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ABSTRACT To improve the performance of network intrusion detection systems (IDS), we applied deep
learning theory to intrusion detection and developed a deep network model with automatic feature extraction.
In this paper, we consider the characteristics of the time-related intrusion and propose a novel IDS that
consists of a recurrent neural network with gated recurrent units (GRU), multilayer perceptron (MLP), and
softmax module. Experiments on the well-known KDD 99 and NSL-KDD data sets show that the system has
leading performance. The overall detection rate was 99.42% using KDD 99 and 99.31% using NSL-KDD
with false positive rates as low as 0.05% and 0.84%, respectively. In particular, for detecting the denial
of service attacks, the system achieved detection rates of 99.98% and 99.55%, respectively. Comparative
experiments showed that the GRU is more suitable as a memory unit for IDS than LSTM, and proved that
it is an effective simplification and improvement of LSTM. Moreover, the bidirectional GRU can reach the
best performance compared with the recently published methods.

INDEX TERMS Intrusion detection, deep learning, recurrent neural network, gated recurrent unit.

I. INTRODUCTION

As computer networks have become widely used in all
aspects of our lives, network security has become increas-
ingly important. Network security includes mainly the con-
fidentiality, integrity and availability (CIA) of its bearer’s
information. Any activity attempting to compromise CIA
or to bypass the security mechanisms of a network can be
considered a network intrusion [1]. An intrusion detection
system (IDS) is a type of security management system used to
detect intrusion on the network, and is an indispensable part
of network security systems nowadays [2]. An IDS usually
checks all incoming and outgoing packets of a particular
network to determine whether each packet has signs of an
intrusion. A well-designed IDS can identify the characteris-
tics of most intrusion activities and automatically respond to
them by writing to security logs or issuing warnings.

IDSs can be divided into two categories according to the
main detection technology: misuse detection and anomaly
detection [3]. Misuse detection is a knowledge-based detec-
tion technology. A misuse detection system needs to clearly
define the features of the intrusion, then identify the intrusion
by matching the rules. Misuse detection can achieve a high

accuracy and low false alarm rate. However, it needs to
build a feature library and cannot detect unknown attacks.
In contrast, anomaly detection is a behavior-based detection
technology. First, it needs to define the normal activities
of a network, and then check whether the actual behavior
has deviated from the normal activities. Anomaly detection
needs only to define a normal state of a specific network,
without prior knowledge of intrusion. Thus, it can detect
unknown attacks, although there may be a high false alarm
rate. At present, network structure is becoming more and
more complicated, and intrusion methods are following the
trend of diversification and complication, creating more chal-
lenges for IDSs.

Many studies on machine learning have developed intru-
sion detection technologies with machine intelligence. For
instance, support vector machine (SVM), artificial neural net-
works (ANNSs), and genetic algorithms (GAs) have achieved
good results in the field of intrusion detection. However,
the simple machine learning method suffers from many lim-
itations, while intrusion is becoming more complicated and
diversified. Better learning methods are needed, especially in
the automatic extraction of intrusion features and analysis.
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After its introduction by Hinton et al. [4], deep learning
has been widely studied and has achieved great success in
natural language processing, image recognition and weather
forecasting. The models involved in deep learning have a
high degree of non-linear structure which shows outstanding
learning ability for the processing of complex data. The rapid
development of parallel computing in recent years also has
provided a hardware foundation for deep learning algorithms.

The recurrent neural network (RNN) has failed to become
a mainstream network model in the past few years due to dif-
ficulties in training and computational complexity. In recent
years, with the development of deep learning theory, RNN
began to enter a rapid development period. Currently, RNN
has already been applied successfully to handwriting [5] and
speech recognition [6]. The main feature of RNN is that it
circulates information in a hidden layer which can remem-
ber information processed previously, leading to a structural
advantage for the processing of time series information. Cor-
respondingly, many intrusion behaviors can be abstracted as
specific time series of events from the underlying network.
So, RNN is considered suitable for building an IDS.

To improve the learning ability of IDS and improve its
detection performance, we propose an IDS model based on
a deep neural network. Specifically, we propose a novel
IDS that consists of a recurrent neural network with gated
recurrent units (GRUs), multilayer perceptron and softmax
module. The main contributions of this paper are as follows:

1) A new deep neural network based IDS is proposed
which uses gated recurrent units as the main memory
units, combined with a multilayer perceptron to iden-
tify network intrusion.

2) The proposed system was evaluated in detail on the
KDD 99 and NSL-KDD datasets. These two datasets
have been widely used in previous work, giving us
the opportunity to directly compare performance. The
experimental results showed that GRU is more suitable
as the memory unit of RNN than long short term mem-
ory (LSTM) in intrusion detection.

3) With the help of the deep neural network, the proposed
system does not require manual feature selection. It sig-
nificantly reduces the workload of network experts
and has a positive outcome in today’s ever-changing
network environment.

The rest of this paper is organized as follows. Section II
outlines related studies. Section III introduces the compo-
nents which were used to construct the proposed system and
the overall architecture. Section I'V presents the experimental
details and results. Sections V and VI discuss our results and
draw conclusions, respectively.

Il. RELATED WORKS

Since Denning proposed the first intrusion detection
model [7], scholars have applied a variety of methods for
intrusion detection. In recent years, methods ranging from
relatively simple statistical methods to advanced machine
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learning and data mining methods have been used in attempts
to extract specific patterns from network intrusions. Thereby,
we can distinguish attack traffic from normal traffic, and
finally build IDSs.

The use of a single machine learning algorithm has inher-
ent limitations. In recent years, different learning algorithms
have been combined for a better performance.

Ibrahim et al. [8] used an unsupervised ANN to construct
an IDS based on anomaly detection. The system employed
self-organization map (SOM) ANNSs for detection and to
distinguish attack traffic from normal traffic. The detection
rate can reach 92.37% on the KDD 99 dataset and 75.49%
on the NSL-KDD dataset. SOMs are more powerful than
static networks because dynamic networks have memory,
which can be trained to learn sequential or time-varying
patterns. A classifier called GPSVM based on SVM and
genetic programming (GP) was proposed by Pozi et al. [9] to
improve the rare attack detection rate. Experimental results
showed GPSVM can produce a more balanced classifica-
tion accuracy on the NSL-KDD dataset without the need
for resampling or feature selection techniques. A hybrid
method combining SVM and genetic algorithm (GA) was
proposed by Aslahi-Shahri et al. [10]. The hybrid algorithm
was used to reduce the number of features from 45 to 10,
and the GA algorithm assigned these features into three pri-
orities. As a result, it showed an outstanding true positive
value and low false positive value on the KDD 99 dataset.
Hussain et al. [11] proposed a two-stage hybrid classification
method. In the first stage, SVM was used for anomaly detec-
tion, while in the second stage, ANN was used for misuse
detection. The main idea was to combine the advantages of
each method to improve classification accuracy. Simulation
results based on the NSL-KDD dataset demonstrated that
this method outperforms individual classification of SVM
and ANN algorithms. Bamakan et al. [12] proposed a time-
varying chaos particle swarm optimization (TVCPSO) to set
parameters and select features simultaneously for multiple
criteria linear programming (MCLP) and SVM. Empirical
results showed that this method achieves a high detection
rate and a low false alarm rate. Feng et al. [13] proposed
an SVM method with clustering based on self-organized ant
colony network (CSOACN) to combine the advantages of
both methods and obtained a better classification rate and run-
time efficiency. Evaluation on the KDD 99 dataset showed
this algorithm outperforms SVM alone or CSOACN alone in
terms of both classification accuracy and run-time efficiency.
Aburomman and Reaz [14] proposed an ensemble construc-
tion method which combines opinions from several experts
into one model. Weighted majority voting (WMYV) was used
to improve accuracy and the best results were obtained with
particle swarm optimization (PSO). However, such classifiers
are based on binary classification methods which can distin-
guish between only two states. An ensemble method based
on bat algorithm (BA) was proposed in [15] which applied
an ELM as the base classifier and the BA to optimize the
original ensemble, then applying it to intrusion detection.
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Although the performance of the ELM is unstable, the method
combining different ELMs into ensembles achieved better
performance than using a single ELM.

From the above work we conclude that the idea of combin-
ing different learning algorithms has achieved better results
in improving the performance of the classifier. However,
the classic classification algorithms need to preprocess the
data and extract the features manually, and cannot adjust the
parameters autonomously. To complete the goal of learning
and classification, experts are needed to be involved from
time to time.

As a new hotspot in the study of neural networks, deep
learning has attracted much attention in academia and indus-
try as it has significant advantages in many areas. In the
intrusion detection area, deep learning has achieved some
good results.

Ma et al. [16] adopted spectral clustering (SC) to extract
the features from the network traffic and used a multilayer
deep neural network (DNN) to detect attack types. Exper-
imental results showed that SC-DNN performs better than
SVM, back propagation neural network (BPNN), random for-
est (RF) and Bayesian methods, with the best accuracy rates.
However, the weight parameters and thresholds of each DNN
layer need to be determined empirically rather than through
rigorous mathematical theory. Kang and Kang [17] proposed
an efficient IDS based on DNN for in-vehicle networks. The
system uses DNN to provide the probability of each class
discriminating normal and attack packets in a controller area
network (CAN) bus. To take advantage of deep learning,
the system initializes the parameters through pre-training
deep belief networks (DBN), resulting in an improvement in
detection accuracy. Erfani ez al. [18] proposed a hybrid model
that coupled a deep belief network (DBN) with a one-class
SVM. An unsupervised DBN was trained to extract generic
underlying features, while a one-class SVM was trained from
the features learned by the DBN. This model provided an
efficient, accurate and scalable anomaly detection approach
that is suitable for large-scale and high-dimensional domains.
A deep learning technique called self-taught learning (STL)
was used by Javaid et al. [19] to build a network intrusion
detection system (NIDS). Sparse autoencoder and softmax
regression based NIDS were implemented. Experiments on
the NSL-KDD dataset showed that the performance of STL
was comparable to the best results achieved in several pre-
vious studies. Staudemeyer [20] claimed that, for the first
time, a long short term memory (LSTM) recurrent neural
network had been applied to intrusion detection, and he con-
firmed its effectiveness. LSTM can learn to look back in
time and discover associations from a time perspective. The
proposed classifier was effective in the detection of denial
of service (DOS) attacks and network probes, both of which
had a distinctive time series of events. Experiments showed
that LSTM outperformed the winning entries of the KDD
Cup 99 challenge, with 93.82% accuracy. Kim et al. [21] also
used the LSTM structure to construct an IDS model trained
with the KDD 99 dataset. Experimental results showed that
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the LSTM structure is effective for intrusion detection, and
a feasible approach to reduce the false positive rate was pro-
posed. This provided further evidence that the LSTM struc-
ture is suitable for intrusion detection. Mohammed et al. [22]
proposed a developed learning model for fast learning net-
work (FLN) based on particle swarm optimization (PSO) and
applied to intrusion detection problem. This model has out-
performed other learning approaches in the testing accuracy
of the learning, but also counter the problem of less accuracy
for a certain number of class due to the limited of training
data for the class.

Deep learning techniques can automatically extract the
features of a specific problem without the need for strong
prior knowledge, which is hugely beneficial for intrusion
detection. In particular, RNN has shown a strong advan-
tage in this area. However, DNNs have more parame-
ters and a higher degree of non-linearity, which means a
higher design requirement. The most recent methods are
based on RNN with LSTM. This is a good structure and
preliminary research has proved its applicability to intru-
sion detection. However, performance measures such as the
detection rate have not improved far beyond those of clas-
sic machine learning algorithms, which means that further
improvements are needed. Also, LSTM is a relatively com-
plex structure, which is detrimental to a real-time processing
IDS.

Ill. SYSTEM COMPONENTS

A. RECURRENT NEURAL NETWORK

RNNSs have a variety of structures, including the simple struc-
ture proposed by Elman [23]. An RNN is a development of
a traditional feed-forward neural network. In the traditional
neural network model, the data flow is unidirectional, that is,
from the input layer to the hidden layer, and finally to the
output layer. However, the RNN is different: it can remember
the information processed at time ¢ for the calculation at
the subsequent time (¢ + 1,7 + 2...). Therefore, the input
of a hidden layer includes not only the output of the upper
layer, but also the output of the same layer at the last time
point.

An RNN can be unfolded in time and form a full network.
The input set can be denoted as {ip, i1, ... —1, ity i1, - - -}
and the output set as f{og,01,...0t—1, 0, 0t41, ...}
For each hidden layer, the input set can be denoted
as {xo,x1,...X—1, X, X41,...; and the output set as
{ho, h1, ... h—1, by, by, ..} U, V, W are weight matrices
from the input layer to the hidden layer, the hidden layer
to the output layer and inside the hidden layer, respectively.
In an RNN, the hidden units complete the most important
job. The information of the input layer flows unidirection-
ally to the hidden layer, but the hidden nodes are self-
connected and interconnected in order to fully exchange the
information.

An important extension to the RNN is the bidirectional
RNN (BRNN) of Shuster and Paliwal [24] (Fig. 1). Its basic
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Output layer

Backward layer

Forward layer

Input layer

FIGURE 1. Bidirectional recurrent neural network.

idea is to put two opposite RNNs together, but share the
same input and output layers. In this way, the trained data
can be associated with both past and future information. The
salient feature of a BRNN is two representative hidden layers:
the forward and backward layers (Fig. 1). Other components
are similar to those of general RNNs. There are five weight
matrices in BRNN denoted as W, W5 ... Ws. Note that there
is no connection between the two hidden layers, so there are
no loops in the unfolded network.

Training an RNN is similar to training a traditional ANN.
Basically, the back propagation (BP) algorithm is used, but
there are some differences. The full network unfolded from
an RNN is in the time dimension, so the parameters are
shared in space, which is quite different from a traditional
neural network. For instance, Weight matrices Wy, W, ... Ws
are shared three times in Fig. 1. Parameter sharing signifi-
cantly reduces the number of parameters and is one of the
advantages of an RNN. In the running of the gradient descent
algorithm, the output at each moment is based not only on
the input of the same time, but also on the state of the previ-
ous time. This training algorithm is called back propagation
through time (BPTT) [25].

Traditional RNNs encounter gradient vanishing or explo-
sion problems [26]. To alleviate these problems, some spe-
cific RNN structures are proposed. LSTM and GRU are two
such structures, which use a number of gates to control the
memory and prevent the gradient vanishing.

B. GATED RECURRENT UNIT

A GRU proposed in [27] is a novel memory cell that has
been proven to be effective in a variety of applications.
A GRU can be seen as a simplification and improvement of
LSTM and can be comparable in performance to LSTM [28].
To describe a GRU clearly, we briefly introduce LSTM
first.

In an RNN, the hidden unit is the most important com-
ponent as it is responsible for remembering or forgetting
particular information. The LSTM proposed by Hochreiter
and Schmidhuber [29] is a good implementation, and has
many improved variants. A diagram of the structure of a
common LSTM with a “peephole” [30] is shown in Fig. 2.
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FIGURE 3. Structure of the GRU.

The connection relationship in Fig. 2 is given by Eq. (1).

Jt = o Wypxy + Wighy—1 + Wer Cr—1)

iy = o (Wyixy + Wpiky—1 + WeiCi—1)

Ci =1 © Cr1 + it © tanh(Wyexs + Wich:—1) (D
0r = 0 (Wxoxy + Wiohy—1 + Weo Cr 1)

hy = oy O tanh(Cy)

In Eq. (1), x is the input vector, i is the output vector
and C is the cell state. The subscript ¢ represents the current
time and ¢+ — 1 is the last time. o is a sigmoid function,
© is the Hadamard product and W represents undetermined
parameters. In Eq. (1), f is the forget gate that decides what
information needs to be discarded from the cell state. i is the
input gate that decides what information needs to stored in the
cell state. o is the output gate that decides what information
to output.

Compared with LSTM, a GRU includes some simplifi-
cations. A diagram of the structure of the GRU is shown
in Fig. 3. The connection relationship in Fig. 3 is given
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by Eq. (2).

rr=oWrx, + Urhi—1)
7 =0 (Wexy + Uy 1)
hy = tanh(Wyx, + U(r; © hi—1))
he = (1 — z0)he—1 + zihy

@

In Eq. (2), x is the input vector, 4 is the output vector and
h is the candidate output. The other symbols are the same as
before. The GRU has two gates: r is denoted as the reset gate
and z as the update gate.

Compared to LSTM, the GRU has fewer gates. This is
because the GRU has no cell state and combines the input and
forget gates into a single gate, the update gate z. So, the GRU
is much simpler than the LSTM in its structure and has
fewer parameters, which gives it a great advantage in terms
of performance and convergence. In subsequent experiments,
GRU also showed a great advantage.

C. MULTILAYER PERCEPTRON

A multilayer perceptron (MLP) is a unidirectional ANN com-
posed of multiple layers [31]. By using a non-linear activation
function, MLP can identify linearly indivisible data. An MLP
is characterized by signal forward propagation, error back
propagation and is trained by a BP algorithm. The standard
BP algorithm is a classic learning algorithm that calculates
the difference between the actual output and the expected
output, reverses the difference back to each layer, thereby
adjusting the parameters of each layer to achieve the goal of
learning.

A typical MLP consists of three major components: an
input layer, several hidden layers and an output layer. Adja-
cent layers are fully connected, but nodes in the same layer
are independent of each other. The activation function used
by MLP is required to be continuous and monotonically
increasing, such as the sigmoid function.

D. SOFTMAX REGRESSION

Softmax regression is a generalization of logistic regres-
sion which can produce a K-dimensional vector o (x) in the
range (0, 1) from a K-dimensional vector x [32]. The equation
is given by Eq. (3).

&N
S e

The types of network attacks are diverse, so each particu-
lar record should be attributed to one of them (or normal).
An IDS using a multi-classifier will be more appropriate.
To build a multi-classifier, for a given input x, a hypothesis
function is needed to estimate the probability P(y = j|x)
for each class j. That is, we need to estimate the proba-
bility of every possible classification output. Specifically,
the hypothesis function should output a K-dimension vector
(the sum of the vector elements is 1) to represent the estimated
probability. The form of the hypothesis function is shown

ox); = j=1,...,K 3)
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in Eq. (4).

POY = 01x?; )

. POD = 11xD; 9)
ho(x?) =

POW =k —1|x®; 0)
0

1 eelrx(i)
- | )
2o € :
gGZ—lx(i)

In Eq. (4), the hypothesis function is denoted as hg(x?"),
6o, 01, ..., 6k—1 are the parameters to be determined, and
W is the normalization factor for the hypothetical
fuﬁcotion. In addition, if & — o0, then softmax becomes
the maximum function. When taking different finite values,
softmax can be considered a parameterized and softened

version of the maximization function.

E. OVERALL ARCHITECTURE

To construct a DNN, every component should be regarded as
a layer and cascaded together. The proposed IDS structure
is shown in Fig. 4. The system consists of a preprocessing
module, a GRU module, an MLP module and an output
module. The preprocessing module processes the data into a
normalized value suitable for the input neural network with-
out changing the dimension of the data. The preprocessing
algorithm for the experimental dataset is given below. The
GRU module consists of one or more GRU (or bidirectional
GRU) layer(s), which are used to extract and store features.
This is the core of the system. The MLP module is an n-layer
perceptron model, carrying out non-linear mapping from the
output of the GRU module which makes a non-linear classifi-
cation decision. The output module is a softmax layer, which
normalizes the classification probability and outputs it as a
final result.

Among these components, the GRU and MLP modules
are significant for performance. The two modules are two
different types of neural networks. The GRU has mem-
ory, but has a more complex structure and larger calcula-
tion. The MLP has a simple structure, a fast calculation
and is easy to stack. The combination of the two consti-
tutes a deep network which can achieve a more optimized
result.

IV. EXPERIMENTS AND ANALYSIS
A. BENCHMARK DATASETS
The best way to evaluate an IDS is to use a common dataset
for testing, so that a fair comparison of different systems can
be made.

The DARPA/KDD Cup 99 dataset (usually abbreviated
as KDD 99) has been widely used for many years in the

48701



IEEE Access

C. Xu et al.: IDS Using a DNN With GRU

(B)GRU
Data (B)GRU
|:> Preprocessing ——N\|
(Numerical —/
Normalization)
(B)GRU

R=

Softmax

i

FIGURE 4. Proposed system structure.

evaluation of IDSs and has become the de-facto standard for
benchmarking [33]. The KDD 99 dataset was built based on
the data captured in the DARPA’98 IDS evaluation program
by MIT Lincoln Labs [34]. It contains seven weeks of training
data and two weeks of test data. This dataset includes 39 types
of attacks: 22 are in the training set, and 17 are appear
only in the test set as unknown attack types for testing the
generalization performance of the algorithm. All these attacks
can be divided into four categories:

1) DOS: denial-of-service, to prevent users from access-
ing a service, e.g. syn flood;

2) R2L: unauthorized access from a remote machine, e.g.
guessing password;

3) U2R: unauthorized access to local root privileges, e.g.
buffer overflow;

4) PROBING: surveillance and other probing, e.g. port
scanning.

In addition, taking NORMAL (no attacks) into considera-

tion, each record is is assigned to one of those five categories.

In KDD 99, each connection record has 41 features:

34 continuous and 7 discrete-valued. All the features can be
divided into four broad categories:

1) Basic features of individual TCP connections. These
features are directly extracted from the header of the
packets;

2) Content-based derived features. Content features

within a connection suggested by domain
knowledge;
3) “same host” features. These features examine

only the connections in the past 2 seconds which
have the same destination host as the -current
connection;

4) “‘same service” features. These features examine only
the connections in the past 2 seconds that have the same
service as the current connection.

“Same host” and ‘“‘same service” features are together
called time-based traffic features of the connection
records. More details about this dataset can be found
in [33].
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Tavallaee et al. [35] proposed a revised version of the KDD
99 dataset named NSL-KDD. The NSL-KDD dataset over-
comes some shortcomings found in KDD 99. For instance,
it does not include redundant or duplicate records. The num-
ber of selected records from each difficulty level is more
appropriate, which makes it more efficient for obtaining a
fair evaluation. The total number of records is reasonable,
which makes it possible to run algorithms on the complete
dataset rather than on a small portion selected randomly. As a
result, evaluations from different studies can be more easily
compared.

In this study, both the KDD 99 and NSL-KDD datasets
were exploited to evaluate the proposed IDS. In each
dataset, we used the most common used data files for fair
comparison.

B. EVALUATION METRICS

For classification problems, the result of a classification can
be correct or incorrect, and all possible results can be divided
into the following four conditions:

1) True Positive (TP): actual attacks are classified as
attacks;

2) True Negative (TN): actual normal records are classi-
fied as normal;

3) False Positive (FP): actual normal records are classi-
fied as attacks. This condition is also knows as false
alarms;

4) False Negative (FN): actual attacks are classified as
normal records.

For simplicity, TP, TN, FP, FN are used to represent the
numbers of the four conditions. On this basis, the accuracy,
precision, detection rate, false positive rate and F-measure
can be defined as shown in Eq. (5).

Accuracy is the number of correct classifications as a pro-
portion of the total number of records. Precision is the number
of actual attacks as a proportion of the number classified as
attacks. The detection rate (DR) is the number classified as
attacks as a proportion of the number of actual attacks. The
false positive rate (FPR) is the number classified as attacks as
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TABLE 1. Classification label coding.

Classification label code

NORMAL 0
DOS 1
R2L 2
U2R 3

PROBE 4

a proportion of the number of all normal records.

TP+ TN
Aceuracy = b IN T FN + FP
T
Precision = ——
TP + FP
. TP
Detection Rate (DR) = ——— (&)
TP + FN
False Positive Rate (FPR) = ————
 FP+1TN
2(Precision * DR)
F — measure = —
Precision + DR

On the one hand, from the point of view of a classifier,
the precision and detection rate are a pair of contradictory
metrics. Higher precision means fewer false positives, but a
higher detection rate means fewer false negatives. For exam-
ple, if more suspected attacks are classified as attacks (the
extreme situation is that all records are classified as attacks),
the detection rate will increase, but precision will decrease,
and vice versa. So a single high precision or detection rate
is meaningless. On the other hand, from the point of view of
intrusion detection, especially in some strict environments,
the tolerance for intrusion is very low, so a separate detection
rate is also an important metric for consideration.

The F-measure is a comprehensive consideration of the
precision and detection rate. It is based on their harmonic
mean. A higher F-measure means a higher precision and
detection rate.

C. DATA PREPROCESSING
The proposed system can accept only numeric inputs, so it
is necessary to convert the non-numerical data in the dataset
into numerical data. Since NSL-KDD is a revision of KDD
99, their data types are the same. In each record, only three
features (protocol type, service and flag) are symbolic and
need to be converted to numerical data. 1-to-N encoding is
applied to accomplish this. Similarly, the classification results
are represented numerically (0 to K-1), as shown in Table 1.
Next, min-max normalization was applied to scale the
feature data linearly between 0 and 1. Therefore, Eq. (6) was
applied to each feature in each record in the dataset:

;L f — min;

Inan — min;

(6)

In Eq. (6), f is the original value of the feature, f is the
normalized value, and max; and min; are the maximum and
minimum values, respectively, of the j-th feature.
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TABLE 2. Hyper-parameter configuration.

Hyper-parameter ~ Value
Batch Size 32
Epoch 20
Learning Rate 0.01
Decay 1075
Momentum 0.9
MLP Layers 3

MLP hidden nodes 48
RNN hidden units 128

TABLE 3. Experimental results on KDD 99 dataset.

System Accuracy (%) DR (%) FPR (%)
BGRU+MLP 99.84 99.42 0.05
GRU+MLP 99.28 96.73 0.07
BLSTM+MLP 98.57 93.78 0.17
LSTM+MLP 98.51 94.77 0.53
GRU 92.28 71.77 0.13
LSTM 91.91 70.77 0.10
MLP 91.88 70.92 0.31

TABLE 4. Experimental results on NSL-KDD dataset.

System Accuracy (%) DR (%) FPR (%)
BGRU+MLP 99.24 99.31 0.84
GRU+MLP 99.19 99.35 1.00
BLSTM+MLP 96.41 95.65 2.67
LSTM+MLP 95.22 93.97 3.24
GRU 94.94 94.76 4.84
LSTM 94.1 95.65 7.58
MLP 90.56 86.61 3.49

D. EXPERIMENTAL RESULTS

Our experiments were implemented under the following
hardware and software platforms: Hardware: Intel Core i7
@ 3.4 GHz, 64 GB RAM, NVIDIA TESLA K40. Software:
Ubuntu 16.04 LTS, CUDA 8.0, cuDNN 6.0, TensorFlow
1.4.1. All the software can be downloaded freely from the
internet.

To evaluate system performance objectively, the following
experiments were performed 10-fold for cross-validation on
two datasets and test sets ware used to evaluate the perfor-
mance. As it is a DNN, stochastic gradient descent (SGD)
was used in the training phase [36]. To improve efficiency,
the cross entropy was used as the cost function instead of the
minimum squared error (MSE) function [37]. The learning
rate and the number of iterations were determined by practical
experience. The hyper-parameter configuration are shown
in Table 2.

In the proposed system, the GRU and MLP modules are
the most important, so the following experiments focused on
verifying the validity and necessity of the two modules.

Experiment 1 evaluated GRU + MLP performance. As a
reference, the LSTM module was replaced with the GRU
module in the same experimental environment. In addition,
bidirectional RNN experiments were added to determine
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whether it was necessary. In the results, the prefix “B” Experiment 2 evaluated the situation when each mod-
indicates that it is a bidirectional RNN. ule was operating independently. The RNN module or the
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TABLE 5. Performance comparison.

10 11 12 13 14 15 16 17 18 19 20
Epoch

System Dataset Accuracy (%) DR (%) FPR (%)
LSTM(2015) [20] KDD 99 94.11 77.07 0.18
OS-ELM(2015) [38] NSL-KDD N/A 97.67 1.74
LSSVM+FMIFS(2016) [39] KDD 99 99.79 99.46 0.13
LSSVM+FMIFS(2016) [39] NSL-KDD 99.91 98.76 0.28
LSTM-RNN(2016) [21] KDD 99 96.93 98.88 10.04
TVCPSO-MCLP(2016) [12]  NSL-KDD N/A 97.23 241
Pruning VELM(2017) [15] KDD 99 98.94 98.37 0.32
VELM(2017) [15] NSL-KDD 97.58 97.69 2.22
GA+FLN(2018) [22] KDD 99 99.69 N/A N/A
PSO+FLN(2018) [22] KDD 99 99.68 N/A N/A
BGRU+MLP (proposed) KDD 99 99.84 99.42 0.05
BGRU+MLP (proposed) NSL-KDD 99.24 99.31 0.84

MLP module was removed before carrying out similar
experiments.

Experiments 1 and 2 were performed on the KDD 99 and
NSL-KDD datasets, respectively. The results are summarized
in Tables 3 and 4, respectively. Fig. 5 and Fig. 6 show the
F-measures of the different systems and attack types. Next,
we calculated the detection rates and summarized by attack
types. The results on the KDD 99 and NSL-KDD datasets are
illustrated in Fig. 7 and Fig. 8, respectively.

From the above results, we conclude that the result of
BGRU + MLP was the best for both the KDD 99 and the
NSL-KDD datasets. Experiment 1 showed that GRU was
better than LSTM, and that BGRU was better than GRU.
A bidirectional RNN can further improve the performance
of the RNN. Experiment 2 showed that the combination of
RNN and MLP was effective, giving results better than those
of the RNN (GRU and LSTM) or MLP alone. In terms
of attack types, DOS and PROBING attack detection were
significantly better than R2L and U2R attack detection.

VOLUME 6, 2018

Fig. 9 compares the convergence of the different algo-
rithms. All experiments converged after about 17 epochs and
20 epochs are enough. Combined with the previous results,
it can be seen that the system using (B)GRU + MLP has
advantages not only in terms of accuracy, but also with a faster
convergence rate.

V. DISCUSSION
To improve the analysis of the experimental results, we com-
pared the results with those of previous studies (Table 5).

From Table 5, it can be found that BGRU + MLP per-
formed well on both datasets. Using KDD 99, it achieved
the best accuracy and FPR. Using NSL-KDD, it achieved the
highest DR.

Note that such a comparison is only a reference rather than
an absolute distinction. Different IDSs differ in their intrusion
responses, and it is difficult to find a system that can achieve
the best performance in every situation. In addition, due to
a slight difference in the evaluation method, for example,
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random sampling in datasets, the final results could be differ-
ent. Nevertheless, compared with recent studies, we believe
that our proposed system has significant advantages in terms
of accuracy, DR and FAR.

The detection of R2L. and U2R was not ideal. This is a
common problem both in our proposed system and other sys-
tems. We think there are two main reasons. First, the recorded
number of these two types of attacks was too small. In the
KDD 99 dataset, the proportions of U2R and R2L were
0.01% and 0.23%, respectively. In the NSL-KDD dataset, as a
revised version of KDD 99, the proportions of U2R and R2L
increased to 0.04% and 0.79%, respectively, but this is an
insignificant improvement. Such few records make extrac-
tion of the features by the learning algorithm ineffective,
so that the classification accuracy is not as high as for other
measures. Secondly, the RNN-based system has a greater
advantage in dealing with time-series tasks. The DOS and
PROBING attacks have more obvious timing characteristics
than R2L and U2R attacks, enabling a higher detection per-
formance to be achieved.

VI. CONCLUSION

In this study, we designed a new IDS. We propose a new
DNN model which uses GRUs as the main memory unit,
combined with MLP to identify network intrusions. Deep
learning techniques were used for training and achieved good
performance. Experiments on the well-known KDD 99 and
NSL-KDD datasets showed that the system has leading per-
formance. The overall detection rate was 99.42% on KDD
99 and 99.31% on NSL-KDD, with false positive rates as low
as 0.05% and 0.84%, respectively. In particular, the detection
rates for DOS attacks were 99.98% on KDD 99 and 99.55%
on NSL-KDD. Compared experiments were done on LSTM
and GRU with or without bidirectional connections. The com-
bination of bidirectional GRUs and an MLP outperformed
other recently published methods.

The system proposed in this paper relies mainly on theo-
retical verification. A lot of engineering work should be done
to verify its practical application. The next step could be to
optimize the system so that it can be applied to real network
environments and be implemented more efficiently.
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