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ABSTRACT The focal and non-focal epilepsy is seen to be a chronic neurological brain disorder, which
has affected &~ 60 million people in the world. Hence, an early detection of the focal epileptic seizures can
be carried out using the EEG signals, which act as a helpful tool for early diagnosis of epilepsy. Several
EEG-based approaches have been proposed and developed to understand the underlying characteristics of
the epileptic seizures. Despite the fact that the early results were positive, the proposed techniques cannot
generate reproducible results and lack a statistical validation, which has led to doubts regarding the presence
of the pre-ictal state. Various methodical and algorithmic studies have indicated that the transition to an
ictal state is not a random process, and the build-up can lead to epileptic seizures. This study reviews many
recently-proposed algorithms for detecting the focal epileptic seizures. Generally, the techniques developed
for detecting the epileptic seizures were based on tensors, entropy, empirical mode decomposition, wavelet
transform and dynamic analysis. The existing algorithms were compared and the need for implementing a
practical and reliable new algorithm is highlighted. The research regarding the epileptic seizure detection
research is more focused on the development of precise and non-invasive techniques for rapid and reliable
diagnosis. Finally, the researchers noted that all the methods that were developed for epileptic seizure
detection lacks standardization, which hinders the homogeneous comparison of the detector performance.

INDEX TERMS Focal epilepsy, non-focal epilepsy, time and frequency domain features, nonlinear features,

machine learning algorithms, EEG signal analysis.

I. INTRODUCTION

Epilepsy is described as the momentary occurrence of symp-
toms as well as signs due to irregular synchronous or exces-
sive neuronal activities in the human brain [1]. Furthermore,
epilepsy is also defined as the long-term predisposition
of the human brain to produce epileptic seizures, which
can lead to psychological, cognitive, neurobiological or
social consequences [1]. The patients are said to suffer
from epilepsy if they encounter any one of these following
conditions: (i) A minimum of 2 unprovoked (or reflex)
seizures which occur at least 24 h apart; (ii) An unpro-
voked (or reflex) seizure, with a similar seizure recur-
rence risk (=60%) after the reflexed seizures in the next
10 years; and (iii) The interpretation of the epilepsy
disorder [2].

Several involuntary body movements, involving the entire
body or some body parts can be caused by epilepsy.
These episodes are usually accompanied by a loss of
bladder or bowel control functions. The epileptic seizures
happen due to extreme or abnormal electrical charge distur-
bances within the different parts of the brain. The seizures
also vary from a momentary attention lapse to prolonged
spasms [3]. Partial or focal epileptic seizures primarily affect
one hemisphere of the brain. The human brain comprises of
2 hemispheres, with 4 lobes in every hemisphere, i.e., frontal,
partial, temporal and the occipital lobes. Focal epilepsy can
affect either the complete hemisphere or some lobes in the
hemisphere. The non-focal signals can be detected from
the brain hemispheres which have not been affected by the
epileptic seizures [3]-[6].
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Epilepsy has led to a massive burden on the global
medical system, while the gap between the disease occur-
rence and treatment remains unpredictably large. In their
report, the World Health Organisation (WHO) stated
that epilepsy is a very common neurological syndrome,
affecting >50 million people, globally. Around 80% of
the epileptic patients are seen to live in the low or the
middle-income countries [7]. Despite the development and
availability of many novel antiepileptic medications, around
33% of the affected people still suffer from regular seizures.
Furthermore, even after the control of the epileptic seizures,
the unpredictable and stochastic nature of these seizures can
prove to be life-threatening [8].

The medical treatment is significantly improved if the clin-
ical epileptic seizures are easily detected. This information is
used for maintaining accurate seizure-related dairies, which
further help in providing treatment during the higher seizure
susceptibility. This ability to precisely and rapidly detect
the epileptic seizures can help in providing treatments for
the progressing seizures. Also, the detection of the seizures
before their occurrence could be very advantageous [9].

The EEG signals or the electrophysiological nerve activ-
ities in the brain have to be acquired for diagnosing and
localising the epileptic seizures clinically. These EEG signals
can provide a lot of useful information regarding the posi-
tion and the markers of the disease. These signals also
provide data regarding the neurological conditions, activi-
ties, and the mental inadequacy [10]. Rhythmic sinusoidal
activities are determined from the EEG signals. For analysing
the EEG signals, 5 frequency bands are normally used,
i.e., Delta (up to 4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz),
Beta (12-26 Hz), and Gamma (26-100 Hz) [11]. The EEG
signals in the epileptic patients display 2 abnormal activities,
1) Ictal — which occurs during the epileptic seizures; and
2) Interictal or seizure-free activity occurring between the
2 epileptic seizure episodes. The ictal EEG signals are seen to
be continuous or uninterrupted waveforms having sharp and
spiky wave complexes. The interictal EEG signals are seen to
be temporary waveforms which exhibit spikes, spiky or sharp
waves [12]. In a few of the epilepsy patients, the doctors
have to acquire the EEG signals from the deep brain struc-
tures or from the surface of the brain. The intracranial signals
are recorded for determining the regions of the brain where
the epileptic seizures are initiated. These signals also help
in understanding if the patients can be benefited from the
neurosurgical re-sectioning of the brain components. Many
neurologists stated that these signals disclose the intriguing
dynamics occurring in the brain during the acute epileptic
seizures and seizure-free intervals. Hence, these intracranial
recordings can be effectively applied for the nonlinear signal
analysis. Usually, the doctors rely on the identification of the
interictal (seizure-free) EEG signals for predicting the onset
of the disease, since the ictal signals are very rare. Hence,
a longer duration of the EEG signals is required for visual
monitoring and analysis, for localising the normal, ictal and
the interictal episodes in the patients [13].

VOLUME 6, 2018

The univariate nonlinear analysis can estimate the features
like the predictability, entropy or the dimensionality of the
individual dynamics data derived from the input signals.
Furthermore, these signals are used for measuring and
analysing the bivariate nonlinear measures for detecting the
interactions between the different dynamics. The features
that are selected and extracted from the EEG signal can
be evaluated based on their time-domain [14]-[17] or
frequency-domain characteristic features [18], [19], joint
time-frequency distribution [20]-[23], chaotic [24]-[26],
or their Empirical Mode Decomposition (EMD) character-
istics [27], [28]. In many studies, the feature combination
is carried out for increasing the accuracy and the general
performance of the whole system [29].

The EEG wave morphology noted between the focal or
non-focal epileptic seizures is similar, which makes it diffi-
cult to visually distinguish between them [30]. Hence,
machine learning algorithms are used for automating the
detection and localisation techniques, as they provide accu-
rate and precise EEG signal interpretation. Also, researchers
developed hybrid techniques for improving the detection
accuracy. These techniques combined the feature extrac-
tion processes and the machine learning algorithms. In one
study, the researchers combined the fuzzy logic and Genetic
Algorithm (GA) for classifying the focal and non-focal
epileptic seizures [31]. Furthermore, researchers also devel-
oped a hybrid computational GA-based technique for
detecting the features and the electrode sites, which helped in
predicting the optimum seizures [32]. Besides, many machine
learning algorithms were also combined [33]—[38].

In this study, the authors present an analysis on the non-
focal and the focal epilepsy detection processes. They anal-
ysed the contributions made by the advanced monitoring and
closed-loop epilepsy detection methods, which are used in
hospitals and patient care centres. This paper is prepared in
following way. Section 2 provides the focal and non-focal
detection methods. Section 3 describes the classification
algorithms. Section 4 illustrates the machine learning regu-
larisation. The main observations are discussed in section 5.
While, the paper conclusion is presented in section 6.

