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ABSTRACT Symmetric α-stable (SαS) noise is a typical form of impulsive noise often generated in signal
measurement and transmission systems. The problem of reconstructing an image from a small number of
under-sampled data corrupted by impulsive noise is called robust compressive sensing (CS). In this paper,
to effectively suppress the outliers and accurately reconstruct the image from compressive measured data in
the presence of SαS noise, a novel composite robust alternating directionmethod ofmultiplier network-based
CS algorithm is proposed. Specifically, we first employ the L1-norm as the estimator to depress the influence
of SαS noise, and then the ADMM framework is employed to address the resulting optimization problem.
Moreover, a smoothing strategy is adopted to address the L1-norm based non-smooth optimization problem.
To exploit more prior knowledge and image features, a robust composite regularization model is proposed
for training by the deep neural network (DNN). In the training phase, the DNN can be utilized to train
the samples for the optimal parameters, the optimal shrinkage function and the optimal transform domain,
which can be reserved as the network. In the reconstruction process, the obtained network can be employed
for improving the reconstruction performance. Experiments show that our proposed algorithm can obtain
higher reconstruction Peak signal-to-noise ratio than the existing state-of-the-art robust CS methods.

INDEX TERMS Symmetric α-stable noise, compressive sensing, composite regularization model, alternat-
ing direction method of multipliers, deep neural network.

I. INTRODUCTION
Compressive sensing (CS) [1] is an emerging promising
approach that aims for accurate acquisition and reconstruc-
tion of the sparse signal from a small amount of sub-Nyquist
sampling data. Typical applications include magnetic res-
onance imaging (MRI) [2], [3], radar imaging [4], hyper-
spectral imaging [5], and sparse cluster for high-dimensional
data [6], [7]. The basic linear observation system can be
formulated as follows:

y = Ax+ n (1)

where y ∈ RM×1 denotes the observation data, A ∈ RM×N ,
(M � N ) represents the linear operator or random sampling
matrix, x ∈ RN×1 is the desired signal vector that is sparse in
some transform domain, and n ∈ RM×1 is often considered

Gaussian with the bounded norm ‖n‖2 6 ξ . The CS theory
states that, if the desired unknown signal is inherently, then
the ill-posed problem of recovering x from y can be accurately
addressed by

x̂← argmin
x

1
2
‖Ax− y‖22 + λg(x) (2)

where the L2-norm term ‖Ax− y‖22 is the observation fidelity
term that ensures the concurrence of y and x, and λ is the
regularization parameter. The penalty function g(x) usually
provides prior knowledge for the optimization problem via a
norm function

g(x) = ‖Dx‖pp =
n∑
i=1

∣∣(Dx)i∣∣p, 0 6 p 6 1 (3)
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Here, D denotes the sparsifying transform operator. When
p = 0, then g(x) = ‖Dx‖00 counts the number of nonzero
element of Dx, orthogonal matching pursuit (OMP) [8]–[10]
based algorithms are mainly effective method to solve the
resulting optimization problem. When p = 1, the most suc-
cessful algorithm is the iterative thresholding algorithm [2].

Symmetric α-stable (SαS) noise is a typical impulsive
noise often generated in signal/information measurement and
transmission systems that will cause the traditional CS recon-
struction algorithms in (2) to degrade severely. To suppress
the outliers caused by SαS noise, one popular effective opti-
mization model employs the L1-norm as the metric for the
residual error by

x̂← argmin
x
‖Ax− y‖1 + λg(x) (4)

The CS formulation in (4), known as robust CS, compared
with the quadratic estimator of L2-norm in (2), is more
suited for using the L1-norm to model large outliers; hence,
it has been widely used in designing robust CS algorithms.
However, optimization of the objective function is intractable
because of the resulting nonsmooth cost function term of
the L1-norm. Among all the existing effective robust recov-
ery algorithms, the alternating direction method of multi-
pliers (ADMM) framework is regarded as one of the more
effective and efficient approaches [11]–[14]. Using an oper-
ator splitting [14], this framework involves separation of the
regularization term by an additional variable.

Although the ADMM framework is generally efficient,
it is intractable to tune the relevant parameters, e.g., penalty
parameter and regularization parameter. To reduce the influ-
ence of these parameters, some effective schemes have pro-
posed, with the regularization path being a popular approach
to find an optimal regularization parameter λ [13]. To find the
optimal penalty parameter, a choice scheme is to gradually
increase its value from a small starting value by iteration
until reaching the target value [11], [15], [16]. However, these
approaches for searching the optimal value are inefficient,
especially for large-scale optimization problem. Moreover,
it is also challenging in CS to choose an optimal sparsi-
fying transform domain and the corresponding regulariza-
tion function g(x). Recently, a deep learning approach based
ADMM-net was proposed to train these optimal parameter
and was demonstrated to achieve significant improvement
for MRI [17]; however, it was considered under a Gaussian-
assumption noise environment.

In this paper, we propose a composite robust alternating
direction method of multiplier net (Co-Robust-ADMM-Net)
to address the reconstruction problem in the presence of SαS
noise. We first employ the L1-norm as an estimator to depress
the influence of SαS noise, and then we employ the ADMM
framework to address the resulting optimization problem.
Furthermore, a smoothing strategy for the loss-function is
adopted to solve the nonsmooth optimization problem. The
proposed robust-ADMM-net algorithm uses the deep neural
network method to train the corrupted image data for optimal
parameters. In addition, the ADMM-net can also be utilized

for training the shrinkage function and the sparsifying trans-
form dictionary D. Experimental results demonstrate that the
proposed robust CS reconstruction approach can outperform
state-of-the-art CS robust methods both in reconstruction
speed and accuracy.

The main contribution of this work can be summarized
as follows. First, this paper proposes a new optimization
model that combines the L1-norm estimator and a composite
regularization scheme. The proposed model can exploit more
physical mechanism and prior knowledge for training. Then,
to solve the nonsmooth optimization problem, a smoothing
strategy is adopted to smooth the nonsmooth L1-norm esti-
mator. Furthermore, the back propagation (BP) approach is
proposed to train the penalty parameter, the regularization
parameter and the transform domain.

II. THE PROPOSED CO-ROBUST-ADMM FRAMEWORK
A. ROBUST COMPOSITE REGULARIZATION
MODEL FOR DEEP LEARNING
Currently, deep learning is regarded as the representa-
tive advancement of artificial intelligence; deep learning
approaches are capable of extracting features from images
for recognition and restoration. However, deep learning often
requires a huge number of samples for training [18]. Themain
challenge for traditional CS reconstruction algorithms to train
the optimal parameters through deep learning is the lack of
data. To effectively address this issue, we adopt a robust
optimization model to further exploit more prior knowledge
for training. It is a fact that a given signal x can be repre-
sented by different dictionaries Dl, l = 1, 2, · · · ,L, but with
different sparsity; this fact can be utilized to exploit more
prior knowledge for CS reconstruction problem. Related
algorithms based on the composite regularization have been
proposed to improve the reconstruction accuracy, such as
Co-L1 [19] and MUSAI-L1/2 [20]. We design the following
robust optimization model by

x̂← argmin
x
‖Ax− y‖1 +

L∑
l=1

λlg(Dlx) (5)

where g(·) denotes the regularization function, such as
Lp-norm (0 < p ≤ 1), Dl denotes the sparsifying trans-
form dictionary (e.g., sines, wavelet bases), with examples
of a typical sparsifying transform including the Discrete
Cosine Transform (DCT) and the Discrete Wavelet Trans-
form (DWT); and λl denotes the regularization parameter.
Unlike the optimization problem (4), the advantage of this
model can obtain more physical mechanism and prior knowl-
edge for optimization [20].

B. ADMM FRAMEWORK FOR ROBUST
COMPOSITE REGULARIZATION
ADMM is a simple and powerful framework for the
high-dimension optimization problem in machine learn-
ing and signal processing that adopts a variable-splitting
strategy to separate coupled components via auxiliary
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variables [21]–[25]. To solve the above optimization
problem (5) based on the ADMM framework, we typically
use an auxiliary variable zl ∈ N×1, then the optimization
problem (5) can be rewritten as

argmin
x

1
2
‖Ax− y‖1 +

L∑
l=1

λlg(zl)

s.t. zl = Dlx, ∀l ∈ [1, 2, · · · ,L] (6)

The augmented Lagrangian of problem (6) is

L(x, z, α) =
1
2
‖Ax−y‖1 +

L∑
l=1

λlg(zl)−
L∑
l=1

〈αl, zl − Dlx〉

+

L∑
l=1

ρl

2
‖zl − Dlx‖22 (7)

where {αl} ∈ N×1 are Lagrangian multipliers, {ρl} > 0
are penalty parameters, and {λl} denotes the regularization
parameter; these parameters will play critical roles in the
optimization process. According to the ADMM framework,
we have the following three steps:

x(n+1)

= argmin
x

1
2
‖Ax− y‖1

−

L∑
l=1

〈
α
(n)
l , z

(n)
l − Dlx

〉
+

L∑
l=1

ρl

2

∥∥∥z(n)l − Dlx
∥∥∥2
2

= argmin
x

1
2
‖Ax− y‖1 +

L∑
l=1

ρl

2

∥∥∥∥z(n)l − Dlx−
αl

ρl

∥∥∥∥2
2

(8)

z(n+1)

= argmin
x

L∑
l=1

λlg(zl)

−

L∑
l=1

〈
α
(n)
l , z

(n)
l − Dlx(n+1)

〉
+

L∑
l=1

ρl

2

∥∥∥zl − Dlx(n+1)
∥∥∥2
2

= argmin
x

L∑
l=1

[
λlg(zl)+

ρl

2

∥∥∥∥zl − Dlx(n+1) −
αl

ρl

∥∥∥∥2
2

]
(9)

α(n+1)

= argmin
x

L∑
l=1

〈
αl,Dlx(n+1) − z(n+1)l

〉
(10)

The x-step in (7) in fact is a penalized least square (LS)
problem. To solve this optimization problem, we first smooth
the L1-norm term ‖Ax− y‖1, specifically, we linearize the
term ‖Ax− y‖1 at the given x̃ as

1
2
‖Ax− y‖1 =

1
2
‖Ax− y‖1,ε

=
1
2

∥∥Ax̃− y
∥∥
1,ε +

1
2

〈
Ax− Ax̃, d(Ax̃− y)

〉
+

1
2τ

∥∥Ax− Ax̃
∥∥2
2 (11)

where ‖Ax− y‖1,ε =
∑
i
[(Ax− y)2i + ε

2]
1
2 , ε = 10−3,

τ > 0 is a proximal parameter. Thus, we have

x(n+1) = argmin
x

1
2

∥∥Ax̃− y
∥∥
1,ε +

1
2

〈
Ax, d(Ax̃− y)

〉
+

1
2τ

∥∥Ax− Ax̃
∥∥2
2 −

L∑
l=1

ρl

2

∥∥∥∥z(n)l − Dlx−
αl

ρl

∥∥∥∥2
2

(12)

We can obtain the closed-form solution by derivation

x(n+1) =

[
1
τ
ATA+

L∑
l=1

ρlDTl Dl

]−1 [
1
τ
ATAx̃

−
1
2
AT d(Ax̃− y)+

L∑
l=1

ρlDTl (z
(n)
l − β

(n)
l )

]
(13)

where d(Ax̃− y)i = ((Ax̃− y)2i + ε
2)−1/2. Specifically,

in this paper, we set , where P ∈ RN×N1 denotes the under-
samplingmatrix, andF ∈ RN1×M is a Fourier transform; thus,
we have the solution of the x-step,

x(n+1) = FT
[
1
τ
PTP+

L∑
l=1

ρlFDT
l DlFT

]−1 [
1
τ
PTPFx̃

−
1
2
PT d(PFx̃− y)+

L∑
l=1

ρlFDT
l (z

(n)
l − β

(n)
l )

]
(14)

where d(PFx̃− y)i = ((PFx̃− y)2i + ε
2)−1/2, and let

βl =
1
ρl
· αl .

To simplify the above solution, we specially set x̃ = 0 to
simplify our algorithm, then in the n+1 -th iteration, we have

x(n+1) = FT
[
1
τ1
PTP+

L∑
l=1

ρlFDT
l DlFT

]−1

×

[
1
2
d(PT y)+

L∑
l=1

ρlFDT
l (z

(n)
l − β

(n)
l )

]
(15)

In the first iteration for initialization, we set z(0)l = 0,
β
(0)
l = 0 then we have

x(1) = FT
[
1
τ1
FTPTPF+

L∑
l=1

ρlFHT
l HlF

T

]−1 [
1
2
d(PT y)

]
(16)

where d(pT y)i = ((pT y)2i + ε
2)−1/2.

The solution of the z-step (8) can be obtained by the shrink-
age function determined by g(·), e.g., the L1-norm function
corresponding with the soft-shrinkage operator [26]. Then,
the output of z-step can be described as

z(n+1)l = S(Dlx(n) + β
(n)
l ;

λl
/
ρl
) (17)

where S(·) represents the corresponding nonlinear shrinkage
function. For initialization, in the first iteration, we set the
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FIGURE 1. The ADMM network structure.

initial S(·) as the soft-shrinkage operator and set Dl as the
DCT basis. For simplicity, let βl = αl

/
ρl
, then the α-step

is converted into the β-step, and the subproblem have the
following solution:

β
(n+1)
l = β

(n)
l + ηl · (Dlx(n+1) − z(n+1)l ) (18)

where the parameter ηl denotes the update rate.
The Co-Robust-ADMM algorithm can be described as

Algorithm 1 .

Algorithm 1 Co-Robust-ADMM Algorithm

Problem:x̂← argmin
x
‖Ax− y‖1 +

L∑
l=1
λlg(Dlx)

1 Input: Measured data y, measurement matrix A,
the regularizer number L, the parameter λl , ηl and ρl ;
2 Initialization:g(Dlx) = ‖Dlx‖1, z

(0)
l = 0, β(0)l = 0.

3 for t = 1, 2, · · · , n
Compute x(n) using equation (15)
Compute z(n) using soft-shrinkage operator in
equation (17)
Compute β(n) using equation (18)
4 end.
5 Output.

III. PROPOSED CO-ROBUST-ADMM-NET ALGORITHM
A. DEEP NEURAL NETWORK FOR ADMM FRAMEWORK
To connect the ADMM framework and the deep neural net-
work, inspired by the recently work of ADMM-net [17],
we first map the iterations in ADMM to the layers of the deep
neural network. If every iteration in ADMM is considered as
one layer of the deep neural network, in this case, the above
three steps can be regarded as three layers: Reconstruction
layer x(n+1) in (15); Nonlinear transform layer z(n+1)l in (17);
and the Multiplier update layer β(n+1)l in (18). As mentioned
before, finding an optimal transform domain is an active
research area because a sparser representation often leads
to higher reconstruction accuracy. Some popular sparsifying
transforms, such as DCT, Fourier and Haar, are often not
optimal. In this paper, we also employ a conventional layer
c(n+1)l to obtain the optimal sparsifying transform domain
thus, we have the following four layers:

(1) Reconstruction layer x(n+1):

x(n+1) = FT
[
1
τ1
PTP+

L∑
l=1

ρlFDT
l DlFT

]−1

×

[
1
2
d(PT y)+

L∑
l=1

ρlFDT
l (zl − βl)

]
(19)

(2) Convolution layer c(n+1)l :

c(n+1)l = D(n+1)
l x(n+1) (20)

(3) Nonlinear transform layer z(n+1)l :

z(n+1)l = S(Dlx(n) + β
(n)
l ;

λl

ρl
) (21)

(4) Multiplier update layer β(n+1)l :

β
(n+1)
l = β

(n)
l + ηl · (Dlx(n+1) − z(n+1)l ) (22)

B. UPDATING BY BACKPROPAGATION OVER
ROBUST-ADMM-NETWORK
In this paper, we choose the popular normalized mean
square error (NMSE) as the loss-function for training. The
loss-function between the output and the ground-truth is
described as

Loss =
1
0

∑
i=1

∥∥x̂− x
∥∥
2

‖x‖2
(23)

where x̂ is the network output (or reconstruction result), x is
the ground-truth and the set 0 represents the number of pairs
of under-sampling data and ground-truth images. To obtain
the optimal parameters, transform domain and shrinkage
function, we employ the backpropagation [17] strategy to
compute the gradient w.r.t. the parameters. The procedure of
x(n) → c(n) → z(n) → β(n) → x(n+1) is the forward pass.
In the forward pass, we calculate the NMSE for using the
updated parameters, the learned shrinkage function, and the
learned transform domain. The procedure of x(n) ← c(n) ←
z(n) ← β(n) is the backward pass. In the backward pass,
we calculate the gradient of NMSE w.r.t. each parameter
in every layer, see [17] for more details. Figure 3 details
the training and reconstruction process, in the training pro-
cess, the reconstructed image can be first achieved through
‘forward pass’. Then, we caculate the reconstructed loss
by (23). In the backward pass, each layer can be effectively
updated by the backpropagation strategy. Aftering the two
pass of forward and backword, we can obtain the optimal
parameters, the optimal transform domian and the optimal
sparse regularizers, they are dubbed network parameters;
In the reconstruction, the k-space sampling rata can be recon-
structed by the ‘Stage 1’, and then the reconstructed image
can be improved stage by stage using the trained network.
The proposed Co-Robust-ADMM-net algorithm is described
in Algorithm 2.
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FIGURE 2. An improved robust ADMM network structure.

FIGURE 3. Illustrations for training and reconstruction.

IV. EXPERIMENTS
In this section, we will conduct extensive experimental
evaluations on a typical MRI problem. Furthermore, some
comparison experiments will be conducted to demonstrate
the efficiency and priority than other corresponding work.
Considering the fact that the noise level is unknown in
real-world application, in this paper, we tend to train the
network using a relative strong impulsive noise, and then
conduct our reconstruction experiment using different lev-
els of noise. All experiments are performed for the real-
world magnetic resonance (MR) images (CAF Project:
https://masi.vuse.vanderbilt.edu/workshop2013/index.php/S
egmentation-Challenge-Details), and are performed on a
computer with Intel core i7-6700 CPU.

A. TRAINING
Considering the fact that the desiredMR images are unknown
in real-world applications, in this paper, we first randomly
choose a related real-world MR images for training to obtain
the optimal network parameters and then reconstruct the other

desired MR images using the learned parameters. In this
paper, we typically consider SαS noise corrupted measured
data. The characteristic function of a zero-location SαS dis-
tribution can be described as

ϕ(ω) = ejθω−γ
α |ω|α (24)

where 0 < α < 2 denotes the characteristic exponent;
a smaller value of α will often cause a heavier tail of the
distribution and more impulsive noise, and the value of α is
empirically greater than 1 in applications. The parameter
γ > 0 represents the strength of the SαS noise; the value
of γ is empirically set as 10−1, 10−2, 10−3, 10−4, 10−5 in
applications.

1) LOSS FUNCTION VERSUS ITERATION NUMBER
IN THE TRAINING PROCESS
To demonstrate the effects of our proposed network, we first
investigate the averaged loss calculated using (23) ver-
sus the iteration number in the training process. In this
experiment, we empirically adopt a five-stage proposed
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Algorithm 2 The Proposed Co-Robust-ADMM-Net
Algorithm

Problem: x̂← argmin
x
‖Ax− y‖1 +

L∑
l=1
λlg(Dlx)

1 Input: Measured data y, measurement matrix A,
the regularizer number L.
2 Initialization:g(Dlx) = ‖Dlx‖1, z

(0)
l = 0, β(0)l = 0,

Stage number n, the parameter λl , ηl and ρl ;
3 for t = 1, 2, · · · , n
Compute the first stage using the initial setting
parameters
Compute x(1) using equation (16)
Compute z(1) using equation (20)
Compute β(1) using equation (21)
Compute c(1)l using equation (22)
Compute the second stage using the learned parame-
ters;
Compute x(2) using equation (19)
Compute z(2) using equation (20)
Compute β(2) using equation (21)
Compute c(2)l using equation (22)
...

Compute the n − th stage using the learned
parameters;
4 end.
5 Output x(n+1).

FIGURE 4. (a): A clean Chest magnetic resonance image for training;
(b): The clean k-space data; (c): A noisy Chest magnetic resonance image.
(d): The noisy k-space data.

Co-Robust-ADMM-net (see figure 2) and employ only a
‘Chest’ MR image (see figure 4) corrupted by seven lev-
els of SαS noise with 0.3 sampling rate for training, and
then evaluate the changes of loss values. Figure 5 describes
the averaged loss (averaged NMSE) curve of the proposed
Co-Robust-ADMM-net. For every loss curve, the starting

FIGURE 5. Loss function versus iteration number in the training process.

point value denotes the initial result before training, dubbed
Initial-Co-Robust-ADMM. The results explicitly show that
the reconstruction loss decreases gradually versus the iter-
ation with the training process and then tends to a very
small stable value, and these results show that the trained
averaged NMSE values are much significantly lower than
the initial NMSE values. From the results, we also observe
that strong noise need more iterations to achieve the optimal
parameters, such as α = 1.0, γ = 10−3, while the image
corrupted by weak noise need fewer iterations, like α = 1.5,
γ = 10−3. Importantly, unlike common deep learning
method, our proposed network can update the corresponding
parameters by the backpropagation method only use one
figure.

2) RECONSTRUCTION PERFORMANCE VERSUS
THE NUMBER OF NETWORK STAGES
In the second experiment, we evaluate the performance
for different numbers of network stages. The number of
stages represents the network depth (see figure 2), in gen-
eral, a deeper network can often obtain higher reconstruc-
tion accuracy but also more computational overhead costs.
To make a tradeoff between the reconstruction accuracy
and speed, in the following, we will investigate the impact
of the stage number on the reconstruction results. In this
experiment, we empirically choose 5 MR ‘Chest’ images
with a strong impulsive noise (α = 1.0, γ = 10−4) for
training, and then reconstruct the same training ‘Chest’ MR
image (see figure 4) using our trained network parameters by
our proposed Co-Robust-ADMM-net. Figure 6 presents the
reconstruction results versus the number of stages. From the
results, we can observe that the reconstruction PSNR tends
to a higher value with the stage number increase, but then
decreases; as shown in the left of figure 6, the reconstruction
algorithm can obtain the highest PSNR value at 5, 6 and 7.
The right figure describes the CPU time versus the stage
number; all results show that the computational overhead
increases linearly with the number of stages. To achieve
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FIGURE 6. Impact of different stage numbers on the reconstruction. Left: The reconstruction averaged PNSRs versus different
number of stages; Right: the reconstruction averaged CPU time versus different number of stages.

a good tradeoff between the reconstruction accuracy and
computational time, we choose a 5-stage network as the
considerable network and repeat the experiment 100 times,
and then average the results.

3) RECONSTRUCTION PERFORMANCE VERSUS THE
NUMBER OF TRAINING IMAGE
To evaluate the reconstruction results of proposed Co-Robust-
ADMM-net using different number of training samples,
in this experiment, we employ 1, 5, 10, 20 and 30 ‘Chest’
MR images for training, and then reconstruct the ‘Brain’
images using the learned network under four different lev-
els of SαS noise shown in figure 7. Figure 8 shows the
reconstruction PSNRs and the corresponding CPU time under
different cases. From the results, we can explicitly observe
that increasing the number of training samples can achieve
higher reconstruction accuracy and then gradually become
stable.Moreover, the computational overhead does not signif-
icantly increase. However, increasing the number of training
samples will cause overwhelming computational overhead in
the training process; hence it is not unnecessary to increase
the sampling number in application.

FIGURE 7. Two typical magnetic resonance images.

B. TEST
To further demonstrate the superiority of the proposed
Co-Robust-ADMM-net algorithm, in this section, we com-
pare the proposed algorithm with some existing correspond-
ing work. The YALL1 algorithm of [21] is a well-known

robust reconstruction algorithm, and the LqLA-ADMM algo-
rithm of [11] is a more recent approach for robust compres-
sive sensing reconstruction. Both of them employ the ADMM
framework to address the robust reconstruction problem and
have achieved good performances, in this paper, we con-
duct comparison experiment using the provided matlab code
in https://github.com/FWen/LqLA-Sparse-Recovery.git. The
ADMM-net algorithm of [17] is a similar work based on
a denoise model called BM3D-MRI [27], although the
ADMM-net is proposed in Gaussian environment, we find
that the algorithm can suppress the outliers effectively, and
the algorithm of Co-Robust-ADMM is the proposed algo-
rithm without training. For a fair comparison, the robust
reconstruction algorithms of YALL1, LqLA-ADMM and
Co-Robust-ADMM employ the discrete cosine transforma-
tion (DCT) as the sparsifying transform; the algorithms of
ADMM-net and Co-Robust-ADMM-net employ DCT as the
initial transform. Following the above analysis, we employ
the proposed network with 5 stages for training using the
‘Chest’ image shown in figure 3.

TEST 1
In this experiment, we train the samplings using one image
shown in figure 3 (a) under a very impulsive noise envi-
ronment (α = 1.0, γ = 10−4), and then reconstruct two
different ‘Brain’ MR images using the learned parameters.
As shown in figure 6, the two ‘Brain’ magnetic resonance
images are widely used to evaluate the CS reconstruction
performance. Table 1 and Table 2 detail the reconstruction
results of four algorithms for different levels of SαS noise-
corrupted ‘Brain 1’ data and ‘Brain 2’ data with four sampling
rates of 0.2, 0.3, 0.4 and 0.5. In the tables, ‘–’ indicates
that the performance of the corresponding algorithm is poor.
We can observe that the algorithms of YALL1 and LqLA-
ADMM fail to reconstruct the images when the strength
of SαS noise is too high (e.g., γ = 10−1 and 10−3 ).
The algorithms of ADMM-net and Co-Robust-ADMM can
obtain considerable reconstruction results, with the proposed
Co-Robust-ADMM-net achieving the best performance.
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FIGURE 8. Reconstruction Performance versus the training number. Left: the reconstruction averaged PNSRs versus different
number of training samples; Right: the reconstruction averaged CPU time versus different number of training samples.

TABLE 1. Reconstruction PSNR (dB) for ‘Brain 1’ data with different sampling rates and noises.

TABLE 2. Reconstruction PSNR (dB) for ‘Brain 2’ data with different sampling rates and noises.

TABLE 3. Reconstruction PSNRs (dB) for ‘Brain 1’ data with different sampling rates and noises.

Moreover, the proposed Co-Robust-ADMM-net can improve
the reconstruction results significantly after training via the
network.

TEST 2
To further demonstrate the robustness and universality of
the proposed algorithm, in this experiment, we employ the
same sample but corrupted different levels of SαS noise
(α = 1.5, γ = 10−1). Next, we use the learned parameters to
reconstruct the same MR images under four different levels
of SαS noise. Table 5 details the reconstruction results of
four algorithms for ‘Brain 1’ data and ‘Brain 2’ data with

two sampling rates of 0.2 and 0.4, respectively. The proposed
algorithm of Co-ADMM-Robust-net outperform the
other four algorithms, and the results are consistent
with Tables 3 and 4,

C. FURTHER DISCUSSION ABOUT TRAINING AND TEST
In this section, we will give further discussion and anal-
ysis about the achieved results of training and test. From
Figure 6, we observe that the reconstruction performance
will be improved significantly with the increment of the
training stage, and achieve the best results when using about
5, 6, 7 and 8 training stages, however, the performance will
declined and then tend to be stable. In general, more stages
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TABLE 4. Reconstruction PSNRs (dB) for ‘Brain 2’ data with different sampling rates and noises.

means deeeper network, and will provide better training to
obtain optimal parameters. We also find that the performance
of four cases will close when the stage is over 11, and then
rise slowly, considering the CPU cost time increases linearly
with the stages number, we choose 5-stage network as the
consideration network.

From Figure 8, we can find that the achieved averaged
PSNRs increase significantly first, and then decrease slightly
till tend to be stable. In general, more samples can provide
more details for training the network, and can provide the
optimal parameters for optimization, however, these details
is not always suit for reconstruction of the unknown desired
images, because the image exist difference of structure and
details indeed, thus, it is reasonable for our obtained results
and we tend to choose 5 MR images for training in this paper.

V. CONCLUSIONS
In this paper, we proposed a robust compressive sensing
reconstruction algorithm called the Co-robust-ADMM-net
by joining the traditional ADMM framework and the deep
neural network. A robust composite regularization model
was employed to further exploit more of the physical prop-
erties and prior knowledge of the trained image. The strat-
egy of the deep neural network can effectively train the
parameters using the back propagation methods. Compared
with the no-training algorithm of the Initial-Co-Robust-
ADMM, the proposed Co-Robust-ADMM-net algorithm can
improve the reconstruction accuracy significantly. Simulation
results indicated that the strategy of combining the traditional
CS reconstruction algorithms with the deep neural network
can improve the recovery performance and should be pursued
in our future work.
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