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ABSTRACT Autonomous vehicles depend on global positioning systems’ aided by motion sensors to
estimate its position within the traffic network. However, all the driving vehicles cannot be ensured to have
satellite visibility. Therefore, in order to increase the accuracy and robustness of vehicle localization, it is
important to have an assistant localization method for these systems by using some environmental sensing,
such as cameras and radars. In this paper, we look at using multiple-input multiple-output (MIMO) radar
for vehicle localization. The performance of cross localization in MIMO radar relies on the accuracy of
the direction of arrival (DOA) estimation. But the performance of most existing DOA estimation methods
based on sparse signal recover is affected by the unknown nonuniform noise and mutual coupling. The
proposed method uses a linear transformation to eliminate the influence of mutual coupling by utilizing the
banded complex symmetric Toeplitz structure of the mutual coupling matrices in both transmit and receive
arrays. Then, a real-valued covariance vector-based sparse Bayesian learning framework is formulated for
DOA estimation by utilizing the unitary transformation, in which the variances of nonuniform noise can
be updated by using the least square strategy. The proposed method can work well and provide better DOA
estimation performance than the existing sparse signal recover-based algorithms in unknownmutual coupling
and nonuniform noise. Simulation results are provided to demonstrate the advantage of the proposedmethod.

INDEX TERMS Vehicle localization, MIMO radar, mutual coupling, nonuniform noise, sparse Bayesian
learning.

I. INTRODUCTION
In recent years, the development of autonomous vehicles has
drawn a lot of attention, and the vehicles localization in traffic
network is a fundamental aspect for autonomous driving
vehicles [1]. In general, the global positioning systems (GPS)
is the first selection for vehicle localization, and it can provide
accuracy well sufficient for vehicles localization when the
GPS is available [2]. However, when the driving vehicles in
some places, such as near tall building or in tunnels, the GPS
systems is not available. Thus, the other assistant localization
method for these systems by utilizing some environmental
sensing, such as cameras, radar and so on, is arisen [3].
The localization methods based on radar system are the most
important way due to the fact that it is not affected with the

weather and light. In radar system, the cross localization is an
efficient scheme for vehicle localization, which depends on
the accurate of direction of arrival (DOA) estimation [4], [5].
But the conventional radars, including phased array radar,
have limited DOA estimation performance, especially for
close spaced sources [6]–[8].

In recent years, the multiple input multiple output (MIMO)
radar systems have been considered as a promising prospect
of radar system due to its potential advantages, such as more
degree of freedoms (DOFs), higher spatial resolution and
parameter estimation performance [9]–[11]. According to the
literatures published in the past few years, for MIMO radar
system, most of the DOA estimation can be grouped into two
classes: the subspace technique based algorithms [12]–[17]
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and sparse signal recover (SSR) based algorithms [18]–[22].
For the subspace technique based algorithms, the signal/noise
subspace is required to estimate from the eigenvalue decom-
position (EVD) of the covariance matrix, such as the MUSIC
based algorithms and ESPRIT algorithms. In order to achieve
the accurate covariance matrix, the SNR is required as higher
enough and the number of snapshots is reasonable large.
Thus, the subspace technique based methods have perfor-
mance degradation even fail to work when the SNR is lower
and the number of snapshots is limited. On the other hand,
the SSR-based algorithms are proposed in the past few years,
which use the SSR technique to recover a sparse spatial
spectrum for DOA estimation. The simulation results have
been verified that the SSR based algorithms have the capacity
to fit the case of low SNR or/and limited snapshots, and
provide superior performance than subspace technique based
algorithms.

For MIMO radar, in practice, the influent of the mutual
coupling may exist between the elements and the received
noise is nonuniform noise, due to the imperfectly-calibrated
transmit and receive arrays [23]–[25]. The conventional SSR-
based methods have performance degradation or fail to work
due to the fact that these methods rely on the perfect array
manifold and Gaussian white noise. In order to achieve the
accurate estimation performance with the SSR framework,
an efficient sparse signal recover method is formulated for
DOA estimation in [26], in which the banded complex sym-
metric Toeplitz structure of the mutual coupling matrices is
utilized to remove the effect of mutual coupling. But the
drawback of this method is that it leads aperture loss. In order
to improve the estimation performance, a spare representation
of covariance vector scheme is also proposed for eliminating
the mutual coupling in MIMO radar [20], and the fourth-
order cumulants-based SSR scheme is also investigated in
this case [27]. On the other hand, considering the influence of
nonuniform noise, a robust covariance sparsity-aware DOA
estimation algorithm is proposed in [28], but the estimation
performance is limited due the drawback of l1 norm optimiza-
tion and the aperture loss. In order to avoid the drawback,
a sparse bayesian learning strategy is investigated without
aperture loss in MIMO radar [29], and it achieves superior
performance than the method in [28]. According to the above
analysis, the existing SSR based algorithms treat the mutual
coupling and nonuniform noise independently, which indi-
cates that these method may have remarkable performance
degradation or fail to work with the coexist of unknown
mutual coupling and nonuniform noise. To the best of our
knowledge, in addition, there are few literatures on consid-
eration of the SSR based DOA estimation with the coexist of
unknown mutual coupling and nonuniform noise.

