

k̇(t) = e2(t), k(t0) = k0 (25)

N (k(t)) = Eα(−λk(t)α) (26)

u(t) = −N (k(t))e(t) (27)

The selection of initial guesses, upper, lower bounds with
their respective confidence levels for each parameter accord-
ing to the conditions described by (28)-(33) from [1] ensure
the convergence of terminal voltage estimation error e(t) to
zero.

p̂13(t0) > p̂15(t0) > 0, (28)

λx15 + λy15 > λx13 + λy13 , (29)

λx15p15u + λy15p15l < λx13p13u + λy13p13l , (30)

p̂16(t0) > p̂18(t0) > 0, (31)

λx18 + λy18 > λx16 + λy16 , (32)

λx18p18u + λy18p18l < λx16p16u + λy16p16l . (33)

A very small positive discharge current needs to be main-
tained during the course of the APE process, which leads to
the results as shown in (34)-(35), i.e. the products of estimated
and actual battery equivalent circuit elements are equal [1].

R̂ts (̂x1(t))Ĉts(̂x1(t)) = Rts(x1(t))Cts(x1(t)) (34)

R̂tl (̂x1(t))Ĉtl (̂x1(t)) = Rtl(x1(t))Ctl(x1(t)) (35)

The APE algorithm is shown in Fig. 3. For details related
to the execution of the APE process, readers are requested to
see [1].

C. PARTICLE SWARM OPTIMIZATION (PSO)
There are several ways to solve an optimization problem. This
work uses three optimization techniques, i.e. fmincon from
MATLAB, PSO, Hybrid PSO, either alone or in combina-
tion with adaptive parameters estimation. These optimization

techniques are used at the second stage of the proposed bat-
tery parameters estimation methodology. The optimization
function fmincon is a standard and widely used function
readily available in the MATLAB optimization toolbox [27].
The description of Particle Swarm Optimization (PSO) is
included in this work because it produces accurate results for
our work. While Hybrid PSO is the combination of fmincon
and PSO.Next we present the basics of PSO used in this work.

The key feature of PSO is that it is a non-gradient method
which utilizes particles. For the work in this paper, the size of
a particle is 1×nwhere n = 15, i.e. each element in the 1×n
vector (forming a particle), represents one of the estimated
Li-ion battery model parameters p̂7, . . . , p̂21. The number of
elements within a particle are called the decision variables,
so for our 1 × n vector of battery parameters a decision
variable is a particular parameter i.e. p̂n, n ∈ {7, · · · , 21}.
The upper and lower bounds for each decision variable (as
stated in line-18 of Algorithm 1), swarm size S (i.e. number
of particles), where S ∈ Z, S > 0, and maximum number of
iterations R also needs to be specified. In PSO terminology,
a vector containing decision variables of the k th particle,
where k ∈ {1, · · · , S}, is called the particle’s position dk (t)
at time t . A vector containing the values of the change in
the values of the decision variables of this particle per time
step, is called the particle’s velocity vk (t) at time t . It is
worth noting that the terms ‘velocity’ and ‘position’ of a
particle are not necessarily equivalent to commonly known
physical terms, but are more specifically defined via (36),
and (37) respectively. The optimization process begins with
the initialization of a particle’s position, i.e. each decision
variable in a particle is randomly assigned a number within
the range specified by its lower bound and upper bound.
Let C(dk (t)) represents the cost function of the optimization
problem, i.e. C(dk (t)) needs to be minimized. In this work,
C(dk (t)) = |e(t)|, and e(t) is given by (24). For all k particles,
the cost function C(dk (t)) is evaluated at each time step. For
all k ∈ {1, · · · , S}, let dkl (t

′) be a particle having minimum
cost C(dk (t ′)) for t ′ ∈ [t0, t], kl ∈ {1, · · · , S}. Further let
dk∗g (t

∗) be a particle dkl (t
′) with minimum costC(dkl (t

′)) over
all kl , t∗ ∈ [t0, t]. The particle dkl (t

′) is said to have local best
position in time interval [t0, t], and particle dk∗g (t

∗) is said to
have global best position in interval [t0, t] and across all the
swarms.

The velocity of each particle is set to zero at initializa-
tion, i.e. vk (t0) = 0. Further, C(dkl (t0)) and C(dk∗g (t0)) are
assigned a very high value. The local best position of each
particle at initial time is assigned as dkl (t0) = dk (t0). After
the initialization, the new velocity and new position of each
particle is found by using (36) and (37). The vector r1 and r2
have size 1 × n and each element of vector r1 and r2 is a
uniformly distributed random number within the range (0,1).
Here m represents particle’s inertia, m ∈ (0, 1], and a smaller
value ofm usually provides less oscillations around a value at
which a particle’s decision variable converges. The weights
assigned to local and global best positions are s1 and s2
respectively. The ◦ operator in (36) is the Hadamard product.
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FIGURE 4. PSO Algorithm for optimum battery parameters estimation.

It is used for element wise multiplication of two vectors
having the same sizes, i.e. the size of each vector is 1 × n.
The resultant vector, obtained after element wise multiplica-
tion of two same sized vectors, has the size of 1 × n. Thus,
the element wise multiplication of vectors in (36) gives the
vector vk (t + 1t) of size 1 × n. The velocity and position
of the k th particle are updated continuously in a loop using
(36) and (37) until C(dk∗g (t

∗)) falls below a desired small
positive value, say ε, or the number of iterations j exceeds
the maximum value R, as shown in Fig. 4. Details related to
the use of the PSO algorithm for estimating Li-ion battery
parameters are presented in Section III. For details related to
the PSO algorithm, readers are directed to [16] and [19].

vk (t +1t) = mvk (t)+ s1r1 ◦ (dkl (t
′)− dk (t))

+ s2r2 ◦ (dk∗g (t
∗)− dk (t)) (36)

dk (t +1t) = dk (t)+ vk (t +1t) (37)

In contrast to PSO, there are also gradient based optimiza-
tion techniques, e.g. MATLAB’s fmincon function provides
an implementation of such gradient based optimization tech-
niques. The combination of PSO and fmincon together is
known as Hybrid PSO. In Hybrid PSO, the fmincon algorithm
is executed on the output of the PSO algorithm, after the PSO
algorithm terminates, to further refine the output produced
by PSO. In this work we compare the results of applying
the fmincon, PSO, and Hybrid PSO strategies as a second
stage of the proposed UAS based optimized battery param-
eters estimation methodology. The proposed methodology is
explained in the next section.

III. UAS BASED OPTIMIZED Li-ION BATTERY MODEL
PARAMETERS ESTIMATION METHOD
This section explains the proposed adaptation based opti-
mized strategy to estimate Li-ion battery model parameters.
The left half of Fig. 5 shows the APE process. The formula-
tion of the adaptive parameter estimation process is available

in section II, and details are available in [1]. The process
can be briefly described as follows. The adaptive parameters
estimation process requires the open circuit voltage curve,
which provides the value of the estimated open circuit voltage
Ê0 (̂x1(t)). This, along with the measured battery current i(t),
and the output u(t) of the universal adaptive stabilizer, is used
by the APE block to calculate the estimated battery terminal
voltage ŷ(t). The difference between the measured battery
terminal voltage y(t), and ŷ(t) gives the terminal voltage
estimation error e(t). This error e(t) is used to adaptively
adjust values of the Li-ion battery model parameters. This
process outputs parameters p̂7, · · · , p̂18, which along with
some further curve fitting based operations as shown in [1],
produces parameters p̂19, · · · , p̂21. The values of the battery
terminal voltage y(t), the battery current i(t) at each time
step of execution, and the values of estimated parameters
p̂7, · · · , p̂21 are stored in a data storage unit.
In the right half of Fig. 5, the dotted box represents the

optimization process of the battery parameters obtained via
UAS based estimation. The discrete data points i.e. the volt-
age and current data points stored in the data storage unit,
are extracted by the data organizer block and forwarded to
the sample and hold unit. The data organizer block also
assigns the upper and lower bounds for battery parameters
p̂7, · · · , p̂21 required by optimization routine. The sample
and hold block simply reads the terminal voltage and cur-
rent values one by one, and holds them until one iteration
of the optimization routine is completed. The optimization
routine block also requires some constraints e.g. the number
of iterations, number of swarms, upper and lower bounds
of decision variable values, and desired minimum value for
the cost function. The mint∈[t0,T ],k∈{1,··· ,S} C(xk∗g (t

∗)), where
t∗ = [t0,T ], k∗g ∈ {1, · · · , S} optimization is then performed.
Here T is the time at which battery SoC is 7%, C(xk (t)) =
|e(t)|, and e(t) is given by (24). When the error |e(t)| from
cost function reaches a desired minimum value ε, the battery
parameters p∗7, · · · , p

∗

21 are recorded in arrays B7, · · · ,B21.
When either the number of iterations or the minimum error
criteria in estimated terminal voltage is satisfied, the iterator
variable j is incremented to optimize the battery parameters
at the next sample of voltage and current. The average of
recorded battery parameters in B7, · · · ,B21 arrays, after the
optimization process, provides the optimized estimates of Li-
ion battery parameters and they are named as p̃7, · · · , p̃21.
The implementation details of the proposed technique, whose
architecture is given in Fig 5, has been described in the
Algorithm 1. It is also worth noting that T is selected as
the time at which battery SoC is 7% [1] because it enables
capturing battery behavior over a sufficiently long range of
battery cycle life, while making sure that batteries are not
discharged to dangerously low operating SoC.

The sampling time used to record Li-ion battery voltage
and current should be appropriate enough to capture the
nonlinear behavior of discharge voltage, especially for the
range 7% ≤ SoC ≤ 20%. We select the sampling time
of 0.01 seconds for battery voltage and current sampling in
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FIGURE 5. Architecture of APE followed by optimization methodology.

this work, which is sufficient enough to capture the nonlinear
behavior of battery terminal voltage in the range of SoC
mentioned above.

The factors influencing the computational time and accu-
racy of Algorithm 1 are as follows: 1. Sampling time of
battery voltage and current, 2. Maximum number of opti-
mization iterations, 3. Swarm size in optimization stage, 4.
Search space interval for each decision variable in optimiza-
tion stage, 5. Desired minimum value of cost function in
optimization stage. The selection of these factors is a trade-off
betweenmore accurate estimates of Li-ion battery parameters
and overall less computational time of Algorithm 1. Further-
more, the accuracy of Algorithm 1 has been observed to be
more sensitive to factor 4 and 5 above, and the computational
time relies mainly on factors 1, 2, and 3.

Our two-stage adaptive-optimized strategy focuses on opti-
mum estimation of Li-ion battery parameters while reducing
the number of iterations, number of swarms, and search space
interval needed by the optimization technique. In the next
section, we present a comprehensive comparison of accurate
estimates of Li-ion battery parameters, and overall com-
putational time between the APE technique, our proposed
algorithm, and optimization routines.