A. EPILEPTIC SEIZURES CLASSIFICATION
The classification of the various epileptic disorders has
been very controversial and debatable for many years.
In 1981, the International League Against Epilepsy (ILAE),
the main commission that classifies and defines the various
epilepsy-related terminologies, proposed the International
Classification of the epileptic seizures [39]. The seizures
classification are shown in Figure 1 [40]. Later, in 2010,
the ILAE proposed a few changes in the nomenclature and
the approach which is involved in the flexible multidimen-
sional framework. However, the details of this new class are
still evolving based on the results provided by the various
studies [41].

One suggestion involved the replacement of the term
“partial” by “‘focal” for the seizures which originated in
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FIGURE 1. The seizure classification.

the neuronal networks from one of the cerebral hemispheres.
Thereafter, the focal seizures are not classified as
simple or complex, based on the presumed changes in the
consciousness levels. Thus, the symptoms and signs of the
focal seizures must be properly diagnosed, even if the indi-
vidual displays bilateral motor manifestations. The gener-
alised seizures originate within the bilaterally-distributed
cortical or the cortical-subcortical networks, which rapidly
become involved without any focal point, and can also engage
the structures of the cortical and the subcortical, but not the
whole cortex. Though the different syndromes include the
generalised or the focal epilepsy seizure types, the researchers
must determine whether the epilepsy results due to focal
pathology, since they include many surgical options. Epilepsy
is also categorised as metabolic or structural and could
occur due to infectious or immune causes. Owing to
the different complex definitions and systems involved in
epilepsy, an appropriate classification scheme must be devel-
oped which provides advanced knowledge about the field,
but can be easily understood by the common people or
laymen [42], [43].

B. EEG SIGNAL CHARACTERISTICS

EEG signals help in determining the epilepsy seizure types
and syndromes in the patients, which further helps in
predicting the prognosis of the disease and use of proper
antiepileptic medication. The EEG results assist in the
multi-axial epilepsy diagnosis, with regards to whether
the epilepsy seizures are idiopathic or symptomatic, focal
or generalised, or a component of the particular epilepsy
syndrome [44]. The focal and the generalised seizures
show overlapping clinical and electrographic manifesta-
tions, while the uni-hemispheric epilepsies can blur these
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boundaries further. On the other hand, the conceptual clas-
sification of the focal and the generalised seizures is very
clinically useful and valid. This classification, along with
the descriptions provided by the patients, further helps the
clinician to diagnose the type of seizure. If the history is not
clear (i.e., un-witnessed ‘‘blackouts” or a brief loss of aware-
ness), the EEG signals can help in distinguishing between
the complex partial seizures with focal IED and no seizures
with a generalised IED [45]. The focal and the non-focal EEG
signals (derived from the Bern-Barcelona EEG database [46])
have been described in Figure 2.

300 1 1

2
=
=3

z
E
s
£ 100
2
£
g of 1l
Ed
c
= 100 - 1
200 . . . . .
0 2 4 6 8 10 12 14
Time (second)
(a)
150
100
(T
£ sof
S
2
£
g
=
o 50
=7
g
S -100 -
B
-150

=200

0 2 4 6 8 10 12 14
Time (second)

FIGURE 2. The EEG signal for (a) Focal Epilepsy (b) non-Focal Epilepsy.

Il. METHODES

A. FOCAL EPILEPSY DETECTION

The focal epilepsy detection systems can detect and differ-
entiate between the existing focal and non-focal seizures
and can provide the doctors with the detailed seizure-related
data, which helps in epilepsy management. Furthermore,
the detection systems provide a rapid treatment process
for the early-onset seizures, thereby decreasing the spread
of the seizures and arresting their clinical complications.
The seizure detection scheme should be able to detect the
absence or presence of the existing seizures. A majority
of the seizure detection algorithms include 2 major stages:
1) Stage 1 includes appropriate quantifiable features, like
the biomarkers or the EEG features, which are assessed
from the patient data; 2) Stage 2 applies a threshold or a
model-based measure to all the features for determining the
presence or the absence of the seizures. This is known as the
classification and could involve the use of a threshold value or
models which have been derived using the machine learning
algorithms [47].
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Many studies have applied the bivariate measures for
seizure prediction, like the nonlinear interdependence [48],
phase synchronisation and the cross-correlation [49]. In one
study, when the researchers compared the bivariate and
the univariate system performances, with regards to the
seizure prediction [50], the bivariate techniques showed a
better performance than the univariate measures. Generally,
the univariate and the bivariate systems provide different but
complementary and very relevant information [51]. Hence,
for characterising the preictal stages and achieving a better
clinical performance across the different patients, many
univariate and bivariate features must be combined for devel-
oping proper seizure localisation implements and tools [52].

When all these features are included in a technique,
it leads to a compromise between the accuracy and the speed
criteria (i.e., more accurate data lowers the speed of the
system, and vice-versa). Many feature-based computation
processes use the line length method [53], frequency [54]
or linear time-frequency analysis (i.e., Wavelet Transfor-
mation) [55], Principle Component Analysis (PCA) [56],
and a higher-order spectral analysis [57]-[59]. The
various classification techniques use the Support Vector
Machines (SVM) [60]-[62], Artificial Neural Network
(ANN) [63], [64], Fuzzy logic model [65], Markov
modelling [66], and the deep learning algorithms [67], [68].
Analysis modelling using the supervised machine learning
algorithms can be carried out during the training and the
testing stages and includes 3 sub-steps: pre-processing,
feature computation, and feature extraction or feature reduc-
tion. Every process is a specialised research field and has not
been described here [69]. Figure 3 presents the block diagram
algorithm for the general focal estimation, which is supported
by the supervised machine learning algorithms.

B. EEG DATABASE AND ACQUISITION PROCESS

The focal and the non-focal epileptic seizure detection studies
consider both the scalp and the iEEG recordings. The scalp
EEG signals are acquired with the help of surface electrodes
that are attached at an equal distance on the scalp; while the
iEEG signals are derived by the intracranial electrodes that
are placed in the regions having suspected epileptogenicity,
which are identified using the structural, clinical or functional
data, collected before implantation [70].

The earlier studies used the local databases which were
developed using the data from the patients who were
evaluated before their epileptic surgeries. However, these
studies were restricted to the analysis of the short time
period before the seizures, small sample size and few ictal
actions. This restricted the probability of evaluating the speci-
ficity of algorithm in the interictal epoch. In their study,
Eftekhar et al. [71] applied the coefficients of nonparametric
correlation for Kendall’s tau and noted a statistically signif-
icant correlation in the sensitivity of the different systems,
based on the number of the seizures and the mean capturing
time period between the seizures. They stated that long-term
recording data, with numerous seizures, was necessary, for
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enabling the reliable estimation of the algorithm specificity
and sensitivity, ideally during future testing [72]. In the
past few years, many web-based databases were developed
in the University of Freiburg, University of Bonn, and
the Boston Children’s Hospital. The European Database on
Epilepsy [73] is seen to be the biggest existing seizure predic-
tion database, which consists of information for 2500 seizures
and 45,000 h of EEG recordings. All this data was acquired
from >250 patients, out of which, 50 underwent iEEG,
with <122 channels that were sampled at a frequency
of 250-2500 Hz. Besides the above-mentioned databases
comprising of the EEG signals, which were acquired in the
epilepsy-monitoring units, many recent studies [74], [75]
adopted the data collected by the Neuro Vista ambulatory
monitoring system. This system provided continuous iEEG
data for many months, however, from very few patients [76].
Cook et al. [50] assessed the safety and performance of the
seizure advisory system in the 15 Neuro Vista-implanted
patients. These long iEEG signal recordings, derived from the
naturally-occurring seizures, would prove to be very benefi-
cial for the epilepsy seizure prediction in future.

C. EEG SIGNAL PRE-PROCESSING

The detection and the elimination of the EEG signal artefacts
can be a complex and difficult task. However, it is impor-
tant for the development of good systems for EEG analysis.
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A majority of the important physiological artefacts include
the ElectroOculoGraphy (EOG) artefacts, muscular activi-
ties, respiration, and the body or head movements [77]. Many
studies have described techniques for detecting and elim-
inating the EEG artefacts. However, these described tech-
niques require an individual manual adjustment, or are based
on the inflexible and restricting decision criteria, and have
proved to be very unsatisfactory [78], [79]. The techniques
used for correcting the eye movement artefacts were based
on the autoregressive process of subtracting the EOG signals
from the EEG [80]. In their study, Maddirala and Shaik [80]
proposed a novel algorithm for eliminating the muscle arte-
facts by applying the Singular Spectrum Analysis (SSA) and
the Adaptive Noise Canceler (ANC) for removing the EOG
artefacts from the EEG signals. De Vos et al. [81] proposed
a novel algorithm for removing the respiration-related arte-
facts by decomposing the EEG signals using the ICA.
Furthermore, O’Regan et al. [82] proposed a novel algorithm
using the support vector machines for eliminating the head
movement-related EEG signal artefacts, which were cate-
gorised and eliminated as a different class.

D. EEG ANALYSIS APPROACHES

The EGG variations before the seizures can be theoretically
sensed for determining the oncoming seizures [83]. The
earlier EEG-based techniques used for identifying the focal
patterns used to rely on the linear processes for determining
the EEG features using a sliding window [84]-[86]. Such
models used the nonlinear signal processing techniques for
studying the spontaneous formation of the temporal, spatial,
and spatiotemporal patterns. In the past few years, auto-
mated techniques for EEG analysis have emerged based on
the normal brain dynamics. These novel techniques involve
the transient and limited synchronisation of the disorgan-
ised neuronal activity and display a synchronised and persis-
tent state which can incorporate numerous brain regions
during the epileptic seizures [87], [88]. Though the EEG
signals provide a large amount of data which can be deduced
using automated techniques, the patients find it tedious to
constantly wear the EEG electrodes for a long time period.
It is also difficult to read the prolonged surface electrode
signals owing to increasing impedance. Some patients can
develop a few skin abrasions because of their prolonged expo-
sure to the surface electrodes [89]-[91]. Studies describing
the various focal epilepsy detection techniques are presented
in Table 1.

E. FEATURES SELECTION AND EXTRACTION

Generally, the features are categorised based on their
domains: time, frequency, joint time-frequency and non-
linear [85]. These features can be extracted from the derived
signals using a single electrode. On the other hand, some
features are seen to combine many electrodes, and these have
been used in this review. Based on the notations, described
earlier [92], [93], A () € K T refers to the vector which
contains the time series from one electrode, 7 indicates the
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sample number in A while A (¢) refers to the time derivative.
A A (t) feature is represented as x, and the Matrix X =
[x1, ..., xr] comprises all features from all samples, xirefers
to the vector with a single feature, and F denotes the number
of features.

1) TIME DOMAIN FEATURES

As the EEG signals are seen to be multi-component and non-
stationary, the time domain features are not predominantly
used in the EEG analysis. However, many techniques have
been used for determining the EEG characteristic features
which describe the EEG signals, enabling their classification.
One such technique used for computing a non-stationary time
series like the EEG signals involves considering them as
many stationary segments.

a: STATISTICAL FEATURE ANALYSIS

Diykh et al. [94] proposed a few statistical analysis tech-
niques for extracting the necessary features from the 1 second
EEG epoch, which are described below:

Maximum Xz, = Max[x,] (1)
Minimum Xy, = Min[x,] 2)
Range Xrang = XMax — XMin 3
1 n
Mean Xyean = ; XI:Xi @
N 1 th
Median X, = (T+) ®)
First Quartile X ! (6)
irst Quartile = —
T AN+
N
Variation Xy, = Z(x —X )L 7
Var 1 n mean N _1
n=

Standard Deviation

n 2
Xsp = /D2 Gon = Xinean) — ®)

Kurtosis Xg, = ﬁ:(x - X ); )
Ku = = n mean (N — l)XgD
N
Skewness Xsg, = X, — X, _ 10
Ske n;( n mean) (N — l)S;D ( )
Second Quartile Xg, = m (11D

The EEG data can show a symmetric or a skewed distri-
bution. The symmetric distribution of the time series is
measured by the mean and standard deviation, while the
skewed distribution uses the median, range and quartile
for measuring the centre and spread of the EEG dataset.
However, the feature mode, which provides the frequency
values, is applied for measuring the location of the time series.
The remaining statistical features, like the variation, skew-
ness, minimum, and kurtosis, are also used for determining
the vital time series-related data [95], [96].

VOLUME 6, 2018



A. F. Hussein et al.: Focal and Non-Focal Epilepsy Localization: Review

IEEE Access

TABLE 1. Summary of the focal and non-focal epilepsy detection studies.

Classifier

Epoch/

Author/year Database Extracted Feature X . Patients Findings
Type Processing Time
Xia et al. (2015) [165] University Hospital of Bayesian Linear S-transform with Singular 820 20 The validation of Segment-based and event-based level.
Freiburg Discriminant Analysis ~ Value Decomposition (SVD) 183.07 (h) Se=96.40%, Sp=99.01%, with a FPR=0.16/h.
(BLDA) features
Songa and Zhang (2016) Collected Extreme Learning Sample entropy 10 21 Se=86.75%, Sp=83.80%.
[166] (Invasive EEG Machine (ELM) 30 (m) for each patient. Proposed classification framework faster than SVM in
recordings) training.
Sargolzaei et al. (2015) Collected K-means clustering General Linear Model Variables (9 to 90 s) 16 Classifier Acc=96.87%
[153] (GLM) based Sequential The developed approach adopting Functional Connectivity
Feature Selection (SFS). Networks (FCNs) of the EEG scalp recording system in
conjunction through graph concept of feature analysis.
Yuan et al. (2012) [167]  University Hospital of Using ELM to train The fractal intercept derived 4-s 21 The segment-based Se= 91.72%, Sp= 94.89%. For the
Freiburg Single hidden Layer from fractal geometry 179.57 (h) event-based assessment, Se= 93.85% with a FPR= 0.35/h.
Feed forward Network
(SLFN)
Xie and Krishnan (2013) University k-Nearest Neighbour Signal representation by - 10 Classification Acc=100.00 % (database from University of
[168] of Bonn University using of Wavelet-functional 21 Bonn), and Ac=99.00% (database from University of
Hospital of Freiburg linear model Freiburg). Capture discriminative random components of
EEG.
Rangaprakash ~ (2014) Collected K-means Correlation between - 16 The nonlinear recurrence plot based phase synchronisation
[169] clustering Probabilities of Recurrence 10 (m) for each patient. amount for the connectivity study in the brain.
(CPR)
Pathaka et al. (2018) University Hospital of ~ Area Under the ROC Various features Variable (2 - 5) for each 21 The finding delay and FPR for LL and MLL are 0.951,
[170] Freiburg Curve (AUC) for patient 11.903 s, 0.201/h and 0.954, 11.698 s, 0.198/h individually.
classical Line Length 1 (h) for each patient
(LL) and Modified Line
Length (MLL)
Zandi et al. (2010) [171] Collected data Threshold Combined seizure index 63 seizures 14 Se=90.50%, false detection rate: 0.51/ h, median detection
75.8 (h) delay: 7 s
Bhattacharyya et al. Bern Barcelona Least-Squares Support Rhythm separation using 3750 signal pairs. 5 Acc=90.00%, Se=88.00% and
(2018) [172] Vector Machine (LS-  empirical wavelet transform 160 epoch Sp=92.00%, for 50 pairs.
SVM) 80 (h) Ac=82.35%, Se=81.60% and
Sp=83.46%, for 750 pairs.
Soleimani et al. (2012) University Hospital of Neuro-fuzzy Time and wavelet domain 10 (s) for each patient 21 Acc=99.52%, FPR: 0.1417/h
[173] Freiburg features
Sriraam  and  Raghu Bern Barcelona SVM classifier with 10- 26 various features 3750 signal pairs. 5 Acc=92.15%, Se= 94.56%, and Sp=89.74%
(2017) [174] fold cross validation 20 (s) for each signal pair
Khan et al. (2017) [175] Data collected A hybrid of decision tree Convolutional Neural Variable (1-28) 28 Se=87.80% and a low FPR= 0.142/h
from MSSM and k-Nearest Neighbour Networks 135 (m) for each patient 22 A robust features set can be learned directly from scalp
A subset of the public Variable (9-42) EEG.
CHB-MIT 30 (m) for each patient
Karthick et al. (2018) Collected from SVM 19 various time and - 32 The developed scheme could warn the health care crew
[162] Montreal Neurological frequency features when a patient is hospitalised for intracerebral EEG
Institute
and Hospital (MNIH)
Martinez-del-Rincon et  University of Bonn Non-linear SVM Wavelet decomposition. 100 signal 5 The mean F1-measure displays a 10% enhancement over the
al. (2017) [176] University Hospital of Bag-of-Words (BOW) 23.6 (s) for each epoch 21 second-best ranked
Freiburg feature representation Variable (2-5) for each 5
Universitario Carlos patient
Haya (HRUCH) 3693.2 (s)
Malaga, Spain -
112.52 (h)
Niknazar et al. (2013)  University of Bonn Eastern Cooperative Time delay, embedding 100 signal 5 Acc=98.67%
[177] Oncology Group dimension 23.6 (s) for each epoch
(ECOG)

Garcés  Correa et al.  University Hospital of Threshold Relative power spectrum 89 21 Se=85.39%

(2015) [178] Freiburg Wavelet decomposition 89 (h) Long-term iEEG seizures detection

Liuetal. (2012) [179] Collected data SVM The variation coefficients 509 (h) 21 Se=94.46%, Sp=95.26%, false detection rate: 0.58/h

such as relative energy,
relative amplitude,
coefficient of
fluctuation index
Deivasigamani et  al. Bern Barcelona Adaptive Neuro Fuzzy The using of Dual Tree 3750 signal pairs. 5 Acc=99.00%, Se=98.00%, Sp=100.00%
(2016) [180] Inference Complex Wavelet Transform 20 (s) for each signal pair. The Positive predictive value (PPV) 100%, the Negative
System (ANFIS) (DT-CWT) Predictive value (NPV) 98.03% Matthews correlation
coefficient=98.04%
Chatterjee et al. (2017) Bern Barcelona SVM Multifractal Detrended 3750 signal pairs 5 For SVM Acc=92.18%
[181] k-Nearest-Neighbour Fluctuation Analysis 20 (s) for each signal pair. For k-Nearest-Neighbour Acc=91.68%
(MFDFA)
Singh and  Pachori Bern LS-SVM Discrete Fourier transform 3750 signal pairs. 5 Focal Acc=89.7%
(2017) [182] Barcelona (DFT) based filter bank 20 (s) for each signal pair. Non-Focal Acc=89.52%
Provide low computational complexity
Das and Bhuiyan (2016) Bern KNN city-block distance ~ EMD-DWT, log-energy 3750 signal pairs/ 2 (s) 5 Acc=89.40%
[164] Barcelona entropy epoch Identifying the epileptogenic zones at fast computational
80 (h) process.
Panda et al. (2010) [183] Collected SVM Wavelet energy, entropy, 500 epochs of (100 signals 5 Acc=91.20%
standard deviation per epoch)

Sharma et al. (2017) Bern LS-SVM with different Different entropy based 3750 signal pairs. 5 Acc=95.00%

[184] Barcelona kernel function features 20 (s) for each signal pair. The developed scheme can be used to recognise added
neural diseases such as: epilepsy, autism, dementia, and
alcoholism.

Sharma et al. (2016) [55] Bern LS-SVM 19 different features from 3750 signal pairs. 5 Acc=94.25%, se=91.95%, Sp=96.56% specificity.

Barcelona Wavelet based entropy Variable epoch
Aarabi and He (2012) University Hospital of - Dimension, 49 seizures 11 $e=79.9%, 90.2% with average FPR= 0.17/h and 0.11/h
[185] Freiburg correlation entropy, noise 316h respectively
level, Lempel-Ziv
complexity, largest
Lyapunov exponent

Sharma et al. (2015) Bern LS-SVM EMD with Intrinsic Mode 3750 signal pairs. 5 Acc=87.00%

[186] Barcelona Functions (IMFs) Different epoch size

Bhattacharyya et al. Bern LS-SVM Tuneable-Q Wavelet 3750 signal pairs. 5 Acc=84.67%.

(2017) [187] Barcelona Transform (TQWT) 50 epoch Can be used for complexity measure of other multivariate

20 (s) for each. biomedical signals.
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TABLE 1. (Continued.) Summary of the focal and non-focal epilepsy detection studies.

Bedeeuzzaman University Hospital of Binary linear MAD, IQR
etal. (2014) [188] Freiburg classifier

Arunkumar et al. (2017) Bern Five classifiers: Entropy measures
[34] Barcelona NBC, RBF, BFDT,

KNN, SVM and NNge

Zhou et al. (2013) [189]  University Hospital of Bayesian Linear Fluctuation index and

Freiburg Discriminant lacunarity on wavelet scales
Analysis (BLDA)
classifier
Azami et al. (2017) Bern Multi scale fuzzy Refined Composite Multi
[190] Barcelona entropy scale Fuzzy Entropy based
on the standard deviation
(RCMFEGo) and mean
(RCMFEp)
Gehlot et al. (2015) Bern Threshold EMD
[191] Barcelona

Park et al. (2011) [161] University Hospital of SVM classification using  Using of spectral power in

Freiburg double cross validation nine bands in a 20 s long
window of iEEG
Bajaj et al. (2017) [192] Bern LS-SVM Rhythm-based correlation
Barcelona features
Williamson University Hospital of SVM Eigen spectral features
etal. (2012) [193] Freiburg
Rai et al. (2015) [194] Bern K-means and fuzzy C- Ratio of AM Bandwidth
Barcelona means (BAM) and FM
bandwidth (BFM)
Zhu et al. (2013) [195] Bern SVM DPE methodology
Barcelona
Chatterjee et al. (2017) Bern SVM MFDFA-based feature sets

Barcelona

[181] k-Nearest Neighbour

Wu et al. (2017) [196] Collected database RBF-SVM PCA features selection

1 (m) for each record 21 Se=100%, FPR: 0 (for
12 patients), average
prediction time: 51 to 96 m
3750 signal pairs. 5 Ac=98.00%, Se=100%, Sp=96.00%
50 epoch Features computation time is 0.054 seconds that support the

20 (s) for each real time processing

4 s without 21 Se=96.25%, FPR=0.13/h, mean delay time: 13.8 s
overlapping
750 signal 21 The proposed approaches enhance the problem solutions of
undefined MSE and RCMSE values for short signals.
3750 signal pairs. 5 The typical mean of Euclidean distances (AMED) and
20 (s) for each average standard deviation of Euclidean distances (ASED)
are calculated from 3-D phase space plan.
interictal (at least 1 h) 18 Se=97.50%, with total 80 seizure events and a low FPR=

0.27/h and total FPR= 13.0% over a total of 433.2 interictal
hours. High sensitivity as well as specificity are achieved by
spectral power linear features from nonlinear classification.

preictal (30 m preceding a
seizure onset)

750 signals 5 Acc=99.20%. Can be appropriate conducive for surgeons to

20 (s) for each stop focal seizure at early stage
15 (s) 21 Se=85.5%, false prediction rate: 0.033/h

750 signals 5 Acc=99.02%
20 (s) for each

50 signals 5 Acc=84.00%

750 signals

100 signals 5 Acc=92.18%
20 (s) for each Acc=91.68%

Proposed method can analyse a huge EEG recordings
datasets that containing of more signals
Acc=80.76% and 75.00%

Acc: Accuracy, Se: Sensitivity, Sp: Specificity, h: Hour, m: Minute, s: Second

b: HIORTH TIME DOMAIN DESCRIPTORS

Hjorth [97] characterised the EEG signals based on the
interdependence between the EEG values. The researchers
proposed a novel technique, based on the concept of deriving
the quantifying parameters and using their efficiency for
determining their auto-correlation functions. Hjorth intro-
duced the different parameters as the descriptors of graphical
characteristic features of the EEG signals, with regards to
the slope, amplitude, and the slope spread. These descriptor
names, like, “mobility”, “activity” and ‘“‘complexity” are
retained; however, the descriptor “‘complexity” is redefined
as the “complexity of first order”. This provides an absolute
value of the spread of the slope as the standard deviation per
unit time.

¢: EEG CROSS-CORRELATION

Correlation is defined as the mathematical technique,
which is similar to the convolution process. In correlation,
the sequence between the energy of signals can measure
the similarity which is known as a cross-correlation tech-
nique [98]. If the signal correlates with itself, the resultant
sequence is known as the autocorrelation sequence. Consider
2 signal sequences, x(n) and y(n), with a finite energy. Thus,
the cross-correlation between these signals is seen as:

N—-m—1
ny (m) = Z"IO
Ry (—=m)
Wherein; m = ... —2,—1,0,1,2, ... and is defined as the
time shift parameter index or the lag; xy subscript indicates

Xpem¥n m=>0

(12)
m<0
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the sequences that are being correlated. The order of the
subscript with x preceding y indicates the direction in which
one of the sequences gets shifted, with regards to the other.
If both the x(n) and y(n) signals consist of a determinate
sample number, L, the resultant cross-correlation sequence
is seen to consist of 2M — 1 samples.

d: PRINCIPLE COMPONENT ANALYSIS (PCA)

PCA refers to a statistical technique which is used for trans-
forming the input space into a novel lower dimensional space,
while the coordinate system can be swapped using the linear
transformation. In the PCA, the axes (or the components) that
belong to the novel coordinate system are seen to be the linear
combination of the primary axes. Furthermore, the major axis
(or the principal component) represents the direction of the
maximal variation, noted in the dataset. However, the minor
axis, which is orthogonal to the major axis, is seen to charac-
terise the direction of the second biggest deviation in datasets,
and so on. Thereafter, in the new re-oriented space, a majority
of the data variation is concentrated within the initial few
components. As a result, the components which consist of
valid information regarding the data variability are reserved,
while the other components are disregarded. This reduces
the dimensionality without affecting the data accuracy in any
way [99]-[101].

The basic PCA technique is theoretically simple. Firstly,
the values of the d-dimensional mean vector, i.e., n and the
m X m covariance matrix, R, are estimated for the complete
dataset. Thereafter, the Eigenvectors and the Eigenvalues
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are figured and arranged according to the decreasing Eigen-
values, i.e., Eigenvectors, g_1 having an Eigenvalue of 6_1,
while g_2 has an Eigenvalue of §_2, etc. Then, the k Eigen-
vectors are selected, by observing the complete Eigenvector
spectrum. Usually, one dimension, which implies the inherent
dimensionality of the subspace, controls the ‘“‘signal”’. Noise
is another dimension. Finally, ak x k matrix A, with columns
consisting of k Eigenvectors is formed and pre-processed as
described earlier [102]:

X =AT(x — ) (13)

e: INDEPENDENT COMPONENT ANALYSIS (ICA)

ICA refers to a feature extraction technique that can manip-
ulate the random and multivariate signals into signals with
jointly-independent components. This method is used for
extracting these independent components from all assorted
signals. Furthermore, in this technique, the independence
refers to the fact that the data carried by a single component
is not inferred from other components. This indicates that
the independent quantities with joint probability are acquired
as a product of the probability of each component. Assume
the presence of ¢ source signals of independent scalar, such
that x_i (t), i = 1, 2, ..., c wherein, t refers to the time key:
1 < t < T. For the notational convenience, the researchers
grouped the ¢ values into vector x(t) and further assumed
that this vector has a 0 mean. Based on the independence
hypothesis, and the hypothesis of no noise, the researchers
described the multivariate density function as [103]-[105]:

Pe@)=[]_ Puo (14)

Assume that the d-dimensional data vector can be spotted
at every instant:

y () = Ax(1) (15)

Wherein; A refers to the m x n scalar matrix, while
n>m. The ICA recovers the source signals from all
detected signals. This equation is used for obtaining the real
matrix, W, as follows:

z(t) = Wy (t) = WAx(¢t) (16)

In the previous equation, z refers to the value of the
source, x(¢). The researchers aimed to compute W = AL
however, the value of A or its inverse is not known.

f: LINEAR DISCRIMINANT ANALYSIS (LDA)

The LDA method is used for generating new variables
which group the primary predictors. This can be obtained
by maximising the differences among the predefined groups,
related to the novel variable. Furthermore, the predictor
scores are combined for designing the single novel composite
variable, i.e., discriminant score. LDA also refers to an exces-
sive data dimension reduction process which can compress
the multi-dimensional predictors to form a 1-D line [106].
Finally, the researchers expected that every class displays
a normal distribution of the discriminant scores, with the
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highest probable differences in the mean scores of the classes.
Furthermore, the overlapping degree amongst the discrim-
inant score distribution is used for measuring the success
of LDA. The discriminant scores are determined using the
discriminant function, with the following form [107]:

D=wZ +wyZp +w3Z3+--- +w,Z, 17

As shown in Eq. (17), the discriminant score refers to
the weighted linear predictor combination. All weights are
calculated for maximising the difference between the mean
discriminant class scores. Generally, the predictors with
dissimilar class mean values show a larger weight; whereas
the predictors with similar class means show small weights.

2) FREQUENCY DOMAIN ANALYSIS

The spectral or frequency domain analysis refers to the
description of the details regarding the multiple frequency
components involved in signal construction. A Fourier Trans-
form (FT) process is used for computing all signal compo-
nents. Many researchers developed novel FT-based processes
for extracting the EEG features that are used in the parametric
and non-parametric techniques for determining the 1D signal
in the frequency domain. Many non-linear mechanisms are
used for generating the EEG signals. A lot of research has
been devoted to developing these non-linear methods [108].
The Power Spectral Density (PSD) technique used to analyse
the focal and non-focal EEG signals is described in Figure 4.

===Non-Focal

U : —Focal

Power Spectrum Density (dB/Hz)
3 3

L i I
0 20 40 a0 80 100 120 140
Frequency (Hz)

FIGURE 4. The Power Spectral Density for the focal and non-focal EEG
signals.

a: NON-PARAMETRIC ANALYSIS TECHNIQUES

Polat and Giine? [109] proposed a novel technique for
epileptic identification, wherein they initially computed
the autocorrelation between the time sequenced dataset.
In Step 2, the power spectrum was estimated by applying
FT processes to the autocorrelation sequences. The Welch
technique was used for estimating the average value over
a period of time, for determining the PSD values. If the
available data derived from the signals comprises of sample
x(n) wherein n = 1,2, ..., N, the periodogram spectra can
be estimated as follows:

2

~ 1 -
Prer (f) = ‘ZLI x(me " (18)
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Here, Ppeg (f) refers to the periodogram power estima-
tion. Based on the Welch frequency estimation technique,
the signals can be separated into the overlapping fragments,
and each data fragment is windowed, all periodograms are
estimated and averaged. x;(n), [ = 1, ..., S refers to the data
segments, with M as the length of every segment. A 50%
overlap is generally selected. Finally, the Welch spectrum is
estimated as follows:

A 1 RN

Puthy =32 P

. 11 |2

P =5 ‘Zf_l v (e (19)

Here P (f) refers to the periodogram estimation of the
I, segment, v(n) denotes a data-window, P = average of v(n),
ie, P = 1/M Zﬁ/lzl lv(n)|%; P, (f) refers to the Welch
PSD value, M denotes the length of every signal fragment
(segment); while S denotes the segment number.

b: PARAMETRIC ANALYSIS TECHNIQUE

The main disadvantage of using the non-parametric tech-
nique is the spectral leakage because of the windows. This
limitation can be overcome by the model-based power spec-
trum or the parametric methods. Also, compared to the non-
parametric technique, the parametric allows better frequency
resolution. In the parametric process, the signal was consid-
ered as a random stationary process. Then, the signal was
modelled as the filter output, with the noise as its input.
Thereafter, the corresponding filter parameters were deter-
mined. The Auto-Regressive (AR) model is a parametric
process which interprets the signal as the linear combina-
tion of its earlier activities in addition to the uncorrelated
noise [85], [110], [111], as follows:

V4
e = Zj:O ijifj (20)

where A; refers to the model coefficient matrix, p = model
order, x; = input EEG signal, while ¢; = multivariate 0 mean
uncorrelated vector. Furthermore, the A; matrix was obtained
after solving the linear equation, m x p:

Z;’ZOAjR(j-k)z—R(—k), k=1,....,m (1)

Wherein; m = no. of channels, p = calculated order
of AR model, R(k) refers to the covariance matrix biased
values. The researchers carried out the AR spectral analysis
for the EEG signal dataset employing the technique proposed
by Franaszczuk ef al. [112] and Fernandes et al. [113].

3) TIME-FREQUENCY ANALYSIS

The primary objective of using the Time-Frequency Distri-
bution (TFD) analysis is to derive a function which char-
acterises the energy densities of the signals in the time and
the frequency domains. Intermediate Frequency (IF) and the
Spectral Delay (SD) are common terms used in the TFD
analysis. IF represents a local maximal frequency at a specific
time which corresponds to the sine wave frequency for the
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best-analysed signal. On the other hand, SD refers to the esti-
mation of the frequency-time arrival for the combined time-
frequency example. The TFD analysis is used for indicating
the time and the frequency laws for every signal component
within the time-frequency domains. This simplifies the IF
and SD calculation. This process also provides information
regarding the amplitude and the duration of every signal
component, along with its instantaneous bandwidth which
refers to the IF surrounding the spread spectra [114].

a: DISCRETE WAVELET TRANSFORM (DWT)

The Wavelet Transform (WT) analysis is an important and
crucial in automated process of seizure detection and has
been used in many studies. Based on the Wavelet Anal-
ysis [23], the signal is characterised by the set of linear
combination of functions, which are acquired after expanding
and translation the individual function. This single function
is identified as the mother wavelet and can be used for
interpreting the primary signal into a few sub-signals which
are half its spectra and size. In the case of the Discrete
Wavelet Transform (DWT), all scaling and translating factors
are expressed as the power of 2. DWT uses some Quadrature
Mirror Filters (QMF), which are known as the high-pass and
the low-pass filters. In the DWT level 1, the input signal
is passed over the conjugate low and the high pass filters,
simultaneously [115]. The output achieved is in the form
of coefficients, called the wavelet coefficients. The result
obtained from the low-pass filter, called approximation, gets
sub-decomposed, while the output from the high-pass filter,
called detail, is not sub-decomposed.

This process is repeated recursively to generate a single-
sided, pyramid-like structure. It is very important to select the
appropriate no. of decomposition levels and mother wavelet.
The decomposition level number is selected according to
their dominant frequencies. The mother wavelet function is
selected from the Daubechies wavelets after a visual exam-
ination. In their study, Tzimourta et al. [116] proposed a
novel automated seizure detection technique based on the
WT analysis for decomposing the 2 epoch segments into
5 wavelet decomposition levels. Thereafter, the necessary
features are submitted to the SVM classifier for the clas-
sification. Figure 5 describes the wavelet decomposition
process [114].

FIGURE 5. Wavelet decomposition process.

b: SPECTROGRAM
A spectrogram distribution denotes a single processing tech-
nique which can be used for analysing the multicomponent
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non-stationary signals. This technique extracts several frames
from an analysed signal, having a moving window, over a
period of time. Every extracted frame is stationary and the
FT is applied. A spectrogram distribution can be defined as
follows [117]:

2

P(t,w) = TOTg () h(x — 1) dr (22)

1

In their study, Stamoulis et al. [118] applied the spectro-
gram distribution for detecting the onset of new focal EEG
seizures. This process applies high-frequency neural network
modulations, for analysing the EEG signals from the frontal
and temporal lobes. The limitation of this method is that it
uses finite-sized windows. A narrow window can provide
a low frequency but a better time resolution. On the other
hand, wide windows generate poor time resolution but a better
frequency resolution. However, the wider windows violate
the stationary conditions [119].

¢: THE EMPIRICAL MODE DECOMPOSITION (EMD)

An EMD process is a type of adaptive technique that analyses
the non-stationary and non-linear signals [120]. This process
comprises of a data-driven and local separation of signals in
slow or fast oscillations. The EMD process aims to decom-
pose the signals into the Intrinsic Mode Functions (IMFs).
In the past few years, novel processes were recommended
for the classification and analysis of the focal epileptic EEG
seizure signals based on the EMD. The average frequency of
the IMF was used as a factor for identifying the differences
between the ictal and the seizure-free EEG signals [121].
The normal and the epileptic seizure EEG signals were
compared using the Hilbert weighted frequencies for the
different IMFs [122].

The EMD process is an adaptive, simple and a nonlinear
process which provides variability in a specific time
series [123]. This process generates a few IMFs that are
frequency and amplitude-modulated (AM and FM) waves.
The scalp EEG seizures along with their 13 IMFs have been
described in Figure 6. It can be seen that the specific IMF4,
5 and 6 oscillations appeared during the time of the seizure.

Hence, these functions are applied for the seizure detec-
tion. The specific frequencies appear in varying modes as
the EMD process depends on the frequency of the EEG
signal. This distinguishes the EMD process from the DWT
technique.

4) NON-LINEAR TECHNIQUES
The frequency domain processes determine the rhythmic
oscillations within the signals but are restricted by their
inability to detect the nonlinear coupling or the phase locking
amongst the harmonics within that spectra [124]. All biolog-
ical systems are effectively described based on the nonlinear
processes, which is also applicable for the EEG signal
analysis.

The variations in the EEG signals are not easily noted
by visual inspection alone since they are very chaotic
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FIGURE 6. EEG IMFs Decompositions.

and variable in nature. Hence, an automated system must
be developed that can categorise the various sleep stages
using the signal processing methods based on a statis-
tical analysis of nonlinear and linear characteristics of the
EEG signals. The time and the frequency analysis cannot
provide very accurate results since these processes cannot
detect the minute data from the EEG signals owing to their
nonlinear and non-stationary status [125]. The nonlinear
dynamics are used for sleep EEG signals for differen-
tiating the various sleep stages. Chouvarda ef al. [126]
analysed the different sleep stages using fractal dimen-
sions, approximation and sample entropies. These methods
showed a variation in the features at differing sleep
stages.
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a: SPECTRAL ANALYSIS EIGENVECTOR TECHNIQUES

The Pisarenko method is used for computing PSD. It consists
of sharp peaks that localised at expected frequencies [127].
Besides, Polynomial K (f) holds Os on a unit circle and is used
for estimating PSD:

K(f) = ZZ:O age 2k (23)

wherein K (f) is the necessary polynomial, a; = coefficients
of the polynomial, and m = order of the Eigen filter K (f).
This polynomial is expressed as an autocorrelation matrix, R,
for the input signal. Assume that white noise is used in the
signals:

R=E {x(n)* ~x(n)T} = SPS* + 21 (24)

where x(n) denotes the detected signal; S denotes the path
of the signal in the dimension matrix (m + 1) X B;
while, B refers to the signal subspace dimensions; R denotes
an autocorrelation matrix for the elements (m + 1) x
(m+1); p refers to the signal power, of the dimension matrix,
(B) x (B); ov* denotes the power of the noise; * refers to
the complex conjugate; I/ is an identity matrix; # denotes
the complex conjugate transposed; T refers to the transposed
matrix. S is a signal route matrix, which is represented as:
S = [SwiSwy,...,Swr], i = 1,2,...,B. For all the
practical applications, the autocorrelation matrix, R, must be
constructed using the autocorrelation lags:

1

Rk NIk k k=0,1
()_ﬁznzo x(n+k) - x(n), =0,1,....m

(25)
Wherein; k denotes the autocorrelation lag index; and the

no. of the signal samples are denoted by N. Thereafter, the
autocorrelation matrix gets transformed to:

RO) R R R (m)
R(1) RO RO Rm—1)
Rky=| R@ R1) RO R(m—2)
Rm) R@m-—1) R (0)
(26)
b: ENTROPY

Entropy is defined as the measurement of the rate of data
generation which is used for separating the beneficial signals
from the background noise. Generally, a higher entropy value
is seen to correspond to the increased unpredictability and
irregularity, whereas a lower value indicates a higher regu-
larity. Furthermore, entropy indicates a nonlinear index which
reflects the chaos in the system [128], [129]. Entropy is
applied for analysing the epileptic EEG signals and detecting
the occurrence of an epileptic attack or for inspecting the
seizures. Entropy is classified into spectral or embedding
entropy. The spectral entropy is defined as the entropy which
is calculated from the amplitude component of a power
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spectra in the signal; while the embedding entropies are
directly estimated using a time series [130].

The mean spectral entropy is based on the power spectrum
of a signal and is used for estimating the time series regularity.
Also, the amplitude component of a power spectrum is used
for computing the probabilities for estimating the entropy
value. The spectral entropy [131] can be assessed with the
help of the normalised Shannon entropy that can quantify
the spectral complexity in a time series. FT is applied for
deriving the PSD of the datasets time series representation.
PSD denotes the power scattering of the signal based on
the signal components (frequencies) [132]. For obtaining the
power level of every frequency, the FT for the signal can be
calculated, while the power of the frequency factor can be
denoted by the Py. The normalisation of power is derived by
calculating total power (3 Pr) and then, dividing the power
value, consistent to the frequency of ) Py as:

<L 27
pr =
2Py
Entropy can be computed by power multiplication in every
frequency and logarithm of the inverse of that power value.
Thereafter, the spectral entropy is calculated as follows [133]:

Engy =Y pylog L (28)
pr

The embedding entropy values are seen to provide a lot
of information regarding the manner in which the EEG
signals fluctuate with respect to time. This is carried out by
comparing the time series using a delayed version of the
same [134]. A popular embedding entropy technique includes
the Kolmogorov-Sinai (KS) technique, which estimates the
signal uncertainty with regards to time [135] using the
embedded signals. KS entropy also refers to a metric entropy
value that is O for the non-chaotic signals and is >0 for the
chaotic signals. The entropy value is determined by locating
the points which are nearer to one another on the trajectory
in space but are not correlated with time. The divergence rate
of the point pairs generates the KS value.

Other entropy approaches used for the process of feature
extraction from EEG signals are Approximate Entropy [136],
Sample Entropy [137], Renyi’s Entropy [88], Permuta-
tion Entropy [138], Tsallis Entropy [139], Kolmogorov
entropy [140], Fuzzy Entropy [141] and the Normalised
Bispectrum Entropy [124].

5) GENETIC ALGORITHM

It is significant to select suitable features for improving the
accuracy and efficiency of the classifiers. Different feature
selection techniques, like the wrapper-selection and filter-
selection, were developed. In one study, the researchers
applied the GA and Fisher discriminant analysis (FDA), for
the variable range of the EEG signals, and compared their
performance. GA is a type of optimisation technique which is
based on the Darwinian evolution theory and genetics [142].
The conventional gradient-based optimisation processes are
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seen to search for an optimal point in the multidimen-
sional optimisation surface by iteratively refining the solu-
tion. However, GA enables the parallel collection of the
candidate solutions. Using this technique, GA shows a high
probability of searching for a global optimum point instead
of the conventional techniques that get stuck at the local
optima near the primary prediction. The initial individual
population in the GA technique represents a probable solu-
tion for the optimisation problem. Thereafter, the evolution
procedure is based on the selection, crossover and muta-
tion. As per the Darwinian principle of ‘the survival of the
fittest’, this GA process can derive the optimal solutions after
carrying out iterative computations. Crossover and muta-
tions maintain the population diversity. GA handles the huge
search space effectively and avoids the local prime solutions
after combining the exploration as well as the exploitation
processes [143]-[145].

Ill. CLASSIFICATION ALGORITHMS

After carrying out the steps for detection, and presuming that
all extracted features can distinguish between the seizure and
non-seizure EEG states, the data is used for classifying the
features into their respective categories. Hence, a decision-
making step and data classification in the feature space is
necessary. This is a global technique which includes a feature
selection stage and another step wherein the features can be
combined for optimising the system performance.

The data classification aims to define the boundaries
between the classes and label them according to their features.
The data classification classifier can be simple like altering
the feature thresholds or complicated like using the machine
learning algorithms. In the multidimensional feature space,
the margin is converted into a separate hyper plane. This
process aims to determine the hyper planes which have a
maximal distance from the classes [17].

Many classification and clustering techniques were devel-
oped, like the association rules, LDA, ANNs, Hidden Markov
Modelling (HMM), fuzzy logic, k-means clustering, and
SVMs, for epileptic seizure detection. Many studies have
described the mathematical basis of all these techniques. This
study presents a brief overview of these techniques. The
association rules can be used for inspecting the feature set
and establishing a simple relationship between all features.
Thresholds help in making decisions. The Monitor algorithm
was proposed by Truccolo ef al. [146]. This algorithm used
the thresholding of the waveforms into a feature space for
detecting the focal epilepsy seizures of the single-neuron
dynamics. Furthermore, Zijlmans et al. [147] investigated
the ictal and the interictal high-frequency oscillations and
proposed a threshold-based method for determining the inter-
ictal spikes. In their study, Niederhauser et al. [148] used
a time-frequency feature threshold. Mitra ef al. [149] deter-
mined a set of rules (varies from the threshold) for the artefact
rejection, along with those for estimating the general seizure
quality.
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For the complex relationship between the features, auto-
mated techniques, like the LDA [150], fuzzy logic [151], and
k-means clustering [152], [153] have been used for detecting
the epilepsy seizures. The popular classifiers are ANN and
SVM-based.

ANNSs can be defined as a mathematical example based
on the low-level functions of the biological neurons. In the
ANN technique, the knowledge regarding the problem can
be distributed in every functional neuron and the connecting
weighted links between the neurons. This neural network
must be appropriately trained for generating the neces-
sary mapping. During the training stage, the feature vectors
act as the input while the network can adjust the vari-
able parameters, biases and the weights, for establishing
the relationship concerning the input and output values.
Based on the network’s ability to learn from the estab-
lished patterns, the ANNSs help in classifying the epileptic
seizure detection [154] or spikes [155]. Similar to the ANNs,
the SVM-based processes are also applied for epilepsy
detection by determining the hyperplanes for the multidi-
mensional data. The SVM process aims to determine the
hyperplane within a feature space which optimally sepa-
rates 2-more classes. Furthermore, the SVM technique can
generate a specific solution for minimising the expected
misclassification-related risks. The training algorithms apply
the solutions derived from a popular quadratic programming-
related optimisation problem, which is computationally
effective and generates global solutions [75].

IV. MACHINE LEARNING REGULARISATION

After classifying the data, a regularisation function has to
be added for decreasing the false alarms. For this purpose,
techniques like Kalman filtering [156] and firing power
method [157], which consider the temporal signal dynamics
are used. They aim to improve the classifier specificity
after restricting the false alarm generation. The firing power
method measures the no. of predictions which are cate-
gorised as preictal during SOP. If this value is higher than
the normalised threshold, it generates an alarm. Many studies
used the firing power process and reported satisfactory
results [158]. Teixeira et al. [159] used a fixed threshold
of 0.5; where some others [160] compared various thresh-
olds (0.10, 0.15, ..., 0.85) and noted that the lower threshold
values led to low FPRs. No one reported optimal threshold
values. In one study, the researchers used the AR modelling
coefficients as SVM input values and compared the perfor-
mance of their technique with the non-regularised classifier
using iEEG signals derived from 9 patients in the University
of Freiburg database. They noted a significantly improved
performance; however, they did not conduct any statistical
testing. Kalman filtering is also used in many reports [156].
Park e al. [161] used the 2™-order discrete-time Kalman
filter for smoothening the undesired SVM output fluctu-
ations. Teixeiria ef al. [160] compared these regularisation
methods and noted that the firing power technique used a
conservative approach while raising alarms. The researchers
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stated that it was a better technique as it could main-
tain a longer memory of the classification dynamics and
created time constraints for raising alarms. They also noted
that the Kalman filtering raised many alarms, which was
impractical [160].

V. DISCUSSION

A lot of effort and time has been directed towards improving
the prediction of the seizures; however, the conversion of the
existing methods into the development of clinical devices has
not been possible. Majority of the algorithmic and analyt-
ical studies have indicated that the physiological transition
to a seizure state is not a random process and a specific
build-up is responsible for seizure development. The hetero-
geneity between all studies indicates that the ictogenesis
mechanisms are very complicated and hence, appropriate
precaution must be taken for dealing with this seizure state.
In this study, the researchers have summarised, analysed
and discussed all the progress which has been made in the
focal epileptic seizure prediction field. Out of all the various
techniques, the nonlinear and bivariate linear methods have
been very promising for seizure prediction. Though a few
of the nonlinear univariate methods can be predictive, they
have been unable to show a better performance than the
linear methods, which has limited their application in the
focal seizure prediction studies. The bivariate methods can
be very helpful in determining the brain dynamics. The phase
synchronisation techniques show a better predictive capacity
than the nonlinear bivariate methods.

As mentioned here, many researchers applied the
WT or the entropy-based techniques. WT, in combina-
tion with other methods, like chaos, can decompose the
EEG signal into different fixed scales, associated with the
signal’s sampling rate, for differentiating between the normal
and the epileptic EEG signals, as described in Table 1.
The entropy-based processes are used for quantifying the
level of the disorder (or order) in the EEG signals, during
the focal epileptic seizure. Furthermore, the EMD process
has been used as an alternative to the traditional time-
frequency methods. It is seen to be an adaptive decom-
position process which depends on the frequency of the
EEG signal (rather than the fixed cut-off frequency used
in the WT). In the past few years, epilepsy detection is
based on many tensor models and other modelling techniques
which analyse the multimodal data and gather a lot of data
regarding the complex behaviour. This technique helps in
analysing multiple domains simultaneously, like the 3-way
array epilepsy feature tensor that has the time samples x
frequency x electrode modes.

A combination of the univariate and the bivariate features
is a good alternative. Many studies aimed to investigate
the cross time and the frequency features, coupled in the
feature extraction block [162]-[164]. They reported satis-
factory results in comparison to the conventional spec-
tral power features. These features were based on the
univariate phase-amplitude coupling along with the bivariate
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amplitude-amplitude coupling. It would be helpful to investi-
gate other coupling types for improving the feature extraction
during the detection and prediction of the focal epileptic
seizures. Furthermore, combining many features for tracking
the preictal stage can also enhance the feature space dimen-
sions, which has increased the need to develop better feature
selection algorithms. Though many researchers have vali-
dated the performance of their classifiers using statistical
evaluation-based methods, the feature selection methods have
not been statistically tested. Hence, it is vital to evaluate
the statistical operations of the proposed feature selection
method with other methods. Many seizure prediction studies
have mentioned the need to develop better subject-specific
and individually-tailored algorithms, while some described
the main discriminative features for all issues. Furthermore,
the out-of-sample testing must be regarded during feature
selection. Also, samples must not be used for evaluating the
performance of the feature selection techniques.

Many classifiers have been studied for seizure predic-
tion. However, a comparison between them is difficult
because of heir heterogeneous input features, pre-processing,
and diverse patient data. Many researchers showed that
combining the linear and the nonlinear classification methods
can be helpful. The ANN classifiers are commonly used for
determining the patterns which are revealed during feature
extraction. These classifiers provide vital data about the EEG
seizures and help in differentiating the normal and the seizure
rhythms. SVM is a technique similar to ANN, but is easier and
faster to implement than the ANN, with comparable results.
Hence, SVMs are replacing the ANNs for seizure detection.

The epilepsy detection is based on 2 steps. Step 1 involves
the development of precise and non-invasive detection tech-
niques. The major issue noted in this step involves the identi-
fication of the artefacts that can interfere with the signal. The
other step is involved in drug delivery and neuro stimulation,
wherein the signal recording or therapy could be very inva-
sive, but the developed techniques aim to detect the onset and
precisely quantify the seizure strength.

Another issue noted during seizure detection involves
the standardisation of all techniques. Firstly, all different
metrics used for evaluating the detector performance must
be combined for homogenous comparison. Secondly, a few
guidelines are necessary for recording the EEG signals
(scalp or intracranial) and their duration (the amount of data
derived after few seconds is different from that obtained after
an hour), while implementing the algorithms.

VI. CONCLUSIONS

This critical review highlights the need to improve and opti-
mise the framework of the focal and non-focal epileptic
seizure detection techniques. Every prediction method must
be subjected to further investigation for improving the final
outcome of the proposed techniques. Furthermore, a compre-
hensive point of view must be achieved while developing the
seizure prediction block diagram, which combines the data
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acquisition and performance evaluation steps. This would
ensure a better and more realistic system performance.
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