In this paper, in order to solve the DOA estimation for vehi-
cle localization in MIMO radar in the presence of unknown
mutual coupling and nonuniform noise, a robust unitary
sparse bayesian learning (USBL) is proposed. According
to the banded complex symmetric Toeplitz structure of the
mutual coupling matrices in MIMO arrays, the proposed

FIGURE 1. The cross localization of vehicle with two cooperation MIMO
radars.

method firstly eliminates the mutual coupling effect by using
a linear transformation. Then a real-valued covariance vec-
tor is achieved by using the unitary transformation, and a
robust unitary sparse bayesian learning strategy is formulated
for DOA estimation, in which least square(LS) strategy is
adopted to update the variances of nonuniform noise for
suppressing the influence of nonuniform noise. Thus, the pro-
posed method can perform well in the presence of unknown
mutual coupling and nonuniform noise. Furthermore, the pro-
posedmethod exhibits superior performance than the existing
sparse signal recover based algorithms.

The remainder of this paper is organized as follows. The
MIMO radar signal mode for vehicle localization is elab-
orated in Section II. The proposed robust unitary SBL is
presented in Section III, and some related remarks are inves-
tigated in Section IV. Section V gives the simulation results.
Section VI concludes the paper.
Notation: IK denotes a K× K identity matrix. 5k denotes

the k × k exchange matrix with ones on its anti-diagonal and
zeros elsewhere. ⊗ denotes the Kronecker product, and �
represents theKhatri-Rao product. diag{a} denotes a diagonal
matrix with the diagonal entries from a. (·)H, (·)−1, (·)∗, (·)T,
and (·)+ denote the conjugate-transpose, inverse, conjugate,
transpose, and pseudo-inverse respectively. Vec{·} denotes
the vectorization operation.

II. SIGNAL MODEL AND PROBLEM FORMULATION
Consider a cross localization of vehicle with two cooperation
MIMO radars, shown in Fig.1, and two DOAs estimated by
twoMIMO radars is used for vehicle localization. In addition,
two MIMO radars are implemented with the sam way, which
indicates that only one MIMO radar is needed to describe for
DOA estimation, and the other one works as the same way.
In the cross localization scheme, one narrowband MIMO
radar equipped with M transmit antennas and N receive
antennas is considered, shown in Fig.2. The uniform linear
arrays (ULAs) with half-wavelength spacing is used for the
transmit and receive arrays. Furthermore, the transmit and
receive arrays are located closely, which indicates that the
angles of one vehicle respect to the normals of transmit and
receive arrays are the same, and they are named as direction of
arrival (DOA). In MIMO radar system, M orthogonal wave-
forms satisfied with φHi φj = 0(i 6= j) and φHi φj = 1(i = j)
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FIGURE 2. The configuration of MIMO radar for vehicle localization.

are emitted by the transmit antennas, which can be used for
forming a group of matched filters at the receive array, where
φi denotes the waveform of the i transmit antennas. After
using these matched filter to the received data, the received
data can be written as [29]

y(t) = As(t)+ n(t) (1)

where y(t) ∈ CMN×1 is received data after using the
matched filters, and A = [at (θ1) ⊗ ar (θ1), · · · , at (θP) ⊗
ar (θP)] is the transmit-receive steering matrix, at (θp) =
[1, ej sin θp , · · · , ej(M−1) sin θp ]T and ar (θp) = [1, ej sin θp , · · · ,
ej(N−1) sin θp ]T are the transmit steering vector and receive
steering vector, respectively. s(t) = [s1(t), s2(t), . . . ,
sP(t)]T ∈ CP×1 is received signal vector composed with
sp(t) = βp(t)ej2π fp(t), in which sp(t) = βp(t)ej2π fp(t)

and βp(t) and fp(t) denote the scattering coefficient and
Doppler frequency of the pth sources, respectively. Due to the
imperfectly-calibrated transmit and receive arrays, the vector
n(t) ∈ CMN×1 is the nonuniform noise, and its covariance
matrix is shown as [29]