IV. COMPUTER SIMULATIONS FOR BATTERY
MODEL PARAMETERS ESTIMATION
The parameters of a 4.1 V, 850 mAh polymer Li-ion battery
are obtained by Chen and Rincon-Mora in [5]. We used
the same parameters as a benchmark to perform the com-
puter simulations in this work. However, a Li-ion battery
of 275 mAh capacity is used in this work to reduce the simu-
lation time to almost one-third of the time needed, compared
to using a 850 mAh Li-ion battery, which Chen and Mora
utilize in their experiments. Note that the battery parameters
of interest to this work are constants independent of SoC,
and they control the shape of the terminal voltage vs time
curve, thus reducing the capacity from 850mAh to 275 mAh
doesn’t affect the parameters of interest to this work.

Three different techniques are used to estimate the battery
parameters p̂7, · · · , p̂21. In this work, these techniques will
be termed as Technique 1 (T1), Technique 2 (T2), and
Technique 3 (T3), and they are defined as follows.
• Technique 1 (T1): This technique utilizes one of
the three optimization routines i.e. fmincon (T1-I),
PSO (T1-II), and Hybrid PSO (T1-III). These optimiza-
tion routines have a random search space interval for
each parameter and number of iterations R = 50.
A swarm size of S = 50 is set for PSO (T1-II) and
Hybrid PSO (T1-III).

• Technique 2 (T2): This technique [1] uses Universal
Adaptive Stabilizer (UAS) based Adaptive Parameters
Estimation (APE) alone to acquire the set of Li-ion
battery model parameters.

• Technique 3 (T3): This is our newly proposed technique
which consists of a two-stage process. The first stage
utilizes UAS based APE to obtain the initial values
of the parameters. The second stage utilizes one of
the three optimization routines i.e. fmincon, PSO, and
Hybrid PSO. Thus, Technique 3 employs one of the
three two-stage processes, i.e. APE with fmincon (T3-I),
APE with PSO (T3-II), and APE with Hybrid PSO
(T3-III). Complete details for the implementation of the
proposed technique are given in the Algorithm 1. The
search space interval, as defined in Algorithm 1, for
each parameter is p̂7 ± δ7, . . . , p̂21 ± δ21. The values
of parameters p̂7, . . . , p̂21 are obtained from APE (T2)
while the values of δn is set at 10 percent of the value of a
parameter estimated by the APE process, i.e. δn = 0.1̂pn
and n ∈ {7, · · · , 21}. The number of iterations for all
optimization routines are R = 10 and swarm sizes of
S = 10 are selected for PSO and Hybrid PSO. Please
note that the number of iterations and swarm size are
deliberately set to five times lesser than T1 to illustrate
the effectiveness of the proposed technique T3.

The parameters estimated using techniques T1, T2, and T3
are first assessed by comparing the estimated battery
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Algorithm 1 Adaptation, and optimization based Li-ion battery parameters estimation algorithm
Requirements: Current i(t) and voltage y(t) for battery discharge through a constant load resistance, where t = [t0, tend ] and
tend is the time at which battery SoC is 7%.
Data: Initial values p̂n(0) > 0, n ∈ {7, · · · , 18}, upper bounds pnu, lower bounds pnl , and their respective confidence levels
λxn and λyn for each parameters p7, . . . , p18. Battery capacity Cc (Ah) value. Maximum number of optimization iterations R,
number of swarms S for PSO, and a small positive constant ε. Upper and lower limits of search space interval for optimization,
i.e. p̂7 ± δ7, . . . , p̂21 ± δ21, where δn ∈ R, n ∈ {7, · · · , 21} and p̂7, . . . , p̂21 obtained from APE.
Initial conditions x̂1(t0) = 1, x̂2(t0) = x̂3(t0) = 0, ŷ(t0) = y(t0)V , and SoC(t0) = 1. Initialize the iterator variables h = 1,
j = 1, and z = 1.
Output: Optimized estimated battery model parameters p̃7, . . . , p̃21.

1: for t = t0 : tstep : tend do F Adaptive parameters estimation of Li-ion battery.
2: Read discharge current i(t) and voltage y(t).
3: Update the error e(t) using (24).
4: Calculate battery SoC(t) i.e. x1(t) using (1), and get x̂1(t) using (20). F Note that: x1(t) = x̂1(t).
5: Get estimated parameters from (19).
6: Find the equivalent circuit elements from (14) to (17).
7: Evaluate state estimates from (21) and (22), and find estimated terminal voltage ŷ(t) using (23).
8: if (|e(t)| < ε) then
9: Store the estimates of Li-ion battery parameters in arrays, A7[h]← p̂7(t), · · · ,A18[h]← p̂18(t), and
10: h← (h+ 1).
11: else
12: Continue loop execution.
13: end if
14: end for
15: Find the mean value of all individual arrays A7, · · · ,A18 to get the estimates of Li-ion battery parameters p̂7, . . . , p̂18.
16: Estimate p̂19, p̂20 and p̂21 parameters from R̂s(̂x1(t)) vs SoC curve using curve fitting as in [1].
17: Store all the battery parameters p̂7, . . . , p̂21, voltage y(t), current i(t), and SoC(t) profiles in the data storage unit.
18: Organize the data for optimization by setting upper and lower limits of search space interval for each parameter, i.e. p̂7 ±

