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ABSTRACT In mobile wireless sensor networks (WSNs), error accumulation, and outlier problem seriously
decrease the localization accuracy. To find a more accurate and cost-effective localization algorithm,
cooperative localization with bounding constraints is proposed in this paper. By depicting the factor graph,
the cooperative localization combines the trajectory prediction and observation correction of adjacent node.
The trajectory prediction utilizes the polynomial Newton interpolation and bounding box which avoid the
gross error. The observation correction explores the belief propagation and variational message passing,
which are improved by judgment factor and punctuation function. Experiments are conducted to verify the
proposed method in the aspect of algorithm parameter configuration, experiment parameter configuration,
and distribution parameter configuration. The experiment results show that the proposedmethod in this paper
outperforms than existing methods in large-scale WSNs.

INDEX TERMS Cooperative localization, boundary box, mobile WSNs, massage passing.

I. INTRODUCTION
Mobile Wireless Sensor Networks (WSNs) find applications
in environmental monitoring, space exploration and surveil-
lance, etc [1], [2]. They comprise a number of sensor nodes
which are deployed over a region and move at a random
speed. Mobile WSNs only make sense when their locations
are obtained. The localization of mobile WSNs needs to
sequentially calculate the node position in real time. How-
ever, mobile WSNs avoid equipping more devices such as
GPS considering the limitation of cost and energy. This
requirement promotes the research on the localization accu-
racy and simplicity [3]–[7].

Many researches have been made on the localization of
static WSNs. They are categorized into range-based and
range-free methods. Range-based methods depend on the
distance or angle measurement devices which are beneficial
to higher localization accuracy, such as TOA, RSSI and AOA
in Tomic’s works [8], [9]. These methods have higher hard-
ware cost and are not suitable for large-scale and complex
networks. Range-free methods are not more accurate than
range-based methods, but it avoids large hardware cost.
These methods [10], [11] include DV-HOP, APIT and cen-
troid which are more suitable for the scenario in this paper.

However, methods above are only applied in static WSN.
More and more sensors are equipped in vehicle or other
mobile devices so that broader and more flexible monitor-
ing can be realized. Due to the off-line operation and low
real-time problems, these range-free methods above are not
applied in mobile WSNs. In the paper, we explore the local-
ization for mobile WSNs.

For localization of mobile WSNs, Monte Carlo is
the most popular method which is initially proposed by
Hu and Evans [12]. Without additional hardware, sequential
Monte Carlo Localization predicts the position area and fil-
ters by importance sampling. This technique studies range-
free localization in the presence of mobility and improves the
accuracy. On the basis of MCL, Baggio et al. constrain the
area where samples are drawn by building a box. The radio
ranges of anchors in the box overlap [13]. The box method is
called Monte Carlo localization boxed (MCB). MCB draws
the necessary location samples faster so that the accuracy
and efficiency are improved. Besides, MSL [14], MSL∗ [15],
MMCL [13], RSS-MCL [16] and OTMCL [17] are all
improvedMCL. For improvedMCL, Guan et al. [18] propose
an optimal region selection strategy of Voronoi diagram based
on VMCL, called ORSS-VMCL. It increases the efficiency
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and accuracy for VMCL by adapting the size of Voronoi
area during the filtering process. Rashid and Turuk [19]
propose a technique called dead reckoning localization for
mobile WSNs (DRLMSN). It estimates two possible loca-
tions of a node using Bézout’s theorem. A dead reckoning
approach is used to select one of the two estimated locations.
Wang and Zhu [16] sequentially estimate the location of
mobile nodes, using the log-normal statistical model of RSS
measurement. The RSS measurement is treated as the obser-
vation model in Monte Carlo method and the mobility feature
of nodes as the transition model. The MCL and its improve-
ments decrease the hardware cost and operate conveniently
while they are limited by unsuccessful sampling and particle
degeneracy. The unsuccessful sampling and particle degen-
eracy add extra computation and decrease the localization
accuracy. The problems limit the development of MCL in
mobile WSN localization.

As implementations of approximate Bayesian inference,
cooperative localization enhances the technique in WSN
localization [20], [21]. The cooperative localization devel-
ops initially in static WSNs. Nguyen et al. [22] study least
square (LS) cooperative localization in the presence of arbi-
trary non-line-of-sight (NLOS) ranging bias and derive the
Fisher information matrix (FIM) for a general NLOS bias
model. Li and Hedley [23] propose an asymmetric double
exponential ranging error model based on empirical ranging
data. The communication and computational cost is reduced
by Gaussian distributions between neighbors and by using an
analytical approximation to compute peer-to-peer messages.
García-Fernández et al. [24] presents the posterior lineariza-
tion belief propagation (PLBP) algorithm for cooperative
localization with linearization and belief propagation. At the
linearization step, the nonlinear functions are linearized using
statistical linear regression with respect to the current beliefs.
Cooperative methods above have good performance in local-
ization of static WSNs, but they are not applicable in mobile
WSNs. Mobile WSNs faces the movement of anchors and
unknown nodes. The position changes overtime which would
result in the uncertainty and randomness. The uncertainty
and randomness are not considered in the static localiza-
tion methods. Besides, the computation complexity of static
localization doesn’t meet the requirement of real-time. These
problems need to be considered in mobile WSN localization.

To solve the problems in mobile WSNs, dynamic coopera-
tive localization methods are proposed and improved accord-
ingly. Wymeersch et al. initially extended message passing
in mobile WSNs. The cooperative problem is transformed
as marginal function estimation called Sum-Product Algo-
rithm over a Wireless Networks (SPAWN) [25]–[27]. For
robustness, Wymeersch optimizes the edge as a variable
in factor graph and proposes Uniformly Reweighted Belief
Propagation (URWBP) [28], [29]. Localizations above obtain
high accuracy, but the high computational complexity and
large communication overhead are neglected. Pedersen and
Das focus on the problem and propose Variational Message
Passing (VMP) and Cramér Rao Bound (CRB) respectively.

By selecting the transmission and message form, the large
communication overhead and communication link are effec-
tively reduced [30], [31]. Li and Cui explore the Gaussian
message in the application of communication which intro-
duces first-order or second-order Taylor expansion. This mes-
sage form combined by belief propagation (BP) and VMP
linearizes ranging model and control communication over-
head and computational complexity [32]–[34]. The coop-
erative process in papers above corrects the position error
macroscopically, but it faces the problem of error accumu-
lation. As nodes move with time, the localization error in
the last time impacts on the localization process later. The
error accumulation may lead to the position deviation of
whole networks. To avoid the error accumulation, researchers
engage in decreasing error from the source. Improving the
measurement accuracy is a way to decrease the error from
the source, so many range-based methods are adopted to
decrease the measurement error. Çakmak and Urup employ
Belief propagation and mean field message passing for the
motion-related and measurement-related parts of the factor
graph [35]. Yuan et al. present a factor graph (FG) rep-
resentation of joint localization and time synchronization
problem based on TOAmeasurements [36]. These researches
have been widely used in cooperative localization, but the
contradiction still affects the performance. In the large-scale
and complex WSNs, the hardware cost is firstly considered.
Although the cooperative localization outperforms in accu-
racy, it highly depends on the hardware. The WSNs need to
equip more speed and distance measurement devices which
cause extra cost. However, the cost and accuracy are the
main contradiction. Another way to impact on the accuracy is
the outlier problem. Although range-based method improves
measurement accuracy, it still can’t avoid the outlier measure-
ment. Due to the NLOS or the existence of malicious node,
outlier emerges and it isn’t calibrated. The outlier problem
can lead to catastrophic problem. It disrupts estimated topol-
ogy of WSNs, and finally the localization fails.

In our paper, we mainly focus on the large-scale and com-
plex scenario ofWSNs, so the cost is strictly limited. Without
equipping speed and distance measurement devices, the node
distance and position prediction is only estimated by topo-
logical structure and maximum speed. For node trajectory
prediction, the Newton Interpolation preliminarily estimates
the node position of next time. It can replace speed measure-
ment devices, but the imprecise estimation result may lead to
error accumulation and big deviation. To solve the problem,
we propose the bounding box to restrict the prediction area
by maximum speed and communication radius. These initial
positions of nodes affect the localization of other nodes by
distance. Cooperative localization takes advantage of these
characteristics in which the node distance is estimated by
multi-hop algorithm without extra hardware cost. Among the
prediction message, the cooperative localization coordinates
byBP update rule. Among the observationmessage, the coop-
erative localization coordinates byVMP update rule. To avoid
the error accumulation, we introduce the punctuation function
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FIGURE 1. Factor graph.

and judgment factor. These improvements approach the real
position more after iterated localization.

II. PROBLEM FORMATION AND SYSTEM MODEL
WSNs consist of anchor setA and unknown node setM which
are uniformly deployed in 2D space. The anchors obtain
their own position by equipping devices. The unknown nodes
cannot obtain their own position and have to estimate position
relying on anchors. The anchor set A and unknown node set
M are denoted as node setH = A∪M . All nodes move within
the maximum speed vmax. Since time is slotted, positions of
nodes are denoted by xki ,

[
xki1, x

k
i2

]T
. Their position sets

are defined as X ,
{
xki : i ∈ H

}
. In particular, for an anchor

a ∈ A, its position is denoted as µk
i ,

[
µki1, µ

k
i2

]T
. For all

time slots, the position set is X0:K ,
{
X0,X1, · · · ,XK

}
.

Assuming the node moves from time k − 1 to time k at the
speed vki , the state transition model of sensor i at the kth time
slot is formulated as

xki = xk−1i + vki ·1T + eki (1)

Where eki ∼ N
(
eki ; 0,Veki

)
is the system noise, 1T is

the time interval. The probabilistic state-transition function
is shown in formula (2).

p
(
xki
∣∣∣xk−1i

)
= N

(
xki ; x

k−1
i + vki ·1T ,Veki

)
(2)

For all nodes which are assumed to be independent,
the joint state-transition function is shown in formula (3).

p
(
Xk
∣∣∣Xk−1

)
=

∏
i∈V

p
(
xki
∣∣∣xk−1i

)
(3)

As the observation value, node distance at time slot k is
denoted as Zk ,

{
dki←j : i ∈ H , j ∈ H

k
i

}
, where H k

i denotes
all the neighboring nodes around node i at time slot k .

For all time slots, the node distance set is defined as Z1:k ,{
Z1,Z2, · · · ,Zk

}
. Each node measures its distance with

neighboring nodes as expressed in formula (4).

dki←j =

∥∥∥xki − xkj
∥∥∥+ ekij (4)

Where, ‖·‖ denotes the Euclidean norm and ekij is the range
measurement error. Its probability density function is shown
in formula (5).

p
(
dki←j

∣∣∣xki , xkj )
=

1√
2π
(
σ kij

)2 exp
−

(
dki←j −

∥∥∥xkj − xki
∥∥∥)2

2
(
σ kij

)2
 (5)

Where σ kij is the standard deviation of distance between
node i and j in time slot tk . The standard deviation is related
to the accuracy of distance measurement. Assuming that
distance measurement is independent, the observation proba-
bility function is shown in formula (6).

p
(
Zk
∣∣∣Xk

)
=

∏
i∈M

∏
j∈H k

i

p
(
dki←j

∣∣∣xki , xkj ) (6)

On the basis of Bayesian rules, the joint posteriori dis-
tribution of X0:K with given observations Z0:K is shown in
formula (7).

p
(
X0:K

∣∣∣Z1:K
)
∝ p

(
X0:K

)
p
(
Z1:K

∣∣∣X0:K
)

= p
(
X0
) K∏
k=1

p
(
Xk
∣∣∣Xk−1

)
p
(
Zk
∣∣∣Xk

)
(7)

As a graph model, factor graph describes the relationship
between variables and factors by factorization of a global

VOLUME 6, 2018 47013



Z. Wang et al.: Cooperative Localization With Bounding Constraints in Mobile WSNs

function. WSNs can be abstracted as a graph model where
every local function is denoted by a factor node, and each
variable is denoted by an edge or half-edge. The factor graph
of WSNs is shown in FIGURE 1 and their definitions are
f ki , p

(
xki
)
, f k|k−1i , p

(
xki
∣∣∣xk−1i

)
, f kij , p

(
dki←j

∣∣∣xki , xkj ).
III. TRAJECTORY PREDICTION AND BOUNDING BOX
A. TRAJECTORY PREDICTION
The localization of mobile WSNs consists of prediction mes-
sage from historical trajectory and cooperative message from
observation value. We firstly calculate prediction message.
Considering hardware cost, WSNs don’t equip the speed
measurement device thus they cannot obtain the speed in real
time. With the maximum speeds only known, Polynomial
Newton Interpolation predicts the node trajectory through
historical trajectory.