Rn = IM ⊗ Rn̄ (2)

where Rn̄ = E[n̄(l)n̄(l)H] = diag{[σ 2
1 , σ

2
2 , · · · , σ

2
N ]}. n̄(l)

is covariance matrix of nonuniform noise before matched
filters, and σ 2

n is the noise variance of the nth receive anten-
nas, which satisfies σ 2

1 6= σ 2
2 6= · · · 6= σ 2

N . The Eq.(1)
shows the signal model with idea array manifold. Due to the
mutual coupling effect in MIMO arrays, the mutual coupling
matrices of transmit and receive arrays are modeled as a
symmetric Toeplitz matrix, which can be expressed as

Ct = toeplitz
([

cTt , 01×(M−K−1)
])
∈ CM×M

Cr = toeplitz
([

cTr , 01×(N−K−1)
])
∈ CN×N (3)

where cik (i = r, t; k = 0, 1, 2, · · · ,K ) denotes the K + 1
nonzero mutual coupling coefficients, and K satisfies
min{M ,N } > 2K . For the mutual coupling coefficient
between two antennas, its value opposites to the distance of
two antennas and equals to zeros when the distance is far

enough, which can be shown as 0 < |ciK | <, · · · , < |ci1| <
|ci0| = 1. Based on the mutual coupling matrices shown in
Eq.(3), the received signal in Eq.(1) can be revised as

y(t) = CAs(t)+ n(t) = Ãs(t)+ n(t) (4)

where C = Ct ⊗ Cr is the transmit-receive mutual coupling
matrix. and the novel transmit-receive steering matrix is Ã =
CA = [ãt (θ1) ⊗ ãr (θ1), · · · , ãt (θP) ⊗ ãr (θP)] with ãt (θp) =
Ctat (θp) and ãr (θp) = Crar (θp). By collecting the received
data with J snapshots, the Eq.(4) can be rewritten as

X = ÃS+ N (5)

where X = [x(t1), x(t2), · · · , x(tJ )] is the received data
matrix. S = [s(t1), s(t2), · · · , s(tJ )] is the signal matrix, and
N = [n(t1),n(t2), · · · ,n(tJ )] is the nonuniform noise matrix.
For the Eq.(5), the conventional SSR based algorithm only
consider the mutual coupling effect in the transmit-receive
steering matrix Ã or the influence of the nonuniform noise.
In the following section, the SSR based DOA estimation
for vehicle localization is investigated with the coexist of
unknown mutual coupling and nonuniform noise.

III. ROBUST SPARSE BAYESIAN LEARNING ALGORITHM
FOR DOA ESTIMATION
Due to the coexist of unknown mutual coupling and
nonuniform noise, the performance of the conventional DOA
estimation methods have remarkable degradation, which
indicants that the performance of vehicle localization is also
degradation. Aiming at obtaining the desired performance,
the mutual coupling and nonuniform noise effect must be
avoided or eliminated firstly. Taking advantage of the sym-
metric Toeplitz structure of the mutual coupling matrices,
two selection matrices are constructed for eliminating the
influence, which are shown as

J1 =
[
0(M−2K )×K , I(M−2K ), 0(M−2K )×K

]
J2 =

[
0(N−2K )×K , I(N−2K ), 0(N−2K )×K

]
(6)

Then the selection matrices can be applied to the transmit
and receive steering matrices, respectively, which can be
expressed as{

ât
(
θp
)
= J1ãt

(
θp
)
= βtpāt

(
θp
)

âr
(
θp
)
= J2ãr

(
θp
)
= βrpār

(
θp
) (7)

where ār (θk) and āt (θk) are the new steering vectors, which
consist with the first N −2K andM−2K elements of ar (θk)
and at (θk), respectively. βtp = 1+

∑K
k=1 2ctk cos

(
pπ sin θp

)
and βrp = 1 +

∑K
k=1 2crk cos

(
pπ sin θp

)
. According to

the expression of βtp and βrp, it indicates that for the
p(p = 1, 2, · · · ,P)th target, the parameter βtp and βrp are
constant, which mens that the mutual coupling effect in trans-
mit and receive arrays is eliminated. For the transmit-receive
steering vector, the operation in Eq.(7) can be extended as