δ7, . . . , p̂21 ± δ21, where δn ∈ R, n ∈ {7, · · · , 21}, and p̂7, . . . , p̂21 obtained from APE.
19: while SoC(z) > 7% do F Optimization of Li-ion battery model parameters.
20: Read constant load discharge current i(z), voltage y(z) and SoC(z) at zth sample.
21: Run an optimization routine (fmincon, PSO or Hybrid PSO) to identify the best value of battery parameters in the preset

search space interval, i.e. get battery parameter values that minimize |e(z)|.
F The optimization process described in Fig. 4, along with (36) and (37), is used for APE with PSO (T3-II) or APE

with Hybrid PSO (T3-III) techniques.
22: if (|e(z)| < ε) or (j > R) then
23: Store the estimates of Li-ion battery parameters in arrays, B7[z]← p∗7(j), · · · ,B21[z]← p∗21(j) and
24: j← 1 and z← (z+ 1).
25: else
26: Continue j← (j+ 1). F Increment optimization algorithm iteration number.
27: end if
28: end while
29: Find the mean value of all individual arrays B7, · · · ,B21 to get the optimized estimates of Li-ion battery parameters

p̃7, . . . , p̃21.

parameter values output by each of them, with the param-
eter values that were experimentally obtained by Chen and
Mora. The computational time needed by each technique is
also noted, and compared. Secondly, the values of battery
circuit elements Rts,Rtl,Cts,Ctl, and Rs are calculated using
the parameters p̂7, . . . , p̂21. The values of these battery cir-
cuit elements are compared with the ones that are provided
by Chen and Mora. Finally, the accuracy of the estimated

parameters is evaluated by comparing the estimated bat-
tery terminal voltage using the above estimated bat-
tery parameters, with the battery terminal voltage given
by Chen and Mora.

A. PARAMETERS ESTIMATION ACCURACY COMPARISON
The values of battery parameters p̂7, . . . , p̂21 estimated by
using three techniques, T1, T2, and T3 are given in Table-1.
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TABLE 1. 4.1 V, 275 mAh Li-ion battery model parameters.

TABLE 2. Absolute percentage error in estimated parameters.

Whereas, Table-2 shows the estimation error of each param-
eter with respect to the benchmark parameters obtained from
Chen andMora’s work [5]. The results in Table-1 and Table-2
show that the battery parameters obtained using the proposed
two-stage parameters estimation methodology (T3) are more
accurate compared to the parameters that are obtained either
by using the optimization technique (T1) alone or by using
the APE (T2) alone.

The battery parameters obtained using APE with fmincon
(T3-I) are more accurate as compared to the ones that are
obtained by using optimization techniques (T1) alone and
are somewhat comparable with the ones that are obtained by
using APE (T2) alone. However, the parameters obtained by

the proposed technique T3-II and T3-III i.e. APE in com-
bination with PSO and Hybrid PSO respectively are more
accurate and have much lesser error with reference to the
Chen and Mora’s benchmark parameters values. In purely
optimization based technique (T1), the number of iterations
are R = 50 and the swarm size of S = 50 are selected.
However, the parameters estimation error in Table-2 suggests
that it requiresmore population of particles, andmore number
of iterations to give reasonable estimates of battery model
parameters.

Table-1 and 2 show that the parameters estimated by the
optimization technique (T1) alone have a larger error. There-
fore, the following discussion will only focus on APE (T2)
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FIGURE 6. Comparison of time consumed by parameters estimation
strategies.

and our proposed technique (T3). Table-1 shows a good
match between the parameters obtained by the proposed tech-
nique (T3-II and T3-III), and the Chen andMora’s parameters
values. We further evaluate the parameters estimation accu-
racy by calculating the battery equivalent circuit elements
and estimating the battery terminal voltage. The equivalent
circuit element values and estimated battery terminal voltage
are compared with the ones given by Chen and Mora.

We also record the average simulation time (over 10 sim-
ulations of each technique), required by the three proposed
techniques, i.e. T3-I, T3-II, and T3-III. These results are
shown in Fig. 6. It can be seen from Fig. 6 that APE with
PSO (T3-II), and APE with Hybrid PSO (T3-III) which
give the best estimation of battery parameters have rela-
tively larger time consumption when compared to APE (T2),
APE with fmincon (T3-I), and the fmincon optimization
technique (T1-I). However, the time consumption of APE
with PSO (T3-II) and APE with Hybrid PSO (T3-III) is
much less than the PSO (T1-II) and Hybrid PSO optimization
(T1-III) techniques.

Since the accuracy of the estimated parameters using opti-
mization techniques alone is very poor. Therefore, there
will be no further assessment of optimization based tech-
nique (T1). The rest of the simulation and implementation
work will focus on Technique 2 and Technique 3.

B. BATTERY CIRCUIT ELEMENTS (Rts,Rtl ,Cts,Ctl ,Rs)
ESTIMATION COMPARISON
In this section, the battery is subjected to 0.5 amperes constant
resistive load discharging and parameters p̂7, . . . , p̂21 are
estimated. These parameters are then used to calculate the
battery circuit elements Rts,Rtl,Cts,Ctl, and Rs. As a sample,
the variation of one circuit element Cts with respect to battery
SoC is illustrated in Fig. 7. The accuracy of rest of the circuit
elements is evaluated by comparing the error between the
estimated circuit elements and reference values of Chen and
Mora’s circuit elements. The circuit elements error analysis,
using the APE technique (T2) alone and the proposed tech-
niques T3-I, T3-II, and T3-III, is shown in Fig. 8.

FIGURE 7. Comparison and variation of circuit element Cts for
technique 2 (T2) and technique 3 (T3).

FIGURE 8. Circuit elements error analysis for technique 2 (T2) and
technique 3 (T3).