Polynomial Newton Interpolation is an important method
of function approximation, and it has been widely used.
When it predicts the node trajectory, the Polynomial Newton
Interpolation has less computation complexity and resource
occupancy. Besides, Polynomial Newton Interpolation ana-
lyzes the node movement trend and characteristics with less
historical data and better predict the node trajectory. Because
mobile WSN is real-time system, it strictly restricts the com-
putation time and storage space. These requirements can be
met by Polynomial Newton Interpolation.

Polynomial Newton Interpolation predicts the node posi-
tion by depicting the trend curve of node movement, so inter-
polation function of trajectory is firstly calculated. The
prediction position after interpolation is shown in formula (8).

xk = f (t) = Nxk−1 (t)+ Rxk−1 (t) (8)

Where Nxk−1 (t) is the interpolation formula and
Rxk−1 (t) is the remainder. In formula (8), Nxk−1 (t) denotes
the trajectory of node movement. While the interpolation
result must have deviation from true trajectory, the remain-
der Rxk−1 (t) is introduced to denote the deviation. The
remainder has little influence on the interpolation result, but
it denotes the deviation range. As long as the deviation is
acceptable for trajectory prediction, the order of interpola-
tion is determined. Because localization of Message Passing
can correct the position of unknown node, the trajectory is
not required to reach high accuracy. Meanwhile, to avoid
increasing computation and resource occupancy, the interpo-
lation hopes to find the simplest way to predict trajectory.
The quadratic interpolation is introduced considering that its
prediction process is as simple as possible. The last three
groups of historical data form the interpolation formula and
remainder which are shown in (9) and (10).

Nxk−1(t) = f (tk−3)+ f [tk−3, tk−2] (tk−3 − tk−2)

+ f [tk−3, tk−2, tk−1] (t − tk−3) (t − tk−2) (9)

Rxk−1(t) = f [t, tk−3, tk−2, tk−1](t−tk−3)(t−tk−2)(t−tk−1)

(10)

Where t is the time of the k − th localization. tk−1,
tk−2, tk−3 are the time of (k − 1) th, (k − 2) th, (k − 3) th
localization.
f (tk−3, tk−2) , f [tk−3, tk−2, tk−1] , f [t, tk−3, tk−2, tk−1] are

the interpolation coefficients. Its calculation is shown in for-
mula (11) to (13).

f (tk) = xk , f (tk−3, tk−2) =
f (tk−3)− f (tk−2)

tk−3 − tk−2
(11)

f [tk−3, tk−2, tk−1]

=
f [tk−3, tk−2]− f [tk−2, tk−1]

tk−3 − tk−1
(12)

f [t, tk−3, tk−2, tk−1]

=
f [t, tk−3]− f [tk−3, tk−2]− f [tk−2, tk−1]

t − tk−3
(13)

In formula (11), (12) and (13), the interpolation coef-
ficients are calculated by historical trajectory. The his-
torical data of position depicts the curve of trajectory
so that position of next time is determined by the
trajectory trend. As shown in the formula, f (tk) is
the position of kth localization. The divided differences
f (tk−3) , f [tk−3, tk−2] , f [tk−3, tk−2, tk−1] are analyzed by
the latest three historical data which finally deduce the pre-
diction result.

B. BOUNDING BOX
The prediction message from Polynomial Newton Interpo-
lation is inaccurate which may cause large deviation due to
error accumulation. This problem is corrected by introducing
bounding box. Bounding box depict the possible range where
the unknown node may locate. When the predicted position
seriously deviate the possible range, the bounding box realize
the calibration without extra computation. The size of bound-
ing box is smaller; the accuracy of localization is higher.

The bounding box refers to the building of Monte Carlo
Box (MCB) with only two hops range considered. At time
slot k , the unknown nodes receive the transmitting signal
power to distinguish that the anchor is within or outside
the communication radius. If the unknown node receives
the signal, the unknown node is within the communica-
tion radius of anchor. If not, the unknown node is outside
the communication radius of anchor. Then, unknown nodes
record the anchors within the communication radius and
pack them as messages. These messages are sent to other
unknown nodes. Other unknown nodes fuse the information
with their own judgment information and distinguish the
anchors within two-hop range. As shown in FIGURE 2, the
area in which node can communicate with the anchor is a
circle, but intersection of several circles is difficult to solve
by mathematical deduction. To simplify the mathematical
representation of intersection, the communication range is
denoted by square. Considering omission of possible area,
the whole circle should be in the square. Anchors within
two-hop range are regarded as the center. Quadruplicate
communication radius is regarded as the border length
of square. FIGURE 2 shows three anchors and their
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FIGURE 2. Bounding box.

communication ranges. The intersection of three squares is a
rectangle called anchor box. Anchor box denotes the possible
area in which node can communicate with three anchors. The
bounding of anchor box is shown in formula (14).

x1min = maxnj=1
(
x1j − R

)
x1max = minnj=1

(
x1j + R

)
x2min = maxnj=1

(
x2j − R

)
x2max = minnj=1

(
x2j + R

) (14)

Where x1min, x1max denote the upper bound and lower
bound of x1 direction, and x2min, x2max denote the upper
bound and lower bound of x2 direction.

(
x1j, x2j

)
denotes the

coordinate of jth anchor. R is the communication radius.
Besides, the position in previous time and maximum speed

also restrict the predicting position. If the node moves with
the speed nomore than 2Vmax, it must locate in the circle area.
In the same way, the circle is difficult to denote its bounding
by mathematical formula, so the restriction is also denoted
by square. The square is drawn with the position xk−1 in last
time as the center and 2Vmax as border length respectively.
This square’s intersection with anchor box is the bounding
box as shown in FIGURE 2. The bounding box depicts the
possible area where unknown node may locate. Its bounding
is shown in formula (15).

x1min = max
(
x1min, x1(k−1) − Vmax

)
x1max = min

(
x1max, x1(k−1) + Vmax

)
x2min = max

(
x2min, x2(k−1) − Vmax

)
x2max = min

(
x2max, x2(k−1) + Vmax

) (15)

Where Vmax is the maximum speed of node movement.(
x1(k−1), x2(k−1)

)
is the coordinate when the time is tk−1.

However, the bounding box doesn’t consider the difference
between one-hop anchor and two-hop anchor. To further exact
the bounding box, the bounding box narrows the area through
difference of one-hop and two-hop distance. In FIGURE 3,
the shadow part is the area where node can communicate with
the anchor directly. The white part is the area where node
can communicate with the anchor thought one forwarding
node. Once the unknown node isn’t in the one-hop distance,
the bounding box excludes the shadow part as shown in
FIGURE 3. It is the area for anchor within two-hop range

FIGURE 3. Exclusion of shadow area. (a) Two angles of rectangle in the
circle. (b) Three angles of rectangle in the circle.

and beyond one-hop range. From FIGURE 3(a), two angles
of rectangle are in the circle. The initial bounding box cuts
the shadow area and forms a more accurate bounding box.
FIGURE 3(b) shows the situation where three angles are in
the circle. The initial bounding box cuts the shadow area and
forms a new bounding box. These two situations follow the
rules that the possible position of unknown nodes cannot be
cut. The square in which only one angle is in the circle don’t
need cut.

The bounding box describes all the possible positions of
unknown node through communication information. If the
predicted position is outside the bounding box, it means
the predicted position has large deviation from real posi-
tion. Therefore, the predicted position should be calibrated.
Because the bounding box includes all the possible positions,
the calibrated position should be selected in the bounding
box. Based on the error minimum, the center of bounding
box is regarded as the predicted position instead of the posi-
tion from Polynomial Newton Interpolation. If the predicted
position is in the bounding box, the position from Polyno-
mial Newton Interpolation is not changed. In the condition,
the bounding box corrects the prediction result of Polynomial
Newton Interpolation so that large deviation is avoided.

IV. COOPERATIVE LOCALIZATION
A. DISTANCE ESTIMATION
To save the cost and avoid distance measurement devices,
we introduce the multi-hop algorithm to estimate the node
distance. Compared with range-based distance measure-
ment, the multi-hop algorithm doesn’t need any hard-
ware devices. To some extent, it saves the hardware cost.
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FIGURE 4. Two-hop node distance estimation.

At the same time, it has higher accuracy in distance esti-
mation than DV-HOP, etc. The accurate distance obtained
contributes to localization. Therefore, multi-hop algorithm
is adopted in cooperative localization especially in large
scale WSNs.

The formula of node distance is shown in formula (16).

di←j ≈

nh∑
l=1

hl (16)

Where hl denotes the lth hop distance.
On the shortest path, two-hop distance, one unit, is firstly

calculated as shown in FIGURE 4. The reasons for selecting
two-hop distance estimation reflect in two ways. Two-hop
distance estimation reduces the computation by half. If one
unit is two-hop, the unit number is less than that of hops
between two nodes. The distance computation of units is
reduced. This approach avoids repeated and redundant com-
putation. On the other hand, Two-hop distance estimation
has larger coverage area with double communication radius.
Based on analysis of probability, larger area covers more
nodes which reduce the uncertainty and randomness. Regard-
ing two hops as one unit improves the accuracy of distance
estimation. Therefore node distance estimation introduces
the two-hop distance estimation, and only when the shortest
path is odd, is the last hop distance calculated by one-hop
distance estimation. The intersection of two circles is denoted
as F = Dk (R) ∩ Si(R). Its relationship with node distance is
shown in formula (17).

F = φ(di←k ) = 2R2 cos−1
(
di←k

2R

)
−

1
2
di←k

√
4R2 − d2

i←k

(17)

Where φ (d) is a decreasing function about distance di←k
which is obtained by F = m/ (N/S). We assume that WSN
environment has low level of interference associate to WSN
signal. Each node can communicate with accurate number
of nodes. In the condition, N is the number of nodes. S is
the node distribution area. N/S is the node density. m is the
number of node in the specific area. The node distance is
denoted as formula (18).

d̂i←k = ψ
(
F̂
)

(18)

In formula (18), the closed loop solution cannot be
obtained. To solve the problem, Secant method φ̃ (x) =
φ (x)− F̂ looks for the solution by iteration shown in (19).

d̂p+1i←k = d̂pi←k − φ̃
(
dpi←k

) dpi←k − dp−1i←k

φ
(
dpi←k

)
− φ

(
dp−1i←k

) (19)

Where p denotes the iteration times. Its convergence condi-
tion is p = pmax

= infp
{̂
dpi←k = d̂p+si←k ,∀s ∈ N

∗

}
. To obtain

d̂pi←k = d̂p
max

i←k , we set d̂
0
i←k = R, d̂1i←k = 2R.

If the hops are even on the shortest path, the node distance
is shown in formula (20).

d̂i←k =

nh/2∑
l=1

9
(ml
λ

)
(20)

If the hops are odd on the shortest path, the node distance
is shown in formula (21).

d̂i←k =

(nh−1)/2∑
l=1

9
(ml
λ

)
+ dLastav (21)

The distance of last hop dLastav follows the calculation of
two-hop distance as shown in FIGURE 5. The relationship of
intersection and node distance is denoted as formula (22).

A (sk)

A
(
sj
) = f

(
dk←j

)
=

πR2

2 cos−1
(
dk←j/2R

)
− dk←j

√
R2 − d2k←j/4

− 1

(22)

Where A (sk) and A
(
sj
)
are the area of sk , sj. Their proportion

can be also denoted by the neighboring number as shown in
formula (23).

f
(
dk←j

)
≈

∣∣N (sk)− N (sj)∣∣∣∣N (sk) ∩ N (sj)∣∣ (23)

Where N (sk) ,N
(
sj
)
are the number of node in area sk , sj.

As the calculation of two-hop distance, Secant method
solves the node distance of last hop as shown in formula (24).

dk←j ≈ f −1
(∣∣N (sk)− N (sj)∣∣∣∣N (sk) ∩ N (sj)∣∣

)
(24)

FIGURE 5. Last hop node distance estimation.
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B. COOPERATIVE LOCALIZATION
The position from prediction phase is far from accuracy
requirement. Because the positions of all nodes and the esti-
mated distance are fuzzy, the estimated positions of unknown
nodes are fuzzy and uncertain. The fuzziness and uncer-
tainty may lead to the error propagation and accumulation
especially in time varying system. To solve the problem,
the fuzziness and uncertainty are reflected in the factor graph
which is processed by Massage Passing. Massage Passing is
a cooperative localization method. It overcomes the bench-
mark lack problem, lowers the requirement of node emission
power and improves the usability, robustness and accuracy of
localization.

The observation value of node distance adjusts the node
position to approach the real position which has been
reflected in factor graph. From the factor graph, messages
are categorized into prediction message and cooperative mes-
sage. The prediction message belongs to internal message.
The cooperative message belongs to internode message. Due
to the linearity of internal message, BP update rule is intro-
duced in prediction phase. Considering non-linear ranging
model, VMP update rule computes the cooperative message
in correction phase.

In prediction phase, BP update rule is shown in for-
mula (25).

mf k|k−1i →xki

(
xki
)

=

∫
p
(
xki
∣∣∣xk−1i

)
mxk−1i →f k|k−1i

(
xk−1i

)
dxk−1i (25)

Where mf k|k−1i →xki

(
xki
)
is the message from factor node

f k|k−1i to variable node xki as shown in FIGURE 1.
mxk−1i →f k|k−1i

is message from variable node xk−1i to factor

node f k|k−1i .
In correction phase, VMP update rules including the

anchors and unknown nodes are shown in formula (26)
and (27).

mf kia→xki

(
xki
)
= exp

(∫
b
(
xka
)
ln p

(
dki←a

∣∣∣xki , xka )dxka)
(26)

mf kil→xki

(
xki
)
= exp

(∫
b
(
xkl
)
ln p

(
dki←l

∣∣∣xki , xkl )dxkl )
(27)

Similarly,mf kia→xki

(
xki
)
is the message from factor node f kia

to variable node xki as shown in FIGURE 1. This message
is the information from neighboring anchors. mf kil→xki

(
xki
)

is the message from factor node f kil to variable node xki .
This message is the information from neighboring unknown
nodes. b

(
xka
)
is the confidence of anchor a at time k . b

(
xkl
)

is the confidence of unknown node l at time k .
As shown in VMP update rule, the small error in initial

computation may lead to error accumulation and trajectory
drift. To solve the problem, we define the punctuation func-
tion and judgment factor to improve the VMP update rule.

The redefined VMP update rule is shown in formula (28)
and (29).

mf kia→xki

(
xki
)

= Pf kia→xki

(
xki
)
exp

(∫
θ
(
JRa
)
b
(
xka
)

× ln p
(
dki←a

∣∣∣xki , xka ) dxka) (28)

mf kil→xki

(
xki
)

= Pf kil→xki

(
xki
)
exp

(∫
θ
(
JRl
)
b
(
xkl
)

× ln p
(
dki←l

∣∣∣xki , xkl ) dxkl ) (29)

Where θ
(
JRa
)
and θ

(
JRl
)
are judgment factor. θ

(
JRa
)

focuses on the communication radius. After each itera-
tion is completed, the renewed position of unknown node
with neighboring anchors may be in the communication
radius or not. If the renewed position meets the real relation-
ship of communication radius, θ

(
JRa
)
= 1. If not, θ

(
JRa
)
= 0.

θ
(
JRl
)
has the same condition with θ

(
JRa
)
. If the renewed

position meets the real relationship of communication radius,
θ
(
JRl
)
= 1. If not, θ

(
JRa
)
= 0. Pf kia→xki

(
xki
)
is the punctu-

ation function defined as Pf kia→xki

(
xki
)
= exp (δvi (x)). vi (x)

denotes the node number change which accords with relation-
ship of communication radius. After the position is renewed,
judgment should be conducted. If the nodes according with
the condition are added, vi (x) = 1. If not, vi (x) = p/q
where p denotes the eligible node number after the position
is renewed. p denotes the eligible node number before the
position is renewed. δ is the floating constant which describes
the influence of eligible node number.

After combining all internal messages and internode mes-
sage, the node confidence is shown in formula (30).

b
(
xki
)
,

1
Z
mf k|k−1i →xki

(
xki
) ∏
a∈Aki

mf kia−x
k
i

(
xki
)

×

∏
l∈Mk

i

mf kil −x
k
i

(
xki
)

(30)

Where Z is the confidence constant.
In this situation, the confidence computation has large

communication load. To lower complexity, we further deduce
the confidence estimation with punctuation function and
judgment factor. Refining the formula (30), the confidence
formula is transformed to formula (31).

b
(
xki
)
∝ exp

gk|k−1
(
xki
)
+ δVa (x)

∑
a∈Aki

θ
(
JRa
)
gia
(
xki
)

+ δ′Vl (x)
∑
l∈Mk

i

θ
(
JRl
)
gil
(
xki
) (31)

Where Va (x) is the variance matrix from anchor a and Vl (x)
is the variance matrix from unknown node l.
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From the formula (31), the confidence is further expanded
to formula (32), (33) and (34).

gk|k−1
(
xki
)

, −
1
2

(
xki − u

k|k−1
i

)T (
V k|k−1
i

)−1 (
xki − uk|k−1i

)
(32)

gia
(
xki
)

,
dki←a(
σ kia

)2 ∥∥∥uka − xki
∥∥∥− 1

2
(
σ kia

)2 ∥∥∥uka − xki
∥∥∥2 (33)

gil
(
xki
)

,
∫
∧

b
(
xkl
)( dki←l(

σ kil

)2 ∥∥∥xkl − xki
∥∥∥− 1

2
(
σ kil

)2 ∥∥∥xkl − xki
∥∥∥2)
(34)

In formula (32), (33) and (34), gk|k−1
(
xki
)
is the message

from last time. gia
(
xki
)
is the message from anchors. gil

(
xki
)

is the message from other unknown nodes. V k|k−1
i is the

variance matrix from last time.
However the confidence b

(
xki
)
is impeded into the Gaus-

sian form by the distance computation
∥∥uka − xki

∥∥ and∥∥ukl − xki
∥∥. To linearize the distance formula,

∥∥uka − xki
∥∥

and
∥∥ukl − xki

∥∥ are expanded around µ̃k
i and

(
µ̃l
i, µ̃

k
l

)
with

second-order Taylor expansion, respectively. The linear con-
fidence is shown in formula (35).

b̂
(
xki
)
∝ exp

{
−
1
2

(
xki
)T (

V̂ k
i

)−1
xki +

(
xki
)T (

V̂ k
i

)−1
ûki

}
(35)

The variance and mean value with punctuation function
and judgment factor are as follows.

V̂ k
i =

(V k|k1
i

)−1
+ δVa (x)

∑
a∈Ai

θ
(
JRa
)

×

(
1(
σ kia

)2 I − dki←a(
σ kia

)2∇2
Fia

)
+ δVl (x)

∑
l∈Mk

i

θ
(
JRl
)

×

(
1(
σ kil

)2 I − dki←l(
σ kil

)2Q
)
−1

(36)

µ̂
k
i = V̂ k

i

{(
V k|k−1
i

)−1
µ
k|k−1
i

}
+ δVa (x)

∑
a∈Aki

θ
(
JRa
)

×

(
1(
σ kia

)2µk
a −

dki←a(
σ kia

)2 (∇Fia −∇2
Fiaµ̃

k
i

))
+ δVl (x)

×

∑
l∈Mk

i

θ
(
JRl
)( 1(

σ kil

)2 µ̃k
l +

dki←l(
σ kil

)2
(
∂Fil
∂xki
− Qµ̃k

i

))
(37)

Where Fia ,
(
xki
) ∥∥µk

a − xki
∥∥ ,Fil (xki , xkl ) , ∥∥xkl − xki

∥∥.
∇Fia ,∇

2
Fia are the first-order gradient and the Hessian

matrix of Fia
(
xki
)

at µ̃k
i .

∂Fil
∂xki

is the first-order partial

derivative of Fil
(
xki , x

k
l

)
around

(
µ̃l
i, µ̃

k
l

)
. Besides, Q ,(

∂/∂xki
) (
∂Fil/∂xki

)
.

According to the formula (36) and (37), the unknown node
obtains its mean value and variance. These results update the
node position relationship. Therefore the unknown node can
adjust the position to approach the true value by iteration.
In this process, each iteration needs bounding box to correct
the deviation. If the position is beyond the bounding box,
it means that the large error exists in correction phase. There-
fore the center of bounding box is set as the corrected position
in this iteration. After finite times of iteration, the position
with largest confidence is the final result.

V. SIMULATION AND RESULT
This section presents some measurements that compare the
performance of proposedmethod and other methods in differ-
ent scenarios. The performance measurements are produced
through simulation. Increasing density of anchors or fre-
quency of location announcements should improve accuracy,
but the tradeoffs need to be understood to determine appro-
priate deployment parameters. This section evaluates the pro-
posed technique by measuring how its estimated position
errors vary with network and algorithm parameters.

For all experiments, sensors are randomly and uniformly
distributed in 100m × 100m field where no obstacles are
arranged. The communication module in the sensor node is
Zigbee technology. We assume that the Zigbee technology
works in frequency channel of 2.4 Hz where the technology
has excellent anti-interference capacity. Meanwhile DDDS
technology is used in Zigbee to further lower the interfer-
ence. Therefore, we assume that the simulation environment
has no or low level of interference which hardly impact on
the communication of sensor nodes. Instead of choosing a
certain speed for each destination, all the nodes and anchors
randomly vary their speed during eachmovement.We assume
nodes are unaware of their speed and direction, but have a
known maximum speed vmax. Node can judge if it is within
radio range R of another node or not, but it cannot get more
precise distance information. In this scenario, we evaluate the
performance of the proposed algorithm.

A. ALGORITHM PARAMETERS
Algorithm parameters have big influence on the performance
of proposed algorithm. Their selection is explored in this
section to further optimize the localizationmodel. The param-
eters include standard deviation σil of nodes and iterations k
in message passing. In the experiment, we set anchor number
NA = 10 and unknown node number NM = 90. The
communication radius is R = 30m. The maximum speed is
Vmax = 5m/s.

We firstly analyze the standard deviation σil of anchors and
nodes. It is assumed that the variances of nodes’ and anchors’
positions in the x-axis and the y-axis to be equal. The standard
deviation of anchors is set as σia = 1. The standard deviation

47018 VOLUME 6, 2018



Z. Wang et al.: Cooperative Localization With Bounding Constraints in Mobile WSNs

TABLE 1. Parameters in simulation of variance.

FIGURE 6. CDFs of the algorithm with different deviations.

of unknown nodes is σil = 1, 2, 3, 5. In these conditions,
the experiment is conducted as the parameters are shown in
TABLE 1 and the result is shown in FIGURE 6. Cumulative
distribution functions (CDFs) depict the localization error
change from 0 m to 50m. From FIGURE 6, 50% error values
are between 10 m to 25 m.When the deviation value is larger,
the CDFs value is larger and they all converge at 50 m.

TABLE 2 shows the parameters in simulation of iteration
and FIGURE 7 shows the CDF result. The CDFs increase as
the iteration times varies from 1 to 20. The iteration times
from 1 to 10 has a larger growth of CDFs than that from10 to
20. This is due to the convergence of message passing algo-
rithm. If the times of iteration reach 20, the localization error
tends to be steady and small.

B. LOCALIZATION ACCURACY OVER TIME
In the mobile WSNs, the node position of each time slot is
random and uncertain. These problems may lead to the error

TABLE 2. Parameters in simulation of iteration.

FIGURE 7. CDFs of the algorithm with different iterations.

FIGURE 8. Trajectory error of nodes over time.

TABLE 3. Parameters in simulation of time.

accumulation and position deviation. To test the proposed
algorithm in the paper, the trajectory errors over time have
been depicted in FIGURE 8. The simulation is repeated for
50 times and its error is the average value of the repeated
simulation. In the simulation, we set anchor number NA = 10
and node number NM = 90. The communication radius
is R = 30m. The maximum speed is Vmax = 5m/s.
These parameters are shown in TABLE 3. The error in the
FIGURE 8 denotes the average error of all unknown nodes
for 100 time slots.
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FIGURE 8 shows the error change from initial localization
to 100th localization. It can be seen that most of errors are
between 14m to 22m and the biggest error doesn’t exceed
28m. The error range is acceptable for mobile WSN Local-
ization. In FIGURE 8, the errors fluctuate widely in the first
half period of time and errors are relatively large. In the
last half period of time, the errors tend to be stable and
decrease. This trend indicates that the localization algorithm
performs better over time. The reason for the performance is
that localization depends on the trajectory prediction at first.
Due to the unknown speed and direction, the prediction may
be imprecise. In the last period of time, the observation and
correction from neighboring nodes contribute to the localiza-
tion result which helps improve the accuracy. The localization
accuracy over time shows that the proposed method in the
paper is applicable.

C. LOCALIZATION ACCURACY WITH
DIFFERENT MAX SPEED
Varying node speed is similar to varying the time between
location announcements. If announcements between nodes
are more frequent, localization result is more accurate. How-
ever, the communication overhead also increases. Max speed
denotes the maximum speed in the mobility of nodes. Nodes
move with random speed but their speed doesn’t exceed
the max speed. In this section, we study the influence of
speed when both nodes and anchors have an identical maxi-
mum speed. In the experiments, node speeds are distributed
between 0 and vmax by random waypoint mobility model.
We set anchor number NA = 10 and node number NM = 90.
The communication radius is R = 30m. These parameters are
shown in TABLE 4 and the CDFs with different max speeds
have been shown in FIGURE 9.

Node speed impacts the localization process in two ways.
The increased speed makes the predicted locations less accu-
rate since the next possible locations fall into a larger region.
On the other hand, faster movement leads to more new
observations in each time step, so the probability density
function of distance is fuzzier. As shown in FIGURE 9,
the CDFs decrease when the max speed becomes larger. Both
the inaccurate prediction and the larger observation region
lead to the lager error. The localization errors drop fast as
node speeds decrease from 8m/s to 2m/s. It means the max
speed has big influence on the localization accuracy. However

TABLE 4. Parameters in simulation of max speed.

FIGURE 9. CDFs of the algorithm with different max speeds.

TABLE 5. Parameters in simulation of node density.

the CDFs don’t decrease much as the max speed varies from
8m/s to 20m/s. Actually, the large max speed may lead to
the fast increasing of localization error especially when max
speed is more than 10m/s. The problem has been solved by
the bounding box proposed in the paper. The bounding box
avoids the gross error and position deviation. It makes sure
that the errors in all max speeds are acceptable.

D. LOCALIZATION ACCURACY WITH DIFFERENT
DISTRIBUTION PARAMETERS
Node density and anchor proportion are two distribution
parameters which have influence on the performance of local-
ization algorithm. To further analyze the influence, the simu-
lations are designed. They are conducted in the 100m×100m
square where the nodes move with the max speed of 5m/s.
The influence of node density is firstly analyzed as shown in
FIGURE 10 and parameters are shown in TABLE 5.

Node density is the average node number in per square
meter. In the fixed area, total number of nodes is 50, 100,
200 and 500. Correspondingly, node density is 0.5, 1, 2 and 5.
FIGURE 10 shows that CDFs are highest when node density
is 5 and CDFs are lowest when node density is 0.5. CDFs
drop as node density decreases. Node density impacts the
localization in two ways. The distance estimation is based
on the statistical probability and node distribution. Large
sample of data collection helps improve accuracy of distance
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FIGURE 10. CDFs of the algorithm with different node densities.

TABLE 6. Parameters in simulation of anchor proportion.

estimation. On the other hand, more nodes can better coor-
dinate the unknown node position. The estimated position
approaches the real position more. Therefore, the localization
result is more accurate in the condition of high node density.

Anchor proportion is the percentage of anchors in all
anchors and unknown nodes. Because anchor obtains its
own position by measurement devices, high anchor pro-
portion would provide more reference for unknown nodes.
FIGURE 11 shows the localization accuracy comparison in
different anchor proportions and TABLE 6 shows the parame-
ters of simulation. In experiment, the node density is 1 and the
communication radius is 30m. We compare the localization
results for 5%, 10%, 20% and 40% of anchor proportion.

As anchor proportion varies from 5% to 40%, the CDFs
increase. For low proportion, the unknown nodes get less
information. It is difficult to abstract the relative position
information from sparse anchors. The sparse anchors also
lead to unavailability and uncertainty of bounding box. These
problems cause the low accuracy in low proportion. As the
anchor proportion increase, sparsity of anchors is avoided.
More useful information contributes to the localization pro-
cess, so the accuracy improves.

FIGURE10 and FIGURE11 show that proposedmethod in
the paper is more suitable for large-scale WSNs. In situation
of low node density and anchor proportion, the localization
accuracy is also acceptable.

FIGURE 11. CDFs of the algorithm with different anchor proportions.

TABLE 7. Parameters in simulation of methods.

E. ACCURACY COMPARISON OF LOCALIZATION METHODS
This section presents some measurements that compare the
accuracy performance of proposed method in the paper (PM),
MCL and MCB. We also provide a comparison with two
altered versions of Massage Passing (MP) in [13] and [15].
The selected methods above are all suitable for large-scale
and mobile WSNs. They are all based on range-free method
and don’t require extrameasurement devices. In the same sce-
nario, the performances are compared through simulations.
In this section, we present the CDFs of different methods
which effectively illustrate the accuracy. All themethods have
been conducted in the same scenario where 90 nodes and 10
anchors are uniformly distributed in the 100m×100m square.
The maximum speed of nodes and anchors are Vmax = 5m/s.
The parameters are shown in TABLE 7 and the localization
results of methods are as shown in FIGURE 12.

FIGURE 12 shows that MCL and MCB have close CDFs.
Their accuracy is lower compared with other three methods.
MCL and MCB are the most popular localization algorithms
in mobile WSNs, but their accuracy needs to be improved
urgently. VMP and BP-VMP, two altered versions of Mas-
sage Passing (MP), make full use of cooperativity, mutual
complementary and coherence of adjacent nodes. Their accu-
racy has been improved a lot. The proposed method in the
paper is based on the BP-VMP. Besides, it also considers the
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FIGURE 12. Localization method comparison.

FIGURE 13. Node distribution of five methods. (a) MCL. (b) MCB. (c) VMP.
(d) BP-VMP. (e) PM.

boundary constraints and draws support of particle filter from
MCL and MCB. The localization result of proposed method
in the paper improves the accuracy by 50%. The constraints
also help fast convergence so that less computation is con-
ducted.

To intuitively show the localization result, the node distri-
bution is drawn in FIGURE 13. The blue dots are the real
positions of the nodes and the red dots are the estimated posi-
tions of nodes. The black line is the error of estimated posi-

TABLE 8. Computation complexity comparison.

tions of nodes. The blue line is the gross error of estimated
positions of nodes. The node distribution of each method is
selected from one simulation at the same time slot.

We analyze the node distribution from localization error
and gross error. The black line describes the range of error.
Because the average error of PM is smallest among five
methods, the lines of other four methods are mostly longer
than PM. In FIGURE 13(e), the back dots and red dots are
close and some of them are nearly coincident. It means the
proposed method improves the localization performance. It is
more suitable for WSN localization. In addition, MCB and
PM don’t have blue lines. MCL has two blue lines, VMP has
three blue lines and BP-VMP has one blue line. It means the
PM outperforms in the prevention of gross error. The bound-
ing constrains proposed in the paper contribute to avoid gross
error. It corrects the gross error timely, so large deviation of
estimated positions is avoided.

F. COMPLEXITY ANALYSIS
The localization accuracy is compared among MCL, MCB,
VMP, BP-VMP and the proposed method. These methods
are all simulated in the same scenario. FIGURE 12 shows
that proposed method outperforms in the accuracy, but we
should make sure that the complexity of the proposed method
is acceptable. This section presents the complexity analysis of
five methods in the section E. TABLE 8 shows the computa-
tional complexity of five methods.

From TABLE 8, the complexities of MCL and MCB are
mainly determined by sampling particles Np. The complex-
ity of VMP, BP-VMP and PM are mainly determined by
the number of its neighbors Ni,k . In the paper, sensors just
exchange the mean vector and covariance matrix of their
position instead of a huge number of particles, so Ni,k � Np.
Moreover, A,B are the computational complexity of predic-
tion phase and they are almost the same. Therefore, PM
doesn’t add extra computation complexity. Considering the
application of second-order Taylor expansion, its compu-
tational complexity is also decreased. The analysis shows
that the computational complexity of proposed method is
acceptable.

G. ADVANTAGE COMPARISON OF
LOCALIZATION METHODS
Different from comparison in section E, this section com-
pares advantages of localization methods. We select the
MCL, BP-VMP in paper [36] and LS cooperative local-
ization in paper [22] to compare the proposed method in
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FIGURE 14. Radar chart of localization performance.

accuracy of small and large scaleWSN, gross error, hardware
independence, computation complexity and mobility. The
comparison result is shown in FIGURE 14. The accuracies
of small and large scale WSN describe the localization result
in different scenarios. The node distribution area of small
scale WSNs is 30m × 30m. The node distribution area of
large scale WSNs is 500m × 500m. When the localization
error is the smallest among four methods, the radar value
of this method is largest and it approaches 1. When the
localization error is the largest among four methods, the radar
value of this method is smallest and it approach 0. Gross
error describes the occurrence probability of gross error.
We set the duple average error as the gross error. When the
error value is over the duple average error, it belongs to the
gross error. If the gross error hardly happens, the radar value
of gross error is large. On the contrary, the radar value is
small. Hardware independence describes the requirement of
hardware equipment. Hardware equipment mainly consists
of speed and distance measurement devices. Computation
complexity describes the amount of computation. When the
amount of computation is small, the radar value of compu-
tation complexity is large. Mobility describes the feasibil-
ity of the method in localization of mobile WSNs. If the
method is feasible inmobileWSN, the radar value ofmobility
approaches 1, or it approaches 0. The performances of six
attributes are reflected in radar chart.

As shown in FIGURE 14, four methods outperforms in
different attributes. LS in [22] performs better in both large
and small scale WSN, but it isn’t feasible in mobile WSNs.
The method also depends on range-based methods which
have higher hardware cost, and it has higher computation
complexity. BP-VMP in paper [36] has higher accuracy, but
it depends on TOA method. It means that the accuracy of
BP-VMP is improved by adding hardware cost. Because
BP-VMP belongs to cooperative localization, it is sensitive
to outlier which may lead to catastrophic problem. The radar

value of gross error is small. MCL and the proposed method
have similar performance in mobility, computation complex-
ity and hardware independence. They all realize localiza-
tion with less computation and hardware. Compared with
MCL, proposed method has higher accuracy and avoids gross
error. In radar chart, the area denotes the comprehensive
performance. The area is larger, the performance is better.
From FIGURE 14, the proposed method in the paper is not
the best in accuracy, but it outperforms when six attributes
are all considered. Therefore, the proposed method makes a
compromise of accuracy and other localization requirement
and it is suitable for large-scale WSNs.

VI. CONCLUSION
A cooperative localization algorithm with bounding con-
straints is proposed for mobile WSNs in the paper. The
bounding box limits the predicted node trajectory in the pos-
sible area while the judgment factor and punctuation function
are introduced in BP-VMP update rule. These improvements
realize the calibration of position deviation. Experiments
explore the optimal parameter selection and verify the per-
formance of proposed method. The result shows that the pro-
posedmethod has better error distribution and performs better
in different scenarios of node density and anchor proportion.
It not only improves the accuracy than regular localization,
but also realizes low-cost, large-scale networks localization.
The localization algorithm develops cooperative computa-
tion and nonlinear dynamics in multi-agent system. Future
work may include the relationship between localization and
high level of interference associated to WSN signal. We will
explore the elimination of interference impact to improve the
accuracy of WSN localization.
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