ât (θp)⊗ âr (θp) = (J1 ⊗ J2)(ãt (θp)⊗ ãr (θp))

= βrpβtp(āt (θp)⊗ ār (θp)) (8)
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According to Eq.(8), the effect of mutual coupling between
the transmit-receive elements is removed after using the linear
transformation. Thus, this linear transformation can applied
to the received data for the decoupling operation, which can
be expressed as

X̄ = (J1 ⊗ J2)X = ĀS̄+ N̄ (9)

where Ā = [āt (θ1) ⊗ ār (θ1), · · · , āt (θP) ⊗ ār (θP)] denotes
the new transmit-receive steering matrix after the decoupling
operation, and the signal data matrix S̄ = DS with D =
diag(βr1βt1, · · · , βrPβtP). The noise matrix N̄ = (J1 ⊗ J2)N
is also the nonuniform noise due to the inherent characteris-
tics of the linear transformation. According to the structure of
the transmit-receive steering vector āt (θ ) ⊗ ār (θ ), it is easy
to show that there are some redundant elements, and it can be
rewritten as

āt (θ )⊗ ār (θ ) = Gb(θ ) (10)

where the transformation matrix G is shown as

G = [JT0 , J
T
1 , · · · , J

T
M̄−1]

T (11)

Jm = [0N̄×m, IN̄ , 0N̄×(M̄−m−1)] m = 0, 1, . . . , M̄ − 1

(12)

b(θ ) = [1, exp(jπsinθ ), · · · , exp(jπ (M̄ + N̄ − 2)sinθ )]T

(13)

where M̄ = M̄ − 2P and N̄ = N − 2P. According to the
Eq.(10), a reduced dimension transformation matrix is con-
structed for eliminating the redundant elements in transmit-
receive steering, which is shown as [16]

D = (GHG)−(1/2)GH (14)

Then multiplying the reduced dimensional matrix D with
the data matrix X̄ yields

Ȳ = DX̄ = (GHG)(1/2)BS̄+ DN̄

= F(1/2)BS̄+ N = B̄S̄+ N (15)

where B̄ = F(1/2)B is the weighted steering vector
after the reduced dimensional transformation, where B =
[b(θ1), · · · ,b(θP)] and F = GHG = diag{[1, 2, . . . ,
min(M̄ , N̄ ), . . . ,min(M̄ , N̄ )︸ ︷︷ ︸

|M̄−N̄ |+1

, . . . ., 2, 1]}. Due to the fact that

the reduced transformation matrix satifies DDH
= I, the

noise matrix N = DN̄ is also nonuniform noise. Then the
covariance matrix is calculated by

R̂ = ȲȲH/J = B̄R̂S̄ B̄
H
+ R̂N (16)

where R̂S̄ = S̄S̄H/J = diag([σ 2
1 , σ

2
2 , · · · , σ

2
P]) and R̂N =

NNH/J . On the other hand, the sparse bayesian learning
in [29] can be used to the received data in Eq.(16) for DOA
estimation. However, this method needs the complex-valued
processing procedure. It is well known that the computational
burden of real-valued processing is only a quarter of those
of complex-valued processing. Thus, the iteration of sparse

bayesian learning strategy can be implemented in real-valued
domain for reducing the computational burden, which is very
useful for real-time operation in driving vehicle localiza-
tion. It is noticed that the transmit-receive steering matrix B̄
satisfies

F(1/2)B3 = 5M̄+N̄−1(F
(1/2)B3)∗ (17)

where 3 = diag{[e−j(M̄+N̄−2)/2 sin θ1 , e−j(M̄+N̄−2)/2 sin θ2 ,
· · · , e−j(M̄+N̄−2)/2 sin θP ]} is a diagonal matrix. Thus,
the received data can be transformation into real valued one
by utilizing the unitary transformation [31]. Then unitary
transformation matrix is given as

U2k =
1
√
2

[
Ik jIk
5k −j5k

]
(18)

and

U2k+1 =
1
√
2

 Ik 0 jIk
0T

√
2 0T

5k 0 −j5k

. (19)

According to the principle of unitary transformation
in [30], for a complex valued centro-Hermitian matrix
4 ∈ CM×N , UH

M4UN is real valued. However, the estimated
covariance matrix is Hermitian but generally not persym-
metric due to the limited number of snapshots. Fortunately,
the forward and backward (FB) spatial smoothing is applied
for achieving the centrosymmetric covariance matrix, which
is shown as

R̄ =
1
2
(R̂+5M̄+N̄−1R̂

∗5M̄+N̄−1) = B̄R̄S̄ B̄
H
+ R̂N (20)

where R̄S̄ =
1
2 (R̂S̄ + 3R̂∗

S̄
3H). The covariance matrix

satisfies

5M+N−1R̄∗5M+N−1 = R̄ (21)

According to Eq.(20), the number of snapshots is doubled
after the FB spatial smoothing. Thus, the estimated accuracy
of covariance matrix is improved and the covariance based
SSR method can expect to achieve better performance. Then
the real-valued covariance matrix is achieved as follows

R̂rv = UH
M̄+N̄−1R̂UM̄+N̄−1 (22)

According to the Eq.(17), the real-valued steering matrix
is written as

B̄rv = UHB̄3 (23)

and the Eq.(22) is rewritten as

R̂rv = B̄rvR̄S̄ B̄
H
rv + R̄N (24)

Due to the fact that the covariancematrix is obtained from a
finite number of snapshots, there exists an error between the
estimated and idea covariance matrix. Then vectorizing the
real valued covariance matrix without the nonuniform noise
matrix, we have

ĝ = vec(R̂rv − R̄N ) = Hz+ ζ (25)
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where H = B̄∗rv � B̄rv, and z = [σ 2
s1, σ

2
s2, · · · , σ

2
sP]

T.
ζ is the estimated error, and it satisfies ζ ∼ CN (0, ¯̄Q)
with Q̄ = (R̂T

rv ⊗ R̂rv)/J due to the orthogonal matrix D
and UM̄+N̄−1 [31]. In order to carry out the SBL frame-
work, the sparse data model must be established firstly. Dis-
cretize the spatial angle domain using a grid sampling 2 =
[θ̄1, θ̄2, · · · , θ̄L], where L � P. Then the over complete dic-
tionary H̄ = H̄(2) = B̄∗rv(2)�B̄rv(2) = (UHF(1/2)B∗

θ̄
3∗
θ̄
)�

(UHF(1/2)Bθ̄3θ̄ ) with Bθ̄ = [b(θ̄1), · · · ,b(θ̄L̄)] and 3θ̄ =
diag{[e−j(M̄+N̄−2)/2 sin θ̄1 , · · · , e−j(M̄+N̄−2)/2 sin θ̄L ]}. Then the
sparse model is expressed as follow

ĝ = H̄z̄+ ζ (26)

where z̄ denotes a P sparse vector, where the nonzero ele-
ments of ζ are corresponding to the desired DOAs. In order
to implement the SBL technique, and following the basis
ideal of SBL [29], Assuming that z̄ ∼ CN (0, 0), where
0 = diag(γ ) with γ = [γ1, γ2, · · · , γL]. γ is a hyper-
parameter that controls the nonzero rows of z̄. When γi is
zero, the corresponding row of γ becomes zero. Based on the
Eq.(26), the likelihood function of ĝ can be derived as follows

p(ĝ|z̄; Q̄)= CN (ĝ|H̄z̄, Q̄)

= |2πQ̄|−
1
2 exp{−

1
2
[(ĝ−H̄z̄)TQ̄−1(ĝ−H̄z̄)]} (27)

Then using the Bayesian rule, the posterior distribution of
z̄ is formulated as

p(z̄|ĝ; γ , Q̄) =
p(ĝ|z̄; Q̄)p(z̄|γ )∫
p(ĝ|z̄; Q̄)p(z̄|γ )d z̄

= |2π6|−
1
2 exp{−

1
2
[(z̄− µ)H6−1(z− µ)]}

(28)

where the mean µ and covariance 6 are given by

µ = 0H̄H(Q̄+ H̄0H̄H)−1d̂rv (29)

6 = 0 − 0H̄H(Q̄+ H̄0H̄H)−1H̄0 (30)

The hyperparameters γ in Eq.(29) and (30) is estimated by
a type-II maximum likelihood, and the probability distribu-
tion of ĝ with respect to γ is the product of the likelihood
function in Eq.(27) and the prior p(z̄|γ ) integrated over the
real valued amplitudes z̄, which is shown as follows

p(ĝ|γ ) =
∫
p(ĝ|z̄; Q̄)p(z̄|γ )d z̄

= |2π6ĝ|
−

1
2 exp{−

1
2
ĝH6−1ĝ ĝ} (31)

where

6ĝ = Q̄+ H̄0H̄H (32)

In order to estimate the real-valued hyperparameters γ , let
the derivatives of the real-valued log-likelihood function of
p(ĝ|γ ) respect to γ be zero, i.e., ∂log(p(ĝ|γ )|γ ))/∂γ = 0.

After some necessary mathematical operation, the updated
rule of the hyperparameters γ is derived as follows

γ
(q)
i = µ

(q)
i /

√
h̄Hi (6

(q)
ĝ )−1h̄i (33)

where µ(q)
i is the ith entries of µ, and h̄i is the ith col-

umn of H̄. The corresponding posterior mean µ(q) and data
covariance matrix 6(q)

ĝ are calculated in Eq.(29) and (32)
for the qth iteration, respectably. Up to now, the hyperpa-
rameters γ is achieved by using the procedure of iteration.
However, the variances of the nonuniform noise are also
required to updated for calculating the covariance vector
ĝ in Eq.(25). In our method, the least squares (LS) crite-
rion is adopted to solve this issue [29]. In the SBL frame-
work, the parameters are updated in each interaction. Thus,
P ‘‘active’’ DOAs θ̂p(p = 1, 2, · · · ,P) are from the spa-
tial spectrum of hyperparameters γ . Then the corresponding
real-valued active steering matrix is constructed as DP =

UH
M̄+N̄−1

F(1/2)BP3P with BP = [b(θ̂p), · · · ,b(θ̂P)] and

3P = diag{[e−j(M̄+N̄−2)/2 sin θ̂1 , [e−j(M̄+N̄−2)/2 sin θ̂2 , · · · ,
e−j(M̄+N̄−2)/2 sin θ̂P ]}. Based on the basis idea of subspace
technique, for the uncorrected sources, the columns of R̂rv −

R̄N and DP can span the same subspace, which indicates that
there exists a linear relationship between R̂rv − R̄N and DP,
shown as R̂rv − R̄N = DPT, where T is a full-rank matrix.
Then the k̄(k̄ = 1, 2, · · · ,M +N − 1) columns of R̂rv − R̄N
is written as ck̄ = vk̄ − σ̄

2
1 ek̄ , and σ̄

2
k denotes the kth variance

of nonuniform noise, where ek̄ denotes a column vector of all
zeros except a 1 in the k̄th position. Thus, the estimated error
between k̄th column of R̂rv − R̄N and DPT can be shown as

ε(k̄) = ||ck̄ − DPtk̄ ||
2
2 (34)

where tk̄ denotes the k̄th column of the full-rank matrix T.
Applying the least squares (LS) criterion to Eq.(34), we have
tk̄ = (DH

PDP)−1DH
P ck̄ . Substituting tk̄ into Eq.(34) yields

=(σ̄ 2
k̄ ) =

M̄+N̄−1∑
k̄=1

||ck̄ − DPtk̄ ||
2
2 =

M̄+N̄−1∑
k̄=1

cHk̄ 4ck̄ (35)

where 4 = IM̄+N̄−1 − DP(DH
PDP)−1DH

P . Then the updated
rule of the variances of nonuniform noise can be achieved by
the derivation as ∂=(σ̄ 2

k̄
)/∂σ̄ 2

k̄
= 0, and we have

σ̄ 2
k̄ =

eT
k̄
4vk̄ − vH

k̄
4ek̄

2eT
k̄
4vk̄

. (36)

Up to now, both the parameters and the variances of the
nonuniform noise are updated by the proposed method. Then
the hyperparameter γ is obtained when the procedure of
iteration is convergent, then the DOA is achieved by plotting
the spatial spectrum of γ . The convergence conidtion is set as
||γ (q+1)

−γ (q)
||2/||γ

(q)
||2 < ζ , where ζ denotes the threshold

of conversance. In summary, the proposed robust unitary
SBL for DOA estimation in the presence of unknown mutual
coupling and nonuniform noise is given in algorithm1.
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Algorithm 1 Robust Sparse Bayesian Learning Scheme
Input: The received data X;
Initialization: H̄, Q̄, R̄N ,γ (0);
Robust sparse Bayesian learning
Achieve X̄ by Eq.(5) and Eq.(9), and estimate R̂ by
Eq.(16);
Estimate the real valued covariancematrix B̄rv by Eq.(20)
and (22).
Achieve the real valued covariance vector ĝ without the
influence of nonuniform noise by Eq.(25);
while ∼ Converge do

Update µ by Eq.(29);
Update 6ĝ by Eq.(32);
Update γ by Eq.(33);
Update σ̄ 2

k̄
by Eq.(36)

end while
Output: µ̄, γ̄ .

IV. RELATED REMARKS
Remark 1: In the proposed method, the real-valued covari-

ancematrix is involved the FB spatial smoothing. The number
of snapshots is doubled in the received data, which indi-
cates that the covariance matrix is estimated more correctly.
One the other hand, the proposed method can eliminate
the mutual coupling effect, and the variances of nonuni-
form noise are updated in SBL framework. Therefore,
the proposed method is expected to have superior perfor-
mance than existing SSR based methods, which indicates
that the performance of vehicle localization is improved
remarkably.
Remark 2: According to the implementation of the

proposed method, the covariance vector is required to
estimated effectively. In order to achieve this purpose,
the covariance matrix should be a full rank matrix, which
indicates that the number of snapshots should satisfy
J ≥ M̄ + N̄ − 1.
Remark 3: To further reduce the computational burden

and the modeling error of spatial sampling grids, a refined
procedure is utilized to achieve this purpose [32], [33].
The 1-D spatial searching is formulated to estimate the DOA,
which only requires P clusters searching, and it can be
expressed as

L(θ̂ ) = argmax
θ∈∇p

|h̄T(θ )6̄−1−p [h̄(θ )h̄
H(θ )6−1−p ĝĝ

T

− ĝĝT6−1−p h̄(θ )h
NH(θ )]6−1−p

∂h̄(θ )
∂θ
|
−1 (37)

where h̄(θ ) = (UHF(1/2)b∗ej(M̄+N̄−2)/2 sin θ ) � (UHF(1/2)

be−j(M̄+N̄−2)/2 sin θ ). and 6−p = Q̄ + H̄−p0−pH̄H
−p, where

H̄−p is a real-valued matrix which is achieved by canceling
one column of H̄ corresponding to θp. 0−p equals 0 by
canceling its rows and columns corresponding to θp. ∇p is
the peak rang of the pth source, and the DOAs are obtained
from the spatial spectrum L(θ̂ ).

FIGURE 3. The spatial spectrum of the proposed method
(SNR= 0dB, J = 200).

V. SIMULATION RESULTS
In this section, The simulation results about the proposed
method for DOA estimation in MIMO radar system is given,
which is used to verify the performance. The proposed
method is compared with the l1-SVD based algorithm in [26]
and the SBL based algorithm in [29]. a MIMO radar con-
sisting with M = 8 transmit antennas and N = 10 receive
antennas is used, and the uniform linear arrays (ULAs) with
half-wavelength spacing is used for the transmit and receive
arrays. Unless otherwise stated in the following simulation
results, the number of targets is assumed to be known firstly,
and we consider P = 3 uncorrelated targets with the DOAs
of θ1 = −5◦, θ2 = 5◦ and θ3 = 15◦, and they satis-
fie the condition of far field. The nonuniform noise Rn̄ =

diag{[10, 1, 9, 7, 2, 6, 1.5, 1, 3, 0.5]}. The worst noise power
ratio (WNPR) is defined as follows

WNPR = σ 2
max/σ

2
min (38)

where σ 2
max and σ

2
min are the maximum and minimum nonuni-

form noise variances, respectively. The root mean squared
error (RMSE) for evaluating the performance is defined as:

RMSE =

√√√√√ 1
`P

∑̀
i=1

P∑
p=1

(θp − θp,i) (39)

where θp,i is the estimated value of the pth source at the ith
trial, and ` is number ofMonte Carlo trials and set as ` = 200.
The spatial grid is 0.1◦ discretizing from −90◦ to 90◦. The
initialization parameters of the proposed method are set as
ĝ(0) = vec(R̂rv − IM+N−1) and γ (0)

=
¯̄HH(H̄H̄H)−1ĝ(0).

Fig.3 shows the spectrum of the proposed method, where
the SNR=0dB and J = 200. The the nonzero mutual coeffi-
cients are ct = [1, 0.4174+j0.0577] and cr = [1,−0.5121−
j0.1029], respectively. From Fig.3, it can be seen that there
exists 3 sharp peaks corresponding to the true DOAs, which
verifies that the proposed method is work well in the mutual
coupling and nonuniform noise, which indicates that the posi-
tion of vehicle is correctly achieved by using cross localiza-
tion based on the estimated DOAs.
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FIGURE 4. The RMSE versus SNR with different methods.

FIGURE 5. The probability of successful detection versus SNR (J = 200).

Fig.4 depicts the RMSE versus SNR for the proposed
method, l1-SVD based algorithm and SBL based algorithm,
where the number of snapshots is set as J = 200, and the
nonzero mutual coefficients are ct = [1, 0.2174 + j0.0577]
and cr = [1, 0.1121 − j0.1029], respectively. According to
the Fig.4, it can be seen that the SBL based algorithm fails
to work due the influence of mutual coupling. Furthermore,
the proposed method achieves superior performance than l1-
SVD based algorithm. This is because that proposed can
update the variances of nonuniform noise for eliminating
its effect, but the l1-SVD based algorithm does not have
this ability. Thus, the proposed method can achieve the best
performance due to its advantages.

Fig.5 depicts detection performance of DOA estimation
versus SNR for the proposed method, l1 based algorithm and
SBL based algorithm, where the number of snapshots is set
as J = 100, and the nonzero mutual coefficients are set as
ct = [1, 0.2174 + j0.0577] and cr = [1, 0.1121 − j0.1029],
respectively. In this simulation, the successful detection of
all sources is defined as if the estimation error of all DOAs
satisfies maxi=1,2,3|θ̂i − θi| ≤ 0.2◦, where θ̂i is the estimated
value of θi. As seen in Fig.5, it is clearly observed that when
the SNR is high enough, the proposedmethod and the l1-SVD
based algorithm exhibit 100% detection performance. But the
SBL based method achieve 0% detection performance in all

FIGURE 6. RMSE versus snapshots for different methods (SNR=0dB).

FIGURE 7. The RMSE versus SNR with different WNPR (J = 200).

SNR region due to the fact that it fails to work. On the other
hand, for each algorithm, the probability of successful detec-
tion begins dropping at one point of the SNR, and this point
is named as SNR threshold. According to Fig.5, the proposed
method achieves higher SNR threshold than l1-SVD based
algorithm. This is because that the proposed method has the
ability of nonuniform noise suppression.

Fig.6 shows the RMSE versus snapshots for for the pro-
posed method, l1 based algorithm and SBL based algorithm,
where the SNR is set as SNR=0 dB, and the nonzero mutual
coefficients are ct = [1, 0.2174 + j0.0577] and cr =
[1, 0.1121 − j0.1029], respectively. As shown in Fig.6, with
the increasing number of snapshots, all the methods except
for the SBL based algorithm achieve better angle estimation
performance. The proposed method provides superior per-
formance than l1-SVD based algorithm due to the accurate
estimated covariance matrix with large number of snapshots.

Fig.7 depicts the RMSE of the proposed method with
different WNPR, where the number of snapshots is set as
J = 200. The nonzero mutual coefficients are ct =
[1, 0.2174 + j0.0577] and cr = [1, 0.1121 − j0.1029],
respectively. As shown in Fig.7, the RMSE of the pro-
posed method becomes larger with the same SNR when the
WNPR is increased, but its performance is also reasonable,
which indicates that the proposed method is robust with the

VOLUME 6, 2018 48753



X. Wang et al.: Robust Vehicle Localization Exploiting Two Based Stations Cooperation

different WNPR. The main reason is that the proposed
method can update the variances of nonuniform noise in the
unitary SBL iterations.

VI. CONCLUSION
In this paper, we have proposed a robust DOA estimation
approach based unitary sparse bayesian learning for vehi-
cle localization with two cooperation MIMO radars. Under
the unknown mutual coupling and nonuniform noise in
MIMO system, the proposed method uses a linear transfor-
mation to eliminate the mutual coupling effect and achieves
the real-valued covariance vector by using unitary transfor-
mation. Then a robust unitary SBL procedure is proposed for
DOA estimation with the updating of nonuniform noise via
LS strategy. The simulation results are used to demonstrate
that the proposed method not only works well in the presence
of unknown mutual coupling and nonuniform noise, but also
achieves superior performance than the existing SSR based
algorithms. In addition, the proposed method only needs the
real-valued processing, which is very useful for real-time
vehicle localization.
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