The estimation error percentage, during the course of simu-
lation, for each circuit element is obtained by subtracting the
Chen and Mora’s circuit element value at a particular time
instant, from the ones that are obtained either via technique
T2 or T3 at the same time instant, and then dividing by the
Chen and Mora’s circuit element value at that instant. The
absolute value of this estimation error for each circuit element
is recorded over time during simulation and stored in arrays.
The mean of each such estimation error array gives the aver-
age percentage error in a circuit element’s estimation. Overall
Fig. 8 shows that APEwith PSO (T3-II) andAPEwith Hybrid
PSO (T3-III) have lesser circuit elements estimation error
compared to APE alone (T2) and APE with fmincon (T3-I)
technique. Also, the computation time required by APE with
PSO (T3-II) or APEwith Hybrid PSO (T3-III) is intermediate
between T1-I, T2, and T3-I techniques and T1-II, and T1-III
techniques as shown in Fig. 6.

C. BATTERY TERMINAL VOLTAGE
ESTIMATION COMPARISON
The battery terminal voltage is estimated using four different
load profiles with irregular discharging intervals. These load
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FIGURE 9. Terminal voltage estimation and absolute error |e(t)| comparison among Chen and Mora, technique 2 (T2) and technique 3 (T3) for four
load profiles. (a) Terminal voltage estimation and absolute error |e(t)| calculation for load profile 1. (b) Terminal voltage estimation and absolute
error |e(t)| calculation for load profile 2. (c) Terminal voltage estimation and absolute error |e(t)| calculation for load profile 3. (d) Terminal
voltage estimation and absolute error |e(t)| calculation for load profile 4.

TABLE 3. Battery discharging load profiles.

profiles are given in Table-3. The battery current in these
load profiles varies from 0.5 amperes to 6 amperes while
the total simulation time period changes from 150 seconds to
25 seconds as shown in Table-3. For all the four load profiles,
the battery is discharged until the SoC reaches 7%.

The results of battery terminal voltage estimation and their
respective estimation error for the four designed load pro-
files are illustrated in Fig. 9a to Fig. 9d. The zoomed in
views of terminal voltage estimation error of Technique 2
(T2) and Technique 3 (T3), for four load profiles are also
shown in Fig. 10. Note that the absolute value of terminal
voltage estimation error is shown in Fig. 9 and Fig. 10.

FIGURE 10. Zoomed in view of terminal voltage estimation error for
technique 2 (T2) and technique 3 (T3), for four load profiles (data labels
same as |e(t)| plots in Fig. 9).

The voltage estimated by using Chen and Mora’s parameters
values, is termed as actual voltage in Fig. 9. The voltage
estimation error is obtained by subtracting the voltage esti-
mated by Technique 2 or 3 from Chen and Mora’s voltage.
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FIGURE 11.
∑T

t=t0
e2(t) Analysis for technique 2 (T2) and

technique 3 (T3) for four load profiles.

FIGURE 12. Average of absolute terminal voltage error for
technique 2 (T2) and technique 3 (T3) for four load profiles.

The terminal voltage estimation error is reduced using the
battery parameters obtained from APE with PSO (T3-II) and
APE with Hybrid PSO (T3-III), especially in the relaxation
period when the battery is not discharging and when SoC
becomes less than 10%.

For the discharging current profiles defined in Table-3,
the quantity

∑T
t=t0 e

2(t), and average of absolute percent-
age error of terminal voltages, estimated using techniques
T2 and T3, are also highlighted in Fig. 11 and Fig. 12
respectively. The time duration for the terminal voltage error
analysis is t = [t0,T ], where T is the time at which the
battery SoC approaches to 7%. The overall results in these
figures, for the four designed discharging load profiles show
that the quantity

∑T
t=t0 e

2(t), and average of absolute terminal
voltage error for APE (T2) and APE with fmincon (T3-I) are
larger than APE with PSO (T3-II), and APE with Hybrid
PSO (T3-III).

The only anomaly in these computer simulations is that
APE with PSO (T3-II) has a higher value for the quantity∑T

t=t0 e
2(t), when the discharging load profile 1 is used, i.e.

the battery is discharged with a low current and larger time
period. This anomaly is further evaluated in our experimental
investigation.

Our simulation results for parameters estimation, battery
circuit elements calculation and battery terminal voltage

FIGURE 13. Experimental setup.

estimation show that proposed two-stage methodology con-
sisting of APE with PSO (T3-II) and APE with Hybrid PSO
(T3-III) perform better than the purely optimization based
techniques (T1), APE (T2) and APE with fmincon (T3-I)
techniques. Moreover, the proposed APE with PSO (T3-II),
and APE with Hybrid PSO (T3-III) techniques need less
computation time compared to purely optimization based
techniques (T1-II), and (T1-III) to estimate battery model
parameters more accurately.

V. EXPERIMENTAL VALIDATION OF
THE PROPOSED TECHNIQUE
The simulation results showed very poor accuracy of the esti-
mated parameters p̂7, . . . , p̂21 when using purely optimiza-
tion based technique (T1). Therefore, only Technique 2 and
our proposed Technique 3 will be experimentally investigated
for the accuracy assessment of the estimated parameters. The
experimental setup designed for this work is shown in Fig. 13.
This setup, similar to [1] includes a Thunder-Power 22.2 V,
6.6 Ah Lithium-Polymer battery (TP6600−6SP+25), differ-
ent type of loads for battery discharging, voltage and current
sensors for the battery voltage and current measurements.
A dSPACE 1103 board is used for experimentation and data
acquisition. A sampling period of 0.01 seconds is selected
to measure the voltage and current of a Lithium-Polymer
battery.

The voltage relaxation test is performed to get the open
circuit voltage curve as a function of battery SoC. Curve
fitting, as mentioned in the background section (II.A), is used
to get the open circuit voltage parameters p̂1, . . . , p̂6 of
equation (5). The values obtained for these parameters are;
p1 = 5.112, p2 = 40.955, p3 = 22.195, p4 = 1.9215,
p5 = 1.759, p6 = 3.0435, which are the same as shared in our
earlier work [1]. The major focus of this work is estimation
and accuracy assessment of the remaining battery parameters
p̂7, . . . , p̂21.
Subsection V.A presents the experimental estimation of the

battery model parameters p̂7, . . . , p̂21. Subsection V.B assess
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FIGURE 14. Discharging voltage and current profiles of Lithium-Polymer
battery connected with 50 � resistor.

the accuracy of estimated battery parameters by comparing
the estimated and measured voltage for sixteen discharging
load profiles. Finally, subsection V.C evaluates the parame-
ters estimation accuracy again by comparing the estimated
and measured voltage for charging process of sixteen indi-
vidual batteries.

A. EXPERIMENTAL ESTIMATION OF
BATTERY MODEL PARAMETERS
In this section, the battery model parameters p̂7, . . . , p̂21
are estimated using the APE (T2) and our proposed
two-stage parameters estimation technique (T3). A fully
charged Lithium-Polymer battery is connected with the 50�
resistive load, to discharge the battery with a small load
current of about 0.4 amperes. The slow battery discharg-
ing during APE process ensures the convergence of product
of estimated resistances and capacitances to the product of
actual resistances and capacitances, as proved in our earlier
work [1]. Therefore, it provides accurate estimates of battery
model circuit elements Rts,Rtl,Cts,Ctl, and Rs which will
ensure an accurate estimation of battery terminal voltage.
The battery terminal voltage and discharging current pro-
files are shown in Fig. 14. It took about 15 hours to dis-
charge the battery upto 7% of its rated capacity with a load
resistance of 50 �. The voltage and current data used for
parameter estimation contains 5,493,994 number of samples
each, and are utilized in Algorithm 1 to estimate Lithium-
Polymer battery parameters. Algorithm 1 is the combina-
tion of the APE algorithm (Lines 1 to 16) and optimization
algorithm (Lines 17 to 29). The APE algorithm, detailed in
section (II.B), uses UAS, the adaptive equation (19), and
curve fitting to estimate the Lithium-Polymer battery param-
eters. The estimated parameters, using APE technique (T2),
are recorded in column 2 of Table-4.

TABLE 4. Experimental parameters estimation of 22.2 V, 6.6 Ah Lithium
Polymer battery.

Next, the parameters obtained by the APE technique (T2)
are utilized to choose the search space (intervals) of param-
eters p̂7, . . . , p̂21, for further optimization. The parameters
obtained by APE (T2) are optimized in the second stage of
Algorithm 1. The search space interval of the optimization
techniques (T3-I) to (T3-III), for each parameter is designed
by setting the upper and lower bounds, δn. Similar to the
simulation setup, for experimental verification, the value of
δn is set at 10 percent of the value of parameters estimated
by the APE process, i.e. δn = 0.1̂pn and n ∈ {7, · · · , 21}.
Thus the search space interval of the estimated parameters are
defined as p̂7± δ7, . . . , p̂21± δ21. Furthermore, at the second
stage of the proposed technique (T3), the number of iterations
R = 10 for (T3-I) to (T3-III), and a swarm size of S = 10
is used for (T3-II) and (T3-III). The estimated parameters
using APE with fmincon (T3-I), APE with Particle Swarm
Optimization (T3-II), and APE with Hybrid PSO (T3-III) are
tabulated in columns 3, 4, and 5 of Table-4 respectively. The
optimization techniques are employed to improve the accu-
racy of the parameters that are originally obtained by using
APE (T2). The estimated parameters accuracy is assessed in
the following subsections V.B and V.C.

B. PARAMETERS ESTIMATION ACCURACY ASSESSMENT
VIA BATTERY DISCHARGING TESTS
This section evaluates the accuracy of the estimated param-
eters obtained by APE (T2) and our proposed tech-
nique (T3) via battery discharging. The estimated parameters
are used to calculate the values of battery circuit elements
Rts,Rtl,Cts,Ctl,Rs which are then used to estimate the bat-
tery terminal voltage. Thus, the accuracy of estimated param-
eters is evaluated by comparing the estimated and measured
battery voltage. The 22.2 V, 6.6 Ah Lithium-Polymer battery
is connected with resistive load and the battery is discharged
until the SoC approaches 7%. Sixteen different rigorous
load profiles are designed for battery discharging and data
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i.e. estimated and measured terminal voltages are acquired.
These sixteen discharging load profiles are separated in the
form of five groups. Group 1 discharges the battery through
a constant load resistance, Group 2 discharges the battery
with the periodic ON and OFF intervals while Groups 3 to 5
discharge the battery with randomON andOFF intervals. The
details of these sixteen discharging load profiles are given
below.
• Group 1 (G1), 4 Tests: The battery is subjected to dis-
charge through a constant resistive load, using one of
the following four resistive loads of 50�, 25�, 11.11�
and 7.5 �.

• Group 2 (G2), 4 Tests: In this group the battery is peri-
odically discharged and relaxedwith different loads. The
four load profiles designed in this group are:
– The battery is discharged for 15 minutes followed

by relaxation time of 15 minutes using two load
resistors, 25 � and 11.11 �.

– The battery is discharged for 1 minute followed by
relaxation time of 1 minute using two load resistors,
25 � and 11.11 �.

• Group 3 (G3), 3 Tests: The discharging tests in this
group are conducted with randomly varying ON and
OFF times, in contrast to Group 2 which has periodic
ON and OFF times. The experiments are performed
with three values of resistive loads, i.e. 25 �, 11.11 �
and 7.5 �.

• Group 4 (G4), 2 Tests: These tests are also performed
with randomly varying ON and OFF time using light
bulbs as a load. The following two load profiles are
designed.
– Parallel combination of two 24 V, 60 W DC bulbs
– Parallel combination of three 24 V, 60 W DC bulbs

• Group 5 (G5), 3 Tests: This group contains the last
three load profiles of our rigorous testing. The tests are
again conducted with randomly varying ON and OFF
time. Three load profiles are designed using parallel
combination of three 24 V, 60 W DC bulbs. The number
of bulbs in parallel combination is randomly varied from
one bulb to three bulbs.

1) DISCHARGING TESTS RESULTS AND DISCUSSION
The Lithium-Polymer battery is discharged under the afore-
mentioned 16 load profiles that are separated in five groups.
The terminal voltage estimation errors, for all the sixteen
discharging load profiles, are recorded in an array, for
APE technique (T2) and for the developed two-stage tech-
nique (T3). As a sample, the estimated and measured termi-
nal voltage along with the absolute voltage estimation error
for two of the sixteen discharging load profiles are shown
in Fig. 15 and Fig. 17. The zoomed in views of terminal volt-
age estimation error in Fig. 15 and Fig. 17 are also provided
in Fig. 16 and Fig. 18 respectively. Figure 15 shows that volt-
age error profiles of APE (T2) and APE with fmincon (T3-I)
techniques are about the same. However, APE with PSO

FIGURE 15. Terminal voltage estimation and absolute error |e(t)|
comparison for resistive load of 11.11 � with 15 minutes ON and
15 minutes OFF times.

FIGURE 16. Zoomed in view of terminal voltage error comparison for
resistive load of 11.11 � with 15 minutes ON, and 15 minutes OFF times
(data labels same as |e(t)| plots in Fig. 15).

FIGURE 17. Terminal voltage estimation and absolute error |e(t)|
comparison for randomly varying load with random ON and OFF
times drawing 5 A and 7.5 A.

(T3-II) and APE with Hybrid PSO (T3-III) show a sig-
nificant drop in the voltage estimation error magnitude.
In Fig. 17, the voltage estimation error is investigated
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FIGURE 18. Zoomed in view of terminal voltage error comparison for
randomly varying load with random ON and OFF times drawing 5 A
and 7.5 A (data labels same as |e(t)| plots in Fig. 17).

TABLE 5. Terminal voltage estimation error statistics while discharging
the battery with sixteen different load profiles for technique 2 (T2) and
technique 3 (T3).

when the battery is subjected to a random and relatively
higher discharging current. A significant reduction in error
profile magnitude is noticed in Fig. 17 when APE with
PSO (T3-II) and APE with Hybrid PSO (T3-III) techniques
are employed. Thus, the reduction in the terminal voltage
estimation error for (T3-II) and (T3-III) techniques verifies
the accuracy of the estimated parameters.

Sixteen terminal voltage estimation error arrays are
obtained from sixteen discharging load profiles. Due to the
different discharging interval of each load profile, each array
has different number of samples. To perform the overall error
analysis, all the sixteen terminal voltage estimation error
arrays are stacked to form a large array. Such four large
terminal voltage estimation error arrays, i.e. one array for
technique T2 and one for each of the techniques T3-I, T3-II
and T3-III, are formed. The total number of samples, in each
large terminal voltage estimation error array, is 2.75 × 107.
The mean, median, mode and standard deviation for each
of these four terminal voltage estimation error arrays are
described in Table-5. An extensive investigation of the overall
terminal voltage estimation error arrays is carried out by
further showing their histogram and cumulative distribution
graphs in Fig. 19 and Fig. 20 respectively. Where, the red
vertical lines in Fig. 20 indicate the ±4.5% terminal voltage
estimation error i.e.±1 V. The following observations can be
made from the data presented in Table-5, Fig. 19 and Fig. 20.
• In Table-5, the standard deviation values imply that the
terminal voltage estimation error is less dispersed and
settled around the small mode value for APE with PSO

FIGURE 19. Histogram of terminal voltage estimation error for
technique 2 (T2) and technique 3 (T3) under sixteen different
discharging profiles.

FIGURE 20. Cumulative distribution of terminal voltage estimation error
for techique 2 (T2) and technique (T3) under sixteen different discharging
profiles.

(T3-II) and APE with Hybrid PSO (T3-III) techniques.
• Fig. 19 shows that for more than 95% of the samples,
the terminal voltage error lies within ±1 V for T2 and
all T3 techniques. Also, the low standard deviation of
terminal voltage estimation error, settled around mode
value, for T3-II and T3-III techniques can be seen from
the histogram in Fig. 19.

• Fig. 20 shows that the percentage of samples for which
the voltage estimation error lies within ±1 V (±4.5%
range) is: 95.43% for APE (T2), 95.78% for APE with
fmincon (T3-I), 97.29% for APE with PSO (T3-II), and
97.08% for APE with Hybrid PSO (T3-III). Further-
more, the percentage of samples for which the voltage
estimation error lies within ±0.5 V (±2.25% range) is:
86.90% for APE (T2), 87.33% for APE with fmincon
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FIGURE 21. Terminal voltage estimation and absolute error |e(t)|
comparison while charging the 22.2 V, 6.6 Ah Li-Polymer battery,
technique 2 (T2) and technique 3 (T3).

(T3-I), 91.74% for APE with PSO (T3-II), and 89.12%
for APE with Hybrid PSO (T3-III).

Thus the statistical analysis presented in Table-5, Fig. 19
and Fig. 20 for battery discharging shows that battery param-
eters estimated using APE with PSO (T3-II) and APE with
Hybrid PSO (T3-III) are more accurate as compared to
APE (T2) and APE with fmincon (T3-I) techniques.

C. PARAMETERS ESTIMATION ACCURACY ASSESSMENT
VIA BATTERY CHARGING TESTS
In this section, we present results related to charging sixteen
individual batteries with a constant current of 2.5 amperes
using the Thunder-Power charger (TP820CD). The estimated
and measured voltage of the battery using Technique 2 and
Technique 3 are compared to assess the accuracy of the
estimated battery parameters. The voltage estimation error
is recorded for each battery during the charging process.
As a sample, detailed data collected for one battery dur-
ing the charging process is shown in Fig. 21. The zoomed
in view of terminal voltage estimation error in Fig. 21,
is also shown in Fig. 22. The error magnitude plot shows
that APE (T2) and APE with fmincon (T3-I) techniques
have higher terminal voltage estimation errors compared to
APE with PSO (T3-II) and APE with Hybrid PSO (T3-III)
techniques.

For all the sixteen batteries, four terminal voltage estima-
tion error arrays using T2, T3-I, T3-II, T3-III techniques,
similar to the battery discharging case, are formed. Each
array includes the terminal voltage estimation error of all
the sixteen individual batteries. The total number of sam-
ples collected in each array during the batteries charging are
1.258× 107. The statistical error analysis of these four error
arrays is provided in Table-6. The terminal voltage estimation
error, of all the sixteen individual batteries, is further analyzed

FIGURE 22. Zoomed in view of terminal voltage error comparison while
charging the 22.2 V, 6.6 Ah Li-Polymer battery, technique 2 (T2) and
technique 3 (T3) (data labels same as |e(t)| plots in Fig. 21).

TABLE 6. Terminal voltage estimation error statistics while charging
sixteen different batteries with a constant 2.5 A for technique 2 (T2) and
technique 3 (T3).

by performing the histogram analysis, and cumulative distri-
bution analysis as shown in Fig. 23 and Fig. 24 respectively.
The data presented in Table-6, Fig. 23 and Fig. 24 can be
analyzed as follows:

• Table-6 shows that mean, median, mode and standard
deviation values for APE with PSO (T3-II) and APE
with Hybrid PSO (T3-III) are relatively lower than
APE (T2) and APE with fmincon (T3-I) techniques.

• Figure 23 shows that for more than 94% of samples,
the terminal voltage estimation error lies within ±1 V
for T2 and all T3 techniques. Also, the terminal voltage
estimation error is less dispersed and settled around a
small mode value, for T3-II and T3-III techniques.

• Figure 24 shows that the percentage of samples for
which the voltage estimation error lies within ±1 V
(±4.5% range) is: 94.34% for APE (T2), 95.55% for
APE with fmincon (T3-I), 99.35% for APE with PSO
(T3-II), and 98.26% for APE with Hybrid PSO (T3-III).
Furthermore, the percentage of samples for which the
voltage estimation error data that lies within ±0.6 V
(2.7% range) for different techniques is: 38.32% for
APE (T2), 50.72% for APEwith fmincon (T3-I), 89.01%
for APE with PSO (T3-II), and 81.98% for APE with
Hybrid PSO (T3-III).

The study of terminal voltage estimation error while charg-
ing sixteen individual batteries with a constant 2.5 amperes
current shows that the proposed APE with PSO (T3-II)
and APE with Hybrid PSO (T3-III) techniques estimate
the battery model parameters more accurately compared
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FIGURE 23. Histogram of terminal voltage estimation error for
technique 2 (T2) and technique 3 (T3) while charging sixteen individual
batteries with a constant 2.5 A current.

FIGURE 24. Cumulative distribution of terminal voltage estimation error
for technique 2 (T2) and technique 3 (T3) While charging sixteen
individual batteries with a constant 2.5 A current.

to APE (T2) and optimization techniques (T1) alone.

VI. CONCLUSION
This paper demonstrated the effectiveness of our proposed
two-stage technique for accurate estimation of Li-ion battery
parameters. At the first stage, the initial estimates of param-
eters values are obtained by using an adaptive parameters
estimation (APE) technique. The APE helps in finding these
initial estimates, which help to narrow the search space (inter-
vals) used in the second stage of the proposed technique,
for further refinement of the initially estimated parameters
values. The narrowed search space (interval) when used with
an optimization routine, requires less computational time,
compared to an unguided or arbitrarily initialized optimiza-
tion routine. As the second stage of the proposed technique,
Particle Swarm, and Hybrid Particle Swarm Optimization

routines were observed to further improve the accuracy of the
initial parameters obtained by APE.

The estimated battery parameters values are utilized to
estimate the Li-ion battery circuit elements, and battery termi-
nal voltage, both in rigorous simulation and rigorous exper-
imental investigation. The simulation study compares the
estimated parameters and circuit elements values, to results
available in the literature. In the experimental study, the effec-
tiveness of the proposed technique is evaluated by compar-
ing the estimated and the actual voltage measured across
the battery terminals, and by further performing a statistical
analysis. Both the simulation and experimental investigations
show the effectiveness of the proposed two-stage UAS based
optimization technique for Li-ion battery model parameters
estimation.
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