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ABSTRACT Automatic vectorization is crucial for improving the performance of computationally intensive
programs. Existing compilers use conservative optimization strategies for automatic vectorization, which,
in many cases, lead to the loss of vectorization opportunity. Studies have shown that the use of machine
learning algorithms to build a performance prediction model is beneficial to improve the program perfor-
mance. The model input is program features, and the output is the predicted optimization strategies or the
program performance related to the optimization. In this paper, we focus on a computational intensive loop
structure-tensor contraction, which is common in quantum chemical simulations. Most existing machine
learning methods rely on control and data flow graphs as features to represent programs, but different tensor
contraction kernels have the same control and data flow graphs. In addition, the existing methods often
use the same kind of learning algorithm to construct a learning model, which is prone to overfitting and
low-precision problems. In this paper, we propose an automatic vectorization performance enhancement
method based on ensemble learning. We construct an ensemble learning model to predict the performance
of tensor contraction kernels with different vectorization strategies and select the best vectorization strategy
for the kernels. According to the storage access patterns of the tensor contraction kernels, we propose a static
method for features representation. Based on themulti-algorithm ensemble learning strategy, we obtain better
learning results than the single learning algorithm. The experimental results show that the prediction model
achieves 88% and 87% prediction efficiency on two different platforms with different instruction sets, data
types, and compilers. Compared with the existing methods, the prediction efficiency is greatly improved.
In addition, the average peak performance is 2.96× of Intel ICC 12.0 and 2.98× of GCC 4.6 compiler,
respectively.

INDEX TERMS Automatic vectorization, compiler optimization, ensemble learning, program features.

I. INTRODUCTION
With the rapid development of multimedia industry, mul-
timedia extended instruction sets are integrated in the
processor by the manufactures. The instruction sets use
Single Instruction Multiple Data (SIMD) extension technol-
ogy, which can simultaneously operate multiple data with a
single instruction. SIMD extension components were orig-
inally only used in the field of multimedia and digital
signal processor. Researchers subsequently applied SIMD
extension components to high performance computer, such
as IBM BlueGene/L and Sunway BlueLight MPP super-
computers which are integrated with short vector extension
components. The SIMD extension instructions can load the

data with continuous memory address into the vector reg-
ister at one time, and realize the parallel processing for
all data elements in the SIMD vector register. Data need
to be loaded multiple times when without the SIMD. With
the increasing degree of SIMD parallelism in processors,
the effectiveness of automatic vectorization in compilers is
crucial. The existing mainstream compilers, such as Open64,
ICC and GCC, have already integrated automatic vectoriza-
tion. At the same time, manual vectorization program is not
only easy to make mistakes, but also need the programmers
to understand the SIMD instruction sets, so automatic vec-
torization becomes the primary choice for SIMD parallelism
exploration.
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Automatic vectorization of existing commercial compilers
usually produce better performance compared with the scalar
code. However, the vectorization code performance achieved
is usually much lower than the peak performance of the pro-
cessors, even when the data fits within L1 cache and no cache
misses are incurred. Themain reason for the low performance
of the vectorization code generated by the current compilers is
that there are a lot of possible program transformations from
high-level nested loop to assembly code, so it is very difficult
to select the optimal transformation efficiently. The complex
execution pipeline in modern processors makes it challenging
to develop performance analysis models to predict execution
time of machine instruction sequences. Therefore, commer-
cial compilers usually use simple heuristic rules to guide loop
transformations and code generation.

In this paper, we focus on Tensor Contraction kernels (TC),
which are very common computational intensive loop struc-
tures in quantum chemical simulations or molecular folding
simulations. Tensor can be seen as a further extension of the
matrix. Vector is a first order tensor, and matrix is a second
order tensor. If a number of same-dimensional matrices stack
together to form an array with cube shaped, then the array is a
third order tensor. In linear algebra theory, TC is essentially a
generalized inner product of high dimensional matrix, where
tensors can havemore than two dimensions and perform sum-
mation operations on multiple dimensions. The mathemati-
cal definition of Tensor and TC is described in detail later.
Various types of TC are needed in the high-precision quantum
chemical models, such as coupled cluster methods [1].

When using the existing commercial compiler to vectorize
the TC codes, the conservative optimization strategies are
adopted, and the performance realized is usually far lower
than the peak performance of the machines. Fig.1 shows a TC
code segment. Array A and array B represent the input tensor,
and the output tensor is array C. The existing compilers,
such as Intel ICC and GNU GCC, can’t execute automatic
vectorization for this TC code by default. However, we can
vectorize this code by manual vectorization. Therefore, how
to improve the automatic vectorization performance of the
TC kernels is very important to improve the efficiency of
quantum chemical simulation programs and so on.

FIGURE 1. Example of the TC kernel.

There has been some researches in using machine learn-
ing to predict the best compiler optimization strategy,

such as compiler optimization options [2], [3], effective loop
unrolling factor [4] and block size selection [5]. Our work
aims at improving the automatic vectorization performance
of the TC code based on the machine learning model. The
input of our machine learning model is the program fea-
tures, and the output is the program performance gener-
ated by the optimal automatic vectorization strategy, which
belongs to the regression problem in machine learning. In the
machine learning models, program features are critical to the
final results of the predictions. In the existing researches,
the extraction of the program features is mostly dependent
on the Control and Data Flow Graph (CDFG) or the static
assembly instruction counts. But for the TC programs, there
are exactly the same CDFG and assembler instruction counts
before compiler optimization, only the order of access mem-
ory is different. Therefore, the existing feature extraction
methods are not suitable for the TC programs. In addition,
the existing compiler optimization methods based on the
machine learning often use single learning algorithm, which
sometimes have drawbacks in model fitting and classification
accuracy. Ensemble Learning (EL) is an effective technique to
improve the performance of learning. Ensemble learning can
be used for the ensemble of classification problem, regres-
sion problem, feature selection, outlier detection, etc [6].
Ensemble learning technology can effectively improve the
prediction performance by effectively utilizing the diversity
of different learning algorithms, and reduce the variance
while not increasing the deviation.

Based on ensemble learning technology, we propose
an automatic vectorization performance prediction model
ELAV. The input of ELAV is the features of TC kernels,
and the output is the runtime prediction of the program
when using different vectorization strategies. The experimen-
tal results show that ELAV can achieve better prediction
performance for the new TC kernels. The main contributions
are summarized as follows:
• A static feature representation method is proposed,
which can be used to represent the storage access mode
of the TC kernels. The static features can be obtained
without the actual running of the program, and it’s easier
to embed this feature extraction process into the existing
compilation procedure.

• A vectorization performance prediction model based on
the ensemble learning is proposed. By integrating the
learning results of multiple different algorithms, better
learning results are obtained than the single, and the
overall prediction accuracy of the model is improved.

• By employing different platforms, instruction sets, data
types and compilers, the vectorization performance pre-
diction for TC kernels in Coupled Cluster Single Double
(CCSD) are achieved by the ELAV. Compared with the
existing methods, the effectiveness and generality of
ELAV are verified.

The structure of this paper is as follows: In Section 2,
we introduce the related technologies and concepts.
In Section 3, we detail the method of ELAV, including the
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ensemble learning, the program feature extraction method
and the vectorization space. In Section 4, we describe the
experimental setup and the analysis of experimental results.
In section 5, we introduce the related work. We present our
conclusions in section 6.

II. BACKGROUND
A. SIMD
SIMD is a parallelization technique similar to vector oper-
ations, which can perform the same operations on multiple
data elements at the same time [7]. Currently, SIMD exten-
sions components are integrated with most processors. The
instruction sets that support the operation of SIMD exten-
sion components are becoming more and more perfect and
efficient. The mainstream SIMD instruction sets mostly
depend on the design and implementation of the underlying
hardware.

SIMD extension instructions exploration can be divided
into two categories: one is manual vectorization, that is,
programmers write vectorized programs manually. The other
is automatic vectorization by the compiler directives. Manual
vectorization can make full use of SIMD extension compo-
nents characteristics and maximize the performance of the
program. However, the manual vectorization has poor scal-
ability and portability. Efficient vectorization programs not
only require the programmers to understand the programs
itself, but also need them to fully understand the hardware
architectures.

Compared with manual vectorization, automatic vectoriza-
tion technology has the characteristics of easy to implement,
high accuracy, good scalability and portability. Automatic
vectorization has gradually become an efficient program opti-
mization technology. The main benefits of SIMD vectoriza-
tion come from parallel access and calculation of the data.
By loading data from memory into a vector register one-time
and perform the same operation to multiple data objects at
the same time, SIMD vectorization can effectively improve
the execution efficiency of the programs. As shown in Fig.2,
we take the vector addition of 256 bits SIMD vector expan-
sion components as an example. This components can be used
to load or store 4 double precision floating point scalar at

FIGURE 2. Operation diagram of SIMD expansion components.

one-time, and perform addition operations on 4 data elements
simultaneously.

In the vector income evaluation of the compiler, many
factors need to be considered, such as data access mode,
the calculation characteristics in the loop. SIMD load/store
operations are mainly to realize data load and store between
memory and register. When the data storage address is con-
tinuous and aligned according to the width of vector register,
the vectorization performance income is higher. When the
data storage address continuous but non-aligned, we need to
use the non-aligned pack/unpack instructions, which will add
additional overheads, and reduce the income of vectorization.
In other cases, we must load/store the scalar separately, then
pack/unpack it to SIMD register, and this will lead to the low-
est performance benefits. However, as the TC kernel shown
in Fig.1, at least one of the four loop indexes i, j, k, l belongs
to this case.

B. TENSION CONTRACTION KERNELS
Tensor is a higher order extension of vector. In essence, a ten-
sor is a multidimensional array. Each element in the tensor
has multiple indicators, each of them represents a model of
tensors [8]. For vector spaces U (1),U (2), . . . ,U (n), the outer
product (denote as ⊗) space U (1)

⊗ U (2)
⊗ . . . ⊗ U (M ) is

defined as a vector space
∑
ku(1) ⊗ u(2) ⊗ . . .⊗ u(M ) which

contains all linear combinations of u(1) ⊗ u(2) ⊗ . . . ⊗ u(M ),
where u(1) ∈ U (1), u(2) ∈ U (2), . . . , u(M )

∈ U (M ), k ∈ R. ⊗
needs to meet the requirement of multi-linear:

(αu(1)1 + βu
(1)
2 )⊗ u(1) ⊗ u(2) ⊗ . . .⊗ u(M )

= αu(1)

⊗u(2) ⊗ . . .⊗ u(M )
+ βu(1) ⊗ u(2) ⊗ . . .⊗ u(M ) (1)

u(1) ⊗ (αu(1)2 + βu
(2)
2 )⊗ u(2) ⊗ . . .⊗ u(M )

= αu(1)

⊗u(2)1 ⊗ . . .⊗ u
(M )
+ βu(1) ⊗ u(2)2 ⊗ . . .⊗ u

(M ) (2)

u(1) ⊗ u(2) ⊗ . . .⊗ (αu(M )
1 + βu(M )

2 ) = αu(1)

⊗u(2) ⊗ . . .⊗ u(M )
1 + βu(1) ⊗ u(2) ⊗ . . .⊗ u(M )

2 (3)

where α, β ∈ R, u(i), u(i)1 , u
(i)
2 ∈ U

(i).
The elements X ∈ U (1)

⊗ U (2)
⊗ . . . ⊗ U (M ) in this

space are defined asM order tensors. Similar to the matrix,
element in the tensor can be represented as Xl1×l2×···×lM ,
(1 6 li 6 Li, 1 6 i 6 M ), where li represents the position of
this element in the i-th dimension of the array. If we assume
the tensor X ∈ RL1×L2×···×LM , Y ∈ RL1×L2×···×LM , then the
Tension Contraction of X and Y is :

[X × Y ; (1 : M )(1 : M )] =
L1∑
l1=1

· · ·

LM∑
lM=1

(X )l1×l2×···×lM (Y )l1×l2×···×lM (4)

The condition of TC is that the tensor X is equal to the
tensor Y on a given order (or multiple orders), that is, has
equal number of elements in a certain dimension. Every
occurring of a TC will reduce the order by 2.
We take the TC kernels in Couple Cluster Singles and

Doubles (CCSD) as research objects [8]. The TC kernels in
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CCSD consists of perfect nested loops, with a single multi-
plication cumulative statement in the innermost loop. There
are discontinuous and irregular memory access patterns in TC
kernels computing statements, which make it difficult to use
the existing compilers to perform automatic vectorization.
Each index variable of an array in the TC kernels appears
2 times, and each variable is accessed at most once a time.
In the TC kernel shown in Fig.1, the dimension size of i, j,
k, l is N, M, K and L, respectively. The computational kernel
mainly operates on array A, B and C, the dimensions of array
A and array C is 3, and array B is 2.

C. ITERATIVE COMPILATION BASED ON
MACHINE LEARNING
Iterative Compilation which can integrate different optimiza-
tion techniques effectively is an optimization method for the
general programs. This method generates a series of program
versions by mining a variety of program optimizations, and
selects a program version with the maximum improvement
through executing the different versions on the target plat-
form. The performance optimization effect of iterative com-
pilation is significantly better than the static compilation.
However, the selection of transformations, the order and
number of the transformations in the iterative compilation
optimization process, all result in a huge optimization space.
At the same time, iterative compilation is a mechanical
search, and lacks of using the experience gained before.
In addition, the existing compilers usually use fixed optimiza-
tions for programs on a given target platform. But different
codes may require a customized optimization to achieve
better performance. Especially for the embedded system
which is more dependents on the compile-time optimization,
because the computer architectures are more limited to mem-
ory size, structure and processor speed, so a higher degree of
customization is demanded [9].

In recent years, researchers have applied artificial intel-
ligence to compiler optimization heuristics of the iterative
compilation [10], [11]. Compiler optimization based on
machine learning is a method of predicting program opti-
mization strategies to maximize code performance. Most
of the existing compiler optimization strategies rely on the
experiences of compiler developers. These optimization rules
are made up of very complex codes, and only a few compiler
developers can understand the codes. Compiler optimiza-
tion techniques based on machine learning use a trained
machine learning model to replace the original optimization
engine of the compiler. The input of learning model is the
features of the program, and the output is the program
performance or the optimization strategy predicted by the
learning model. Our prediction model is based on ensemble
learning method, the model input is the features of TC kernel,
and the output is program execution time corresponding
to different vectorization strategies. We choose the optimal
vectorization strategy with the shortest program running
time.

III. PROPOSED METHODOLOGY
The main goal of the ELAV model is to construct a vec-
torization performance prediction model for TC programs.
Each TC kernel passes through a feature extraction phase,
then the parametric representation of the kernel is generated.
Prediction model makes these parameterized expressions
associate with automatic vectorization performance of the
TC kernels. The vectorization strategy with the maximum
performance is the one we should select. This belongs to
the regression problem in the machine learning. The model
framework is shown in Fig.3. The framework consists of two
main stages: model training phase and model using phase.
In the model training phase, the ensemble learning based pre-
diction model is trained on the basis of the training set. In the
model using phase, the maximum performance corresponds
to the best vectorization strategy for the new TC kernels is
predicted by the knowledge stored in the prediction model.

In the model training phase, we first extract the static fea-
ture VECfeatures for the training set TC kernels. VECfeatures
is a new features set for the TC kernels. Then, generate a
vector versions set {vec1, vec2, . . . , vecn} for each TC kernel.
Static features VECfeatures mainly include the important
attributes of thememory accessmode, such as data continuity,
locality, dependency, and whether there exists reduction oper-
ation. These attributes are mainly obtained by analyzing the
subscript index of the loop array. {vec1, vec2, . . . , vecn} rep-
resents n vectorization versions corresponding to n vectoriza-
tion options. The vectorization options are shown in Table.1,
which conclude whether or not vectorizing each layer in
the nested loop. When vectorizing a certain layer, the loop
unroll factor can be set to 1,2,4,8,16. For 4-layer nested loop
(our TC kernels are up to 4-layer nested loop), we have
21 vectorization options. We run all vectorization versions
{vec1, vec2, . . . , vecn} on the target machine, and record the
performance {per1, per2, . . . , pern}. For a TC kernel in the
training set, the tuple (VECfeatures, peri) 1 6 i 6 n consti-
tutes n training samples of the ELAV model. The vectoriza-
tion version corresponding to the maximum performance is
the optimal vectorization option for the TC kernel. In order to
improve the generalization ability and accuracy of the model,
we use standard Leave-one-out Cross Validation (LOOCV)
to evaluate the model on the training set. That is, the model
is trained on all vectorization versions of the N − 1 TC
kernels, then the model is evaluated on the remaining kernel.
In the model using phase, the features of new TC kernel
are extracted firstly, then the optimal vectorization perfor-
mance of TC kernel is predicted by the knowledge stored

TABLE 1. Vectorization strategies.
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FIGURE 3. Framework of automatic vectorization performance improvement model based on ensemble learning.

in prediction model. At this point, the vectorization option
corresponding to the optimal vectorization performance is the
optimal vectorization option we can select.

A. ENSEMBLE REGRESSION LEARNING MODEL
The ensemble learning we focus is mainly used to solve the
regression problem, that is, how to find the laws from the his-
torical samples data, establish the mapping between the input
variable (program features) and the output variable (program
running time). As the value of the input variable changes,
the corresponding value of the output variable is obtained.
The regression problem is equivalent to function fitting prob-
lem, that is, according to the known sample data set to select
a function. This function can approximate the known sample
data as accurate as possible, and then the new sample data can
be well predicted by the function [12].

Ensemble learning is a machine learning process.
Homogeneous or heterogeneous learning algorithms are used
to learn the same problem in the process of ensemble learning,
then multiple learners are obtained. The final results are
received through a combination of the results of original
learners. The ensemble learning algorithms can be divided
into three types: Boosting, Bagging and Stacking. The biggest
difference between these three algorithms is that the Stacking
method does not simply combine the same type of learning

algorithm, but uses different machine learning algorithms to
construct the learning model, which may lead to a higher
prediction accuracy. So we use Stacking ensemble learning
technique to construct vectorization performance prediction
model for TC kernels. Stacking model mainly uses a high-
level learner combined with several low-level learners to
achieve better predictive accuracy. Given data set D(x, y) =
{(x1, y1), (x2, y2), . . . , (xn, yn)}, x represents program fea-
tures, y represents the performance of the vectorized program.
Fig.4 is the framework of our vectorization performance
prediction model based on Stacking ensemble regression
learning. The pseudo code shown in Algorithm 1 corresponds
to the model training phase.

First of all, we need to preprocess the data set D(x, y),
including data cleaning and removing imbalanced data. Since
the data collected from different data sources will be inte-
grated into data sets, there may exist data redundancy, data
missing or wrong data. The introduction of these data may
lead to the inaccurate prediction model, so it is necessary to
clean the data set firstly. In addition, data imbalance may
exists in the process of sample collection. If the model is
based on this imbalanced sample set, it will tend to the
majority while ignoring the minority. Therefore, we adopt the
resampling strategy with synthetic new samples to optimize
the imbalanced data sets, and then study on this uniform
distribution sample sets.
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FIGURE 4. Framework of Stacking ensemble regression learning model.

Algorithm 1 Ensemble Regression Learning Algorithm

Input: Data set D = {(xi, yi)}Ni=1, xi ∈ X ⊆ Rd , yi ∈ R,
Level-0 base regression learning algorithm {F1,F2, . . . ,FT },
level-1 meta regression learning algorithm FT ′ .
Output: ensemble regression learning learner LT ′ .

% Train level-0 learner Lt by applying the base learning
algorithmsFT to the original data setD
1: for t=1,2,. . . ,T do
2: Lt = Ft (D)
3: end for

% Generate a new data set
4: DNEW = ∅
5: for i=1,2,. . . ,n do
6: for t=1,2,. . . ,T do

% Use Lt to learn the training example xi
7: Zit = Lt (xi)
8: end for
9: DNEW = D ∪ {((Zi1,Zi2, . . . ,ZiT ), yi)}
10: end for

% train the level-1 learner by applying the learning algo-
rithm FT ′ to the new data set DNEW

11: Lt ′ = FT ′ (DNEW )

The main structure of the framework consists of 2 layers,
level-0 is the base learner, and level-1 is the meta learner.
The base learner is constructed by the training set in boot-
strap sampling. Multiple base learners {L1,L2, . . . ,LT } are
generated by calling different kinds of learning algorithms
{F1,F2, . . . ,FT } on the same training set. The learning algo-
rithms we use include logistic regression, decision tree and
linear regression. Although the sample size is large, metrics
number is big, it’s still be able to quickly get results at
this time. Then, the predicted results of the base learners
{P1,P2, . . . ,PT } are used as the input of the meta learner LT ′ .

In addition, the training data are also used as input to the meta
learner LT ′ . The predicted results and the real classification
results are integrated as a new data set, then the new data set
is used as the training data set of the meta learner LT ′ . LT ′ is
based on the new learning algorithm FT ′ , and we use artificial
neural network. The task of the meta learner is to reasonably
combine the output set, and correct the prediction error of the
base learners, then predict the target correctly. For the new
TC kernel, the vectorization performance prediction by base
learners are used as the inputs of the meta learner, and the
final prediction result is given by the meta learner.

B. PROGRAM FEATURES
Based on the vectorization profitable assessment models
in previous researches and the typical characteristics of
the TC kernels, we design a new features set VECfeatures
for the TC kernels. VECfeatures includes locality, depen-
dency, whether there exists reduction operation, and memory
continuity.

1) LOCALITY
The locality principle is when CPU accesses the mem-
ory, either access instructions or access data, the storage
unit accessed tends to aggregate in a smaller contiguous
region [14]. Locality is a predictable behavior occurring in
a computer system. There are usually two representations:
temporal locality and spatial locality. Temporal locality refers
to the reuse of specific data and/or resources in a relatively
small duration. Spatial locality refers to use data elements
in relatively close storage locations. Due to the existence
of loop structures, locality tends to access arrays or other
data structures through indexes. When the data layout has a
good locality, it can make full use of pipeline and cache to
speed up memory access, and reduce the access operations of
vectorization data. At the same time, the cache hit rate and
access efficiency of vectorization data can also be improved.

2) DEPENDENCY
If there is such an interconnection relationship between
programs codes, that is, codes A must run before codes B to
ensure the normal operation of B. At this time, the intercon-
nection is called dependency, and B depends on A [15]. The
factors that influence the vectorization of SIMD are mainly
due to the dependent ring formed between the statements
in the loops or by the dependent edges of the statements
themselves. Therefore, when analyzing the vectorization
dependency relations for the loop, we can divide them into
constitute a dependent ring or not.

3) REDUCTION OPERATION
The access of some arrays in TC kernels relative to the
innermost loop index is discontinuous, while for the outer
loop index the access is continuous. If we vectorize the
innermost loop when the array access is discontinuous rel-
ative to the innermost loop index, additional vector instruc-
tions are needed for data reorganization, which will result in
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additional overheads. When the inner loop vectorization is
going to process the reduction operations, it is necessary to
insert additional reduction statements at the end of the loop
and convert the vector into scalar. Reduction statements often
involve complex hardware operations, and the cost is usually
high. However, it’s not necessary to perform such operations
at the end of the loops when direct vectorizing the outer loop.

4) CONTINUITY
Memory access continuity is one of the most important fac-
tors affecting the vectorization efficiency [13]. When the
data store address accessed has continuity, the data can be
read into a vector register or write into memory at once,
which will result in efficient vectorization access, otherwise,
these data will be loaded and stored multiple times. When
data access has discrete accessibility, we need to implement
additional access and data operation, and reorganize target
data. This will create additional overheads and reduce the vec-
torization income. Some CPU processors provide hardware
support for non-contiguous memory access, such as the Intel
MIC processor has the corresponding hardware support for
gather/scatter operation. However, most processors provide
data arrangement instructions, such as Sunway TaihuLight
high performance computers. After reading multiple times of
the required data from the memory, the compiler will then
shuffle the data into the required vector units by using the
arrangement instructions, and this will decrease the overall
vectorization income.

For the TC kernel in Fig.1, Fig.5 shows the features
set VECfeatures and the values. Fig.5(a) takes array B as
an example to illustrate the calculation of feature values.
Figure 5(b) represents the feature values of array A, B and C.
loc(arry), dep(arry), redu(arry) and con(arry) represent the
locality, dependency constraints, reduction operations affect
the outer vectorization and continuity, respectively. dep(arry)
is represented by vector form, loc(arry), redu(arry) and
con(arry) are represented by matrix form.

FIGURE 5. TC kernel features and values.

The main operation statement of the TC kernel is:
C[z1][z2][z3] = B[x1][x2] ∗ A[y1][y2][y3]+ C[z1][z2][z3].

The objects of feature analysis are arrays A, B, and C.
Through the front-end analysis of the compiler, we can get
the relevant information of the array index, and obtain the
corresponding feature values. In Fig.5(a), x1 represents the
high dimensional index of array B, x2 is the lowest dimen-
sional index of array B. In array B, x1 = i and x2 = l.
When the values of x1 and x2 remain constant relative to the
current loop index, array B has locality for the current loop.
When the value of x2 increases/decreases with the current
loop index, and the value of x1 remains the same, array B is
considered to have continuity with the current loop. For the
l-layer loop, the value of x2 increments along with the change
of index l, and the value of x1 remains the same. For the i-
layer loop, the value of x1 changes when index i changes.
So loc(B) = {0, 0, 0, 0} and con(B) = {0, 0, 0, 1}. Array B
is read-only to the loop layer of i, j, k , l, and there is no data
dependency and reduction, so dep(B) = 0 and redu(B) =
{0, 0, 0, 0}. When the array dimension is more than 2, we take
x1, x2, . . . , xn (n is array dimension) to express. When the
values of x1, x2, . . . , xn remain constant relative to the current
loop index, array B has locality for the current loop.When the
value of xn increases/decreases with the current loop index,
and the values of x1, x2, . . . , xn−1 remain the same, array B
is considered to have continuity with the current loop.

C. OPTIMIZE SPACE
The input of our ELAV model is VECfeatures of TC kernel,
the output is the running time prediction of the kernel
when using different vectorization strategies. Based on the
VECfeatures, ELAV model can predict the best program per-
formance by vectorizing the suitable loop layer. Furthermore,
in order to fully use instructions pipeline and cache pipelining
parallel, we also predict the optimal unrolling factor for the
vectorized loop layer. The vectorization strategy is shown
in Table.1, and the command line is shown in Table.2. Table.1
indicates that we can choose which layer (our TC kernels is
up to 4 layers) to execute vectorization, or do not vectorize
any loop layer.When a loop layer is vectorized, its loop unroll
factor can be specified as {1, 2, 4, 8, 16}.

TABLE 2. Units for magnetic properties.

IV. EXPERIMENTAL AND RESULTS
Platform I: Intel core processor Ivy Bridge, CPU is Xeon

E5-2697A v4 2.6GHz, memory is 128G, and the width of
vector register is 256 bits.

Platform II: Intel Xeon Phi Xeon processor Knights Land-
ing fusion (KNL), CPU is Intel Xeon Phi Processor 7210, and
the width of vector register is 512 bits.
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We compose Ivy Bridge and KNL platforms, SSE
and AVX instruction sets, float and double data types,
Intel ICC 12.0 and GCC 4.6 compilers into 16 dif-
ferent configurations shown in Table.3. We randomly
select 1100 TC kernels from CCSD for model training,
and set the array dimension N to 10-200, so we have
1100 kernels×191 sizes = 210100 data points. The input of
ELAV model is the TC features VECfeatures, and the output
is the predicted vectorization performance when using dif-
ferent vectorization strategies. During model testing period,
we predict the vectorization performance of 288 new TC
kernels (different with training sets) in CCSD to verify the
accuracy and efficiency of the model.

TABLE 3. Configurations based on different platforms, instruction sets,
data types and compilers.

The experiment is carried out from three aspects: Firstly,
we analyze the vectorization performance of TC kernels by
different instruction sets, data types and compilers on Ivy
Bridge and KNL platforms, and compare the performance
differences when using the default vectorization rules and
the forced vectorization for TC kernels. Secondly, through
taking random features, VECfeatures, Milepost features and
assembly features as model input, we compare the model
prediction accuracy for the TC kernels in the test set. Finally,
we compare the prediction efficiency when using different
predictive models, and the prediction efficiency of different
models with different configurations.

A. VECTORIZATION PERFORMANCE
Our goal is to build the ELAVmodel to choose the best vector-
ization strategy for different TC kernels, in order to improve
the vectorization performance of the kernels. We first analyze
the vectorization performance on different platforms. The
degree of performance improvement is expressed as:

Speedupvec =
Tdefault
Tvec

In this formula, Tdefault represents program runtime when
using the default vectorization rules of the compiler, Tvec
represents the runtime of forced vectorization. We divide
the Speedupvec into class1: Speedupvec > 1, class2: 0.5 6
Speedupvec 6 1 and class3: Speedupvec < 0.5. As the
experimental results are numerous, we use IADG and KSFI
shown in Fig.6 and Fig.7 as examples to illustrate. The hor-
izontal axis represents the number of data points sorted in
ascending performance, and the vertical axis represents the
vectorization speedup.

The gray lines in Fig.6 and Fig.7 correspond to the default
behavior of the compiler, and the black lines represent the
forced vectorization. When the black line is higher than the
gray, it means that the compiler is lack of the opportunity
to vectorize the TC kernels, and the forced vectorization is

FIGURE 6. Vectorization performance analysis on Ivy Bridge platform,
using the AVX instruction set, double data type and GCC 4.6 compiler.

FIGURE 7. Vectorization performance analysis on KNL platform, using the
SSE instruction set, float data type and ICC 12.0 compiler.

beneficial to improve program performance. At this time,
Speedupvec belongs to class1.When the gray line is higher
than the black line, it means that the compiler default vec-
torization behavior is the good, and Speedupvec belongs to
class2. When the gray line is much higher than the black line,
it indicates that the forced vectorization will result in a more
longer compilation time, and Speedupvec belongs to class3.

We can see from Fig.6, the GCC compiler can make the
correct vectorization decision in 35.33% of the data points.
For 58.40% of the data, the default vectorization rule is too
conservative. Because these programs are not vectorized,
average 32×speedup of the program execution time is lost.
In addition, due to force vectorization, 6.27% of the data
results in a longer runtime. From Fig.7 we can see the GCC
compiler can make the correct decision in 30.91% of the
points. The default vectorization rule is too conservative
in 60.13% of the points. 8.96% of the data results in a longer
runtime. Therefore, in order to improve the automatic vec-
torization performance of the programs effectively, we need
to determine the optimal vectorization strategies for different
TC kernels.
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B. FEATURES REPRESENTATION
1) PREDICTION ACCURACY WITH DIFFERENT FEATURES
In order to illustrate the prediction accuracy of ELAV
model when using different program features, we compare
4 different kinds of features set: (i) Random features,
(ii) VECfeatures, (iii) Milepost static features, (iv) Assembly
features. Among them, four random static and dynamic fea-
tures et al. [16] are selected as the baseline. If the features
set we choose produces a precision similar to the random
features, it means that these features have poor program
representations. The Milepost static features we selected are
the same as Fursin et al. [17]. There are 56 static features,
including number of basic blocks in the function, number of
edges in the control flow graph and so on. Assembly features
are selected from Stock et al. [18], including vector operation
counts, arithmetic intensity, sufficient distance, sufficient dis-
tance ratio, total operations, and critical path. The prediction
accuracy of IADG is shown in Fig.8. Class1, class2, and
class3 represent Speedupvec classification in section 4.1.

FIGURE 8. Prediction accuracy of ELAV when using different features
selection methods.

As shown in Fig.8, when the prediction model uses the
program features generated by Random, the average predic-
tion accuracy is low, and each class is around 50%. The
prediction accuracy of Milepost features is slightly higher
than the Random, but the accuracy differences between each
class is relatively large. Assembly features can provide higher
prediction accuracy, because the vectorization performance
benefits mainly come from vectorized instructions which
automatic generated by the compiler, such as load/store and
arithmetic operations. The prediction accuracy generated by
VECfeatures is obviously higher than Random and Milepost
features. The accuracy generated of VECfeatures is 80%,
which is slightly lower than Assembly features. However,
VECfeatures is extracted before the compiling, so the features
extraction process does not require to actually compile the
program, while the assembly features are extracted after the
compiling.

2) PREDICTION PERFORMANCE WITH DIFFERENT FEATURES
When the ELAV model is used to predict the vectorization
performance for the new TC kernels, if the prediction is in
class1, we use the command line of the compiler to force

the vectorization. If the prediction is in class2 or class3,
the compiler default optimization is used. We choose IADG
configuration for an example. The Speedupvec distribution
of the test set TC kernels is shown in Fig.9, which shows
the average speedup of the program performance obtained
by using different feature sets. Among them, manual is
the result of manual vectorization, which represents the
maximum speedup.

FIGURE 9. Speedup distributions using different features representation.

As shown in Fig.9, manual vectorization achieves 1.76×
average speedup. By using the VECfeatures feature set,
we receive 1.67× average speedup, which is about 95% of
the optimal. When using Assembly features, we can achieve
1.72× average speedup. However, the Assembly features
need to be obtained after the program compiling. The Ran-
dom andMilepost features both have 1.02× average speedup,
which are relatively lower. Therefore, VECfeatures can bet-
ter represents the TC kernels, improve the performance of
the prediction model and reduce the training time cost. The
reason about VECfeatures sometimes make a performance
prediction bias is when choosing a loop layer for vectorizaion,
sometimes may cause part of the data access is not continu-
ous. At this time, we need to implement data reorganization
and operation with some special or un-aligned vector instruc-
tions. In addition, repeated reading operations for some loop
invariants may result in unnecessary access overheads, and
make program vectorization performance reduction.

C. TEST SET PERFORMANCE
1) PREDICTION EFFICIENCY OF DIFFERENT
LEARNING MODELS
In order to verify the vectorization prediction efficiency of
the ELAV method, we compare the prediction results with
the single machine learning algorithm and theWeightedRank
model proposed by Stock et al. [18]. The single learning
algorithm involves six different learning algorithms provided
in Bouckaert [19]. These learning algorithms use a single
learner, while the ELAV method uses Stacking ensemble
learning algorithms, including logistic regression, decision
tree, linear regression, and artificial neural network. Weight-
edRank is a model based on features extracted from the
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generated assembly code, which can effectively improve the
vectorization performance of the programs. The prediction
efficiency is calculated as follows:

Efficiency =
Performance of predicted best
Performance of actual best

If the predicted best vectorization strategy is the actual best
for a particular TC kernel, the prediction efficiency is 100%.
By evaluating all possible vectorization strategies, we find the
vectorization version with the greatest performance improve-
ment and use it as the actual best.

When we use AVX instruction set, double data type and
GCC 4.6 compiler on the Ivy Bridge platform, we have
288 valid test data. We take 25 for an example, the prediction
efficiencies of different models are shown in Table.4. IBk and
K* are learning algorithms based on instances, which imple-
ment prediction based on similar instances in the training set.
LR represents linear regression. M5P represents M5 model
tree algorithm that combine the tree structure and linear
regression model. MLP represents the multilayer perceptron,
and it’s a non-loop artificial neural network using the back-
propagation training. SVM means support vector regression
algorithm.When we use these single learning models and our
ELAV ensemble learning model, the model input is VECfea-
tures, and the output is vectorization performance prediction.
ICC and GCC represent the efficiency of using compiler
default vectorization, Rand represents the results of a random
choice from the search space of vectorization variants, and
WR represents the WeightedRank model. We use three array
indexes to represent the TC kernel. For example, ij-ik-kj
represents the contraction of two 2-dimensional tensors
to produce a 2-dimensional tensor, and the loop nesting
depth is 3.

TABLE 4. Prediction efficiency of different models on Ivy Bridge platform,
using AVX instruction set, double data type and GCC 4.6.

We can see from Table.4 that the average prediction
efficiency of the ELAV model is 90%. The good predictive
efficiency is mainly due to our way of features extraction
and the use of ensemble regression model. The second
best is WeightedRank, but the use of this model requires

to compile the kernels at least once. The process of our
features extraction doesn’t need to actually compile the
kernels. The prediction efficiency of ELAV model is better
than all single learning algorithms. When using ICC or GCC
compiler default vectorization rule, the prediction efficiency
is relatively lower. The prediction efficiency of Rand is only
slightly better than ICC and GCC compilers.

From Table.4 we can see that the ELAV, WR, and IBK
learning models have higher prediction efficiency. The pre-
diction time overheads of these three models are shown
in Table.5. From Table.5 we can see that our ELAV has a
minimal prediction time overheads. Therefore, ELAVmethod
has the highest prediction accuracy and the lowest prediction
time overheads when comparing with existing methods.

TABLE 5. The prediction time overheads of different models(s).

2) PREDICTION EFFICIENCY OF DIFFERENT
CONFIGURATIONS
Table.6 and Table.7 indicate the prediction efficiency of dif-
ferent learning models on Ivy Bridge and KNL platforms
with different instruction sets, data types and compilers. From
Table.6 we can see that the prediction efficiency of our ELAV
model is above 80% in all configurations, and the average
prediction efficiency is 88%, which is also higher than the

TABLE 6. Prediction efficiency of learning models on Ivy Bridge platform,
using different instruction sets, data types and compilers.

TABLE 7. Prediction efficiency of learning models on KNL platform, using
different instruction sets, data types and compilers.
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other models. The ELAV model can achieve average 90%
prediction efficiency under IADG and ISFI configurations.
The average prediction efficiency of WR model is 85%,
which is close to ourmethod, butWR is implemented after the
compiling. Therefore, our method is better than WR both in
prediction accuracy and prediction time. Randommethod has
the lowest prediction efficiency. From Table.7 we can see that
the prediction efficiency of ELAV model is above 80% in all
configurations, and the average prediction efficiency is 87%,
which is also higher than the other models. The ELAV model
can achieve average 93% prediction efficiency under KSFG
configurations. ELAV model analyzes the dependence and
interaction between program transformations, and considers
the vectorization along all dimensions, rather than the data
access with unit step. In terms of the overall testing results,
the ELAV model achieves the best prediction efficiency on
both Ivy Bridge and KNL platforms.

In addition, we use the general floating point performance
indicator GFlop/s to measure the performance of TC kernels.
Table.8 shows the performance obtained by different com-
pilers and ELAV model under different configurations.
Min and Max represent the lowest and highest TC perfor-
mance, andAVGmeans the average performance. ELAV/ICC
and ELAV/GCC shows the average performance ratio of
ELAV to ICC and GCC, respectively.

TABLE 8. Comparison of program performance between compiler
automatic vectorization and ELAV model under different configurations.

We can see from Table.8 that compared with the automatic
vectorization of ICC and GCC, the ELAV model can achieve
larger floating-point performance gains. For the Ivy Bridge
platform, the floating point performance reaches the high-
est 15.85GFlop/s under IADG configuration. For the KNL
platform, the highest floating-point performance is achieved
by KADI configuration, with the value of 31.3GFlop/s.
In addition, the data in Table.8 also shows that for some con-
figurations, the performance gains obtained byGCC compiler
is better than ICC compiler. The reason is some optimization
strategies of GCC compiler is more effectively than ICC, such
as loop unroll-and-jam.

V. RELATED WORK
Compiler optimization methods based on machine learn-
ing implement compiler optimization prediction by artificial
intelligence means, through convert the target problem into

the forms which the machine learning model can accept,
the methods can search the best optimization from the opti-
mization space more effectively. Previous researches utilize
the Nearest Neighbor algorithm (NN) [2], Support Vector
Machine (SVM) [17], Artificial Neural Network (ANN) [20],
Logistic Regression (LR) [18] and other machine learning
techniques to improve the compiler optimization.

In order to find the optimal optimization order for the
particular programs, Agakov et al. [2] bias the existing ran-
dom or genetic search algorithms via NN, and reduce the
optimization search time by an order of magnitude. Pekhi-
menko and Brown [23] use logistic regression to determine
the optimal parameters of program transformations, and they
compare the execution time of the program when using the
optimization parameters determined by logistic regression
and compiler default. Ding et al. [24] propose a variable
input analysis method, they construct model to automatically
determine what algorithms should be used to implement
optimize when different optimization strategies suitable for
different inputs. Martins et al. [25] propose an application
related optimization selection method by clustering design
space explore technology guided by genetic algorithm.

Program feature representation technology can be divided
into static feature representation and dynamic feature repre-
sentation. Fursin et al. [17] develop GCC milepost, including
46 static features extracted from the intermediate representa-
tion of GCC. Park et al. [22] propose a different method to
define the static features, and use graph mining technology
to supply the program data stream graph to SVM. Hoste and
Eeckhout [26] use the dynamic features to obtain the program
information. However, all of these feature extraction methods
have a common drawback: they only consider the properties
of the control flow graph, or the static counts for each type of
instructions. But the TC kernels we consider have the same
control flow graph and instruction sequence, so all of these
methods are not applicable.

The work of Stephenson and Amarasinghe [21] and
Stock et al. [18] is closest to our work. Stephenson uses mul-
tiply classification algorithm to predict the loop unrolling fac-
tor that can produce the best performance for the programs.
They use SVM and NN to predict the best unrolling factor for
the new programs. The prediction accuracy is 65% and 62%,
respectively. Our work differs from Stephenson in that the
vectorization strategy optimization space we considered is
not limited to the loop unrolling factor. Stock’s work is a
superset of our work, they consider a larger optimization
space. However, our work has two different characteristics.
One is that we propose a very different static features set
for TC kernels. The second is that we extract features before
the actual optimization, while Stock’s requires to actually
compile the program at least once to extract the features.

Ourwork aims to predict the vectorization strategies for TC
kernels through machine learning model. The vectorization
strategies include whether or not turn on the force vector-
ization option of the compiler, which loop layer should be
vectorized and the value of the loop unrolling factor. To the
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best of our knowledge, our research content is first proposed,
which is a useful complement to the relevant work. The
biggest differences between our work and the existing lie in
two points: (i) we use ensemble learning method to construct
machine learning model, and ensemble learning has better
prediction accuracy than a single machine learning algorithm.
(ii) we propose a new program features representation, which
is more suitable for TC kernels.

VI. CONCLUSION
Most commercial compilers can perform automatic vector-
ization for multi-core processors with short vector SIMD
instruction set, but the performance obtained is usually far
below the peak performance of the processor. Compiler auto-
matic vectorization heuristics are often too conservative, and
sometimes lose a lot of vectorization opportunities. We pro-
pose an automatic vectorization performance improvement
method ELAV. The input of ELAV model is VECfeatures of
TC kernels, which is a static feature representation method
to represent storage access patterns of TC kernels. The out-
put of ELAV model is the program performance prediction
when using different vectorization strategies. The average
prediction time of the ELAVmodel only takes a few seconds,
so the model is easier to embed into the existing compilation
flow.With different instruction sets, data types and compilers,
the prediction efficiency of ELAV model on Ivy Bridge and
KNL platforms is 88% and 87%, respectively. At the same
time, the prediction efficiency of ELAV model is higher
than that of other single learning algorithm on two plat-
forms. In addition, the average peak performance obtained
by ELAV model under different configurations is 2.96× of
Intel ICC 12.0 and 2.98× of GCC 4.6 compiler, respectively.

We believe that the ELAV method still has some follow-
up work worth researching, specifically: (i) we will consider
more test sets and target platforms to further improve the pre-
diction accuracy and generality of the ELAV method. (ii) we
will research more relevant features of different optimiza-
tions to further improve the performance of TC programs.
(iii) we will try to increase the robustness of the ELAV
method by adding artificial noise, and investigate the perfor-
mance of the ELAV method in the heavily loaded multi-user
environment.
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