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ABSTRACT White blood cells (WBC) play a significant role in human immune system, so WBC detection
is a meaningful work. In this paper, we propose a novel framework which combines Fourier ptychographic
microscopy (FPM) and SO-you only look once (YOLO) for WCB detection. FPM is a recently developed
microscope technology which can achieve high-resolution, wide-field, and quantitative phase imaging at the
same time without mechanical moving and phase measurement. With the FPM, we can get high resolution,
wide field-of-view blood cell images at one time. After obtaining high-resolution images, we propose
SO-YOLO as our detection method. As a convolutional neural network, the SO-YOLO outperforms the
state-of-the-art detection methods both in accuracy and speed. The proposed framework in this paper can be
used in clinical diagnose, because the experiment setup is flexible and the detection is fast. The data set in
this paper is made with FPM by ourselves. Our data set contains 1000 color high resolution images and all
theWBC has been detected and counted by a human expert. The detection results by the experts are regarded
as the ground truth. The experiment results show that the SO-YOLO performs well in detecting small objects
compared with other methods.

INDEX TERMS White blood cells, detection, Fourier ptychographic microscopy, convolutional neural
network, SO-YOLO, small objects.

I. INTRODUCTION
Imaging has become an essential component inmany fields of
bio-medical research and clinical practice. Numerous modal-
ities of medical image such as PET, MRI, CT, or microscopy
make quantitative analysis possible, which can help doctors
in researching, diagnosing, monitoring, and treating medi-
cal disorders. In medical field, the analysis of white blood
cells(WBC) is of vital importance for diagnosing diseases, for
WBC play a significant role in body’s immune system [1].
Usually, the proportion of WBC reveals important diagnostic
information which can help doctors make correct treatment
to their patients and observe curative effect. Therefore the
detection of WBC is a meaningful task [2]. However, WBC
in different stages of maturation have different shape, texture
and density, so the detection of WBC remains a challenging
problem [3]. In the past, the detection ofWBCwas completed
by hematology experts, which is unfortunately a tedious,
time consuming, subjective and error-prone work. Nowadays,
with the development of image processing technology, WBC

automatic detection is achieved and the detection is becoming
better and faster.

No matter what method is adopted for WBC detection,
the basic step is the acquisition of WBC images [4]. Usu-
ally, in order to get clear cell micrograph, we use con-
ventional microscope with 20× objective lens. However,
the field-of-view(FOV) of 20× objective lens is so small
that mechanical scanning of a specimen for detecting and
counting an adequate number of WBC is necessary. For a
blood smell, the mechanical moving is unfavorable to the
accuracy of WBC detection because it’s so subjective and
error-prone. In addition, when capturing images, the blood
smells are not always uniform in thickness, which leads to
the out-of-focus images in the thick area. So we need to
repeat the image acquisition process after properly focus-
ing the objective, which is time-consuming and boring.
The above problems imply that there exist many draw-
backs in the acquisition of blood cell images with standard
microscope.
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Here, we introduce Fourier Ptychographic Microscopy
(FPM) [5] as a solution that can figure out the problems
existing objectively in the acquisition of blood cell images.
What’s more, there are other advantages about FPM. FPM
is a recently developed computational technique [6] which
can increase the numerical aperture(NA) of a microscope
system to acquire a high resolution, wide FOV image with a
sequence of low-resolution images with no need of mechan-
ical scanning. FPM requires minor modifications to con-
ventional microscopy setup, only replacing the common
light source with a programmable light emitting diode(LED)
array and adding a Charge Coupled Device(CCD) camera.
By sequentially turning on single LED element in the matrix,
the thin specimen is illuminated with oblique plane waves
from different angles so that we can capture the correspond-
ing low-resolution images. Since the illumination source can
be regarded as plane waves, the spectrum of the specimen
is on the back focal plane of the objective lens. Differ-
ent illuminating angles correspond to different positions in
fourier domain. Though the finite numerical aperture (NA)
of the objective lens acts as a low-pass filter which lim-
its the resolution of the system, the spectrum of the spec-
imen illuminated by LED with different angles can carry
some frequency components [7]which are beyond the NA of
the objective lens. By iteratively stitching them together in
fourier domain, a high resolution, wide FOV image can be
got. Besides, the depth of focus of the microscope is extended
from 80µm to 300µmwith FPM procedure, which provides a
large tolerance to the unevenness of blood smells. Due to the
modification to the conventional microscope is minor, FPM
offers a flexible and low-cost approach compared to thewhole
slide imaging methods, which usually involve an expensive
precision mechanical stage.

With so many advantages, FPM has been applied in many
biological fields such as hematology [8], pathology [9], [10],
etc and non-biological fields like quantitive phase imag-
ing [11] within a few years. There are also many improve-
ments of FPM lately in imaging performance [12]–[14],
implementation methods [15]–[17] and imaging mode
[18]–[20]. These applications and modifications show the
great potential of FPM in biomedical observation and clinical
diagnosis.

After obtaining high resolution, wide FOV blood cell
images, the detection of WBC becomes easier. In the past
years, several work has been done in the field of WBC detec-
tion. Shitong and Min [4] proposed a detection algorithm
based on Fuzzy Cellular Neural Networks(FNCC) for WBC
detection. The detection algorithm combines the advantages
of threshold segmentation followed by mathematical mor-
phology and the fuzzy logic method. It detects successfully
only one white blood cell in an image, but for images which
contain several white blood cells it doesn’t show the detection
results. What’s more, the detection results are influenced by
the definition of iteration number, so how to decide the proper
iteration number is a challenging problem. By using a differ-
ent approach, [21] considers the automatic detection of WBC

as a multi-ellipse detection problem. The approach firstly
segments the WBC using the DEM algorithm, then it gets the
edge map from the segmented image. After that, it starts the
ellipse detector based on DE over the edge map while saving
best ellipse. Finally, by defining parameter values for each
ellipse, the WBC can be identified. This approach can detect
several WBC in one image, but it doesn’t have robustness for
large images. WBC in large images can’t be well detected,
for the background is complex. As we all know, the segment
of WBC is an important step for WBC detection. In [22],
an automatic segmentation technique of white blood cells
nuclei is proposed for the detection and counter of WBC.
The technique is based on gray scale contrast enhancement
and filtering, in whichminimum segment size is implemented
to remove false objects. This method performs well without
the condition that the nucleus of WBC is lobulated. This
disadvantage limits the detection accuracy greatly and leads
to incorrect count of WBC’s total number.

Nowadays, the vast emergence of convolutional neural net-
work (CNN) has created an impressive performance in object
detection and classification [23], [24]. Compared to the detec-
tion methods without CNN, there are obvious improvements
in accuracy and robustness. The region proposal networkwith
convolutional neural network(RCNN) was first proposed by
Girshick et al. [25] for object detection. For an image,
2000 region of proposals are extracted with selective search
in RCNN. Then it needs to perform a forward CNN to realize
feature extraction for each region of proposal obtained from
the selective search, which makes R-CNN computationally
expensive. Then the author proposed Fast-RCNN [26], which
is many times faster than RCNN both in training and testing.
A special layer named ROI layer is proposed in Fast-RCNN,
which can enhance the performance. However, Fast-RCNN
still uses selective search to extract region of proposals in an
image, which will limit the processing speed. In [27] Ren
et al. proposed Faster-RCNN , which replaced the selective
search with Region Proposal Network(RPN) for proposals
abstraction. So the processing speed is improved.

Faster-RCNN has achieved a good detection result. How-
ever, due to the 2-stage detection deep learning models
that it belongs to, the detection speed is hard to further
increase. Redmon et al. come up with a totally new idea,
named You Only Look Once (YOLO) [28], which belongs
to 1-stage detection models. As a groundbreaking method
which describes detection as a unified, end-to-end regression
problem in the field of object detection, YOLO is named
after processing a whole image at one time to obtain the
position and classification simultaneously. The training and
testing of YOLO are all conducted in a single network,
so the optimization can be carried out end-to-end directly
on detection performance. Here we propose a CNN-based
SO-YOLO framework for the detection of WBC, which are
small objects. The SO-YOLO framework is on the base of
YOLOv2, which is the improved model of YOLO. By using a
novel, multi-scale training method with prior work in YOLO,
YOLOv2 outperforms state-of-the-art methods like Faster
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FIGURE 1. The reconstruction procedure of FPM.

R-CNN and SSD while still running faster. Our network, SO-
YOLO, not only keeps YOLOv2’s advantage of fast detection
speed but also has high accuracy for the detection of WBC,
which are small objects in high-resolution images that are
reconstructed by FPM.

In this paper, we propose the combination of FPM and
SO-YOLO for WBC detection. The overall framework is
shown in Figure 3. FPM is an excellent method for lab
research and clinical detection because of its low-cost and
simple experimental equipment. Then we conduct WBC
detection on base of the reconstruction results of FPM with
the high accuracy and speed method, SO-YOLO. The exper-
iment results verified that the combination of FPM and
SO-YOLO for WBC detection is of good effectiveness.

The rest of the paper is organized as follows. In section 2,
we describe our proposed method in detail. The framework
of our method is presented, which contains FPM and SO-
YOLO. In section 3, we present a series of experiment results
and analysis. Finally, conclusion is given in section 4.

II. THEORIES AND METHODS
A. RECONSTRUCTION PROCESS OF FPM
As a recently developed optical microscopy, FPM combines
the concepts of ptychography [29], [30], synthetic aperture,
and phase retrieval [31]–[33]. With only intensity images
capturing, phase images can be got by applying phase
retrieval methods. Figure 1 is the reconstruction proce-
dure of FPM. First, initialize the high-resolution complex
amplitude distribution with the amplitude of the LR image

corresponding to the vertically incident plane wave. The
oblique planewaveswithwave vectors rm (m = 1, 2, · · · ,M)
illuminate a thin specimen o(l), where M is the total num-
ber of the LEDs, l = (x, y) represents the coordinate in
the spatial domain. Then the exit field of the specimen is
n(l) = o(l) exp(i2πrml). So the optical field exiting the lens
is F {n(l)} = O(r − rm). Here we define r = (ru, rv) as
the coordinate in the fourier domain, O(r) = F {o(l)} as the
Fourier spectrum of the sample. The complex amplitude ϕ
in the detector is the light wave that transmits to the detector.
So it is the convolution of exit wave and the spatially invariant
point spread function p(r) of the microscope system, i.e.
ϕ = n(l)⊗ p(l). In the fourier domain:

F(ϕ) = F{n(l)⊗ p(l)}

= F{n(l)} ∗ F{p(l)}

= O(r − rm)P(r)

= S(r − rm) (1)

S(r − rm) = O(r − rm)P(r) (2)

where P(r) = F{p(l)} is the pupil function of the image
system. S is the initialized high-resolution spectrum that we
want to get.

Second, corresponding to a certain illuminating angles,
a low-resolution complex amplitude distribution, which is
called the target complex amplitude distribution, can be cap-
tured by the interception of a certain sub-aperture of the
initial high-resolution spectrum with the pupil function of
the objective lens. The following is how producing the target
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FIGURE 2. The Architecture of SO-YOLO.

complex amplitude distribution:

Se(r − rm) = S(r − rm)P(r) (3)

se(l) = F−1
{
Se(r − rm)

}
(4)

where the superscript e represents the target spectrum and
target complex amplitude distribution that wait for update.

Third, maintain the phase of the target complex amplitude
image unvaried and update the amplitude part of the target
complex amplitude image with the actual intensity mea-
sured at the corresponding illumination angle. The amplitude
update formula is

su(l) =
√
I cm(l) ·

se(l)
|se(l)|

(5)

where su(l) is the updated target complex amplitude dis-
tribution, I cm(l) is the actual measurement of the intensity
corresponding to the certain LED. The superscript c indicates
the captured image.

Fourth, capture the spectrum of the updated target complex
amplitude image using the Fourier transform and replace
the corresponding subregion of the high-resolution Fourier
space. The update formula is

Su(r − rm) = F{su(l)}P(r) (6)

Fifth, repeat the above steps for all illuminating angles.
Finally, steps 2-5 are repeated until the solution converges.

B. DETECTION METHOD BASED ON SO-YOLO
1) PRINCIPLE OF YOLO AND YOLOV2
In today’s detection systems, better detection performance is
often accompanied by a larger neural network or the inte-
gration of multiple detection models. The goal of YOLO
is high-precision real-time monitoring, so it is expected to
improve positioning errors and low recall without increasing
the network and reducing accuracy. Different from the 2-
stages detection method, YOLO’s network uses features from
the whole image to predict each bounding box. After being
resized, the input images are divided into N ∗ N grid cells.
Each grid cell is responsible for the object whose center falls
into it and predicts M bounding boxes. In YOLO, there are
5 predictions for each bounding box, which are x, y, w, h
and confidence. x and y are the coordinates of the bounding
box’s center which is relative to the bounds of the grid cell.
w and h are the width and height of the box relative to the
full image. Confidence is defined as Pr(Object) × IOU truth

pred ,
where IOU is the intersection over union between the pre-
dicted box and any ground truth box. In YOLOv2, which is
the improved model of YOLO, each bounding box predicts
C conditional class probabilities, in addition to the above
five parameters. Here C is the number of object types that
we detect. So, when testing , we can get the product as
follows,

Pr(Classi|Object)× Pr(Object)× IOU truth
pred

= Pr(Classi)× IOU truth
pred (7)
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FIGURE 3. The overall framework.

Every bounding box can get a class-specific confidence score,
which contains both the class and location information. Then
after the network, we can get one bounding box for each
object. The multi-part loss function in YOLO includes coor-
dinates, size and class information of bounding boxes:

λcoord

N 2∑
i=0

M∑
j=0

=
obj
ij [(xi − x̂i)

2
+ (yi − ŷi)

2]

+ λcoord

N 2∑
i=0

M∑
j=0

=
obj
ij [(
√
wi −

√
ŵi)

2
+ (
√
hi −

√
ĥi)

2

]

+

N 2∑
i=0

M∑
j=0

=
obj
ij [(Ci − Ĉi)

2
]

+

N 2∑
i=0

=
obj
i

∑
c∈classes

(pi(c)− p̂i(c))
2

(8)

Inspired by GoogLeNet model, YOLO’s network architec-
ture contains 24 convolutional layers and 2 fully connected
layers. 1 × 1 convolutional layers are adopted followed by 3
× 3 convolutional layers to reduce the parameter number. But
the fully connected layers in the last two layers of the network
limit the size of input images. So the fully connected layers
are replaced with convolutional layers in YOLOv2. As the
improved version of YOLO, a new classification model is
used as the base of YOLOv2, which contains 19 convolu-
tional layers and 5 maxpooling layers. When training for
detection, the last convolutional layer is replaced with three
3 × 3 convolutional layers which all have 1024 filters.

2) WBC DETECTION WITH SO-YOLO
WBC are small objects in blood cell images so WBC
detection is difficult. Many detection methods such as
Faster-RCNN and YOLO, perform badly in small objects
detection. With some considerable improvements in the orig-
inal framework of YOLOv2, our proposed SO-YOLO can
solve this problem perfectly. The SO-YOLO network struc-
ture is shown in Figure 2.
One of the modification in our work is the scale that

we change when training. In order to detect well for

small objects, the size that the input images are resized to
before entering the network is enlarged. The framework of
SO-YOLO downsamples by a factor of 32, so we pull from
the following multiples of 32: 448, 480,. . . , 768. Compared to
YOLOv2, the size in our detection method is improved a lot.
Therefore, the largest option is 768× 768 and the smallest is
448× 448.When training, the network is resized to a random
dimension every 10 batches. The multi-scale training makes
our network be robust to running on images of different sizes.

As shown in Figure 2, SO-YOLO network consists
of 26 convolutional layers and 5 maxpooling layers. All the
convolutional layers employ a kernel of 3 × 3 or 1 × 1 with
a padding size of 1. The addition of convolutional layers
compared to the original network can improve the abstract of
image feature. The downsampling is conducted by maxpool-
ing layers so we can get feature maps of different dimension
size, which contain different feature information of the image
and our small detection objects,WBC. Aswe know, the larger
the size of the feature map, the more detailed white blood
cell features we can get. The smaller the size of feature map,
themore semantic informationwe can get. Therefore, in order
to detect small objects better, we concatenates 52 × 52 fea-
tures, 26× 26 features and 13× 13 features with passthrough
layers. By stacking four adjacent features into different chan-
nels, we turn the 52× 52× 32 feature map into a 13× 13×
512 feature map. By stacking adjacent features into different
channels, we turn the 26 × 26 × 64 feature map into a 13 ×
13 × 256 feature map. Then we concatenate the 13 × 13 ×
512 feature map and the 13× 13× 256 feature map with the
original 13 × 13 × 1024 feature map, which turn out 13 ×
13 × 1792 feature map. Then the expanded feature map acts
as the input of the last convolutional layer. The combination
of multi-resolution features makes our network detect better
for small objects.

When an image is passed through the network of SO-
YOLO, it extracts global features based on the entire image.
The division of the image into NxN grid cells is an important
step for the detector. Big objects may occupy several cells,
so the detection will be accuracy and easy. But for small
objects, such as our detection targets, WBC, there may be
some difficulties in detecting them. The size of one white
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FIGURE 4. (b1) and (c1) are enlarged region of interest. (b2) and (c2) are monochrome high resolution images which are the reconstruction results of
FPM. (b3) and (c3) are color high resolution images. (b4) and (c4) are color low resolution images that are synthesized from monochrome low resolution
images of three channels.

blood cell compared to the high resolution blood cell image
is so small that it can’t occupy one cell, so some WBC may
be missed in the detection. In order to improve detection
accuracy, we propose to increase the number of divided grid
cells when detecting. The original network divides the image
into 13 × 13 grid cells. We divide the input image into 15 ×
15, 17 × 17 and 19 × 19 gird cells respectively and run the
detector. Then by doing experiments for different division,
we can find that the more we divide the image, the more
accurate the detection is. So we choose 17 × 17 as a good
tradeoff between detection speed and detection accuracy.

When detecting, the size of input image is 544× 544. After
the network of SO-YOLO, it is downsampled by a factor
of 32, so the size becomes 17× 17. The input image is divided
into 17 × 17 grid cells. Each grid cell is responsible for the
object whose center falls into it and predicts K bounding
boxes. There are several parameters for every box, which
contain x, y, w, h and class. Here class indicates the number
of object class that we detect. The location prediction of the
bounding box is relative to the grid cell. What’s more, for
stability, logistic action is used to constrain the network’s
prediction between 0 and 1. 5 coordinates are predicted for
each bounding box in the network, xp, yp,wp, hp, cp. If the
cell grid is offset from the top left corner of the image by
(xc, yc) and the width and height of the bounding box prior is
wr , hr , then we can get the predictions as following,

x = s(xp)+ xc
y = s(yp)+ yc
w = wr · ewp

h = hr · ehp (9)

What’s more, the confidence is,

Pr (object) ∗ IOU (b, object) = s(cp) (10)

Here b represents the predicted box. The above location
prediction make the network more stable. In our network,
K = 5, and we only detect WBC, so class = 1. Therefore,

the output of the network is N × N × K × (5 + class) =
17 × 17 × 5 × (5 + 1) = 17 × 17 × 30. By predicting
17 × 17 × 5 = 1445 boxes, we can detect any white blood
cell with a optimized box.

Figure 3 shows the overall framework of our system. Our
system takes advantage of both FPM and SO-YOLO network.
For a blood cell smear which needs testing, we firstly obtain
its wide field-of-view, high resolution image with FPM, then
the image is delivered to SO-YOLO network for detection.
The whole process is not only fast but also accurate. What’s
more, the cost of our system is low because our setup is only
the minor modification of the conventional microscope. The
above advantages make our system great potential in the field
of clinical medicine, hematopathology, etc.

III. EXPERIMENTAL RESULTS AND COMPARISON
A. EXPERIMENTAL SETUP
The FPM setup is a conventional microscope which replaces
its common light source with a programmable light emitting
diode(LED) array.

As shown in Figure 5, there is a real experimental system
that we built for the work. We choose the Nikon ECLIPSE
Ni-U microscope as the experimental microscope, which
has CFI60 infinity optical system. The objective lens of the
microscope can correct chromatic aberration across the wave
length from 435nm to 850nm. Here we use the four times
objective(0.13NA) to capture the low resolution images.
Connected directly to the microscope is a pre-photographic
science grade CMOS(sCMOS) camera named Andor Zyla
5.5. The Zyla 5.5 uniquely offers both Rolling and true
Global Shutter exposure modes. The high sensitivity and
wide dynamic range are especially beneficial to our image
capture process since only one LED is lightened at a time.
The light source of the microscope, which is 100mm away
from the sample, is replaced with a 16 × 16 LED array of
which only 13× 13 elements are used in our experiment. the
distance between each LED element is 8mm. The LED array
is controlled by an Ardruino circuit board which is connected

VOLUME 6, 2018 51571



X. Wang et al.: SO-YOLO-Based WBC Detection With FPM

FIGURE 5. The experiment setup of FPM.

to the computer so that the code can be written to the circuit
board.

B. DATA SET MAKING
1) IMAGE CAPTURE
A high-resolution image(HRI) is the reconstruction result of
FPM with the input of 169 low-resolution images(LRIs) in
our experimental system. The training and testing images for
SO-YOLO are color images so we need to capture images
under illumination of three colors sequentially. That’s to say,
if we want to get a color HRI for training, we need to capture
169 × 3 LRIs. During image capture, The LED-array board
are controlled directly by computer withMATLAB.Wemade
a GUI window to decide the path of the obtained images,
set the exposure time and control the beginning of the image
capture process, etc. After clicking the ‘‘ start capturing ’’
button, the 169 LEDs are lightened one by one with red light,
the images under which are saved in ‘‘Red’’ file. After that,
the light of LEDs is changed to green automatically and a
‘‘Green’’ file with 169 images can be got. Similarly, we can
obtain a ‘‘Blue’’ file in which the 169 images are captured
under blue light. So far, an image capture progress is done.
Repeat the progress until we get enough pictures.

2) DATASET MAKING WITH FPM
As shown in Figure 4, the images of datasets are color
HRIs that are synthesized from monochrome HRIs of three
channels, which are obtained with FPM progress sequen-
tially. 1000 color HRIs are got after the above progress.
We prepare our own data set according to the architec-
ture of VOC datasets. We labelled these images with ’labe-
lImg’, an image annotation tool with which the annotations

containing the bounding box information of the ground truth
can be obtained. Then we converted the ground truth annota-
tion acquired by ’labelImg’ to the format accepted by SO-
YOLO. So far, the dataset has been made, which contains
1000 images and the corresponding label files.

C. EXPERIMENTAL RESULTS AND COMPARISON
The images we used for detecting are the FPM reconstruc-
tion results, which are clearer than the images that are cap-
tured under the same NA objective lens of the conventional
microscope. It’s meaningless to do experiments with images
that are not the reconstructions of FPM because the wide
FOV and the high resolution can’t be obtained simultane-
ously with conventional microscope. In order to compare and
well present the performance of different detecting meth-
ods, we first do experiments with 300 × 300 resolution
images. Due to the performance of SO-YOLO is same as
that of YOLOv2 for low resolution blood cell images, so the
comparison between YOLOv2 and SO-YOLO is temporarily
ignored here and we just present the detecting results of three
methods, a DE-based method(DED) in [21], a method based
on automatic segmentation(AS) in [22] and our proposed SO-
YOLO. The intuitive comparison of the detection results with
the three methods are demonstrated in Figure 5. (a1)-(a5)
are original color images with different forms of WBC. The
green boxes are ground truth. Figure (b1)-(b5) show the
detecting results with DED. Each red circle indicates a white
blood cell that has been detected. Figure (c1)-(c5) present
the detecting results with the black block in the white back-
ground. Figure (d1)-(d5) show SO-YOLO’s detecting results,
a bounding box selecting each white blood cell with the class
name of the detecting object. We can see that SO-YOLO has
good robustness for different shapes of WBC. What’s more,
it can detect the whole cells without selecting part of the cell
likeDED andAS as shown in (b3) and (c3). The completeness
degree of the detected WBC is important for classification
task because the features extracted from the detected WBC
have a strong influence on the performance of the classifier.
We can see easily that SO-YOLO is better than the other two
methods. In addition, For the white blood cell whose nucleus
is lobulated like figure (a1) and figure (a5), SO-YOLO can
correctly detect the cell as one target while the number that
DED or AS counts is more than one.

Since the field-of-view of the 4× objective lens is wider
than that of the 20× objective lens, the resolution of the
images that we use for detecting is large. So the ability
of detecting WBC in large images is significant. In order
to present well the detection results, we segment the high
resolution images into 1000 × 1000 images and show the
results respectively. Figure7 shows the detecting results with
the four methods. (a1)-(a5) are original images with ground
truth. (b1)-(b5) are detecting results with DED.None ofWBC
is detected with this method indicates that it can’t detect small
objects in large images. (c1)-(c5) are AS’s detection results.
We can see that as images get bigger, the background become
more complicated. This method mistakenly detects part of
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FIGURE 6. 300 × 300 original images for detecting and the the detection results with three methods. (a1)-(a5) Original images with ground truth.
(b1)-(b5) Detecting results with DED. (c1)-(c5) Detecting results with AS. (d1)-(d5) Detecting results with SO-YOLO.

TABLE 1. comparison of WBC detecting results on different scales of images between FPM+DED, FPM+AS, FPM+YOLO and FPM+SO-YOLO.

the background as WBC. (d1)-(d5) and (e1)-(e5) present the
detecting results with YOLOv2 and SO-YOLO respectively.
We can see that the detecting boxes of YOLOv2 is too
large for the detecting WBC while the detecting boxes of
SO-YOLO is suitable. As we know, the features extracted
from the detecting WBC affect the performance of the clas-
sifier, so the more suitable the detecting boxes, the better
the detection effect. (d2) and (e2) show that SO-YOLO has
higher detection recall rate. The small WBC which is near

the edge of the images can be well detected with SO-YOLO.
What’s more, from (d3)-(e3) and (d4)-(e4) we can see that
the accuracy of SO-YOLO is higher than that of YOLO.
SO-YOLO can distinguish between WBC and other objects
in the background which is similar with WBC. (d5) and (e5)
show that for the WBC which are close SO-YOLO is able to
accurately detect them. The experiment results demonstrate
that SO-YOLO has good robustness and accuracy for detect-
ing small objects.
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FIGURE 7. 1000 × 1000 original images for detecting and the the detection results with four methods. (a1)-(a5) Original images with ground truth.
(b1)-(b5) Detecting results with DED. (c1)-(c5) Detecting results with AS. (d1)-(d5) Detecting results with YOLO. (e1)-(e5) Detecting results with SO-YOLO.

The detection performance of the four FPM-basedmethods
is summarized in Table 1. Here PR is precision rate, RC is
recall rate. The definition of PR and RC are as follows,

PR =
Tp

Tp+ Fp
(11)

RC =
Tp

Tp+ Fn
(12)

Here, Tp, Fp and Fn are short for true positive, false pos-
itive, and false negative respectively. Tp means detecting
white blood cells correctly as white blood cells. Fp means
detecting other objects in the images as white blood cells
mistakenly. Fnmeans the white blood cells which are missed

in the detection. There are 1000 images that we obtained
through the reconstruction process of FPM for detecting. The
detection images include 300 × 300 resolution images and
1000 × 1000 resolution images. The WBC in the images
have been detected and counted by a human expert. So the
detection results by expert are regarded as the ground truth
for all detection images. From Table 1 we can see that when
detectingWBC in small images, DED andAS can detect well.
Our proposed method can get 100% precision rate and 100%
recall rate. What’s more, our detection speed is fast. When
detecting WBC in high resolution images, the advantages of
SO-YOLO are revealed. All the WBC can be detected with a
fast speed and the detection accuracy is high. The precision
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and recall rate have been greatly improved compared to
YOLO. However, DED can’t detect any WBC because they
are so small compared to the whole images. Due to the
complicated background of large images, the precision of AS
is also low.

IV. CONCLUSION
In this paper, we propose a complete system for WBC detec-
tion which includes FPM as image acquisition method and
SO-YOLO as detection method. The contrast results between
our method and other methods show that SO-YOLO has good
accuracy and robustness in WBC detection. What’s more,
our detection speed is fast so that it has great advantages for
clinical detection. The combination of FPM and SO-YOLO
can achieve fast detection over an image which contains all
information of a blood smear without mechanical moving.
Our experiment setup is flexible and low-cost because FPM
only needs minor modifications of conventional microscope.
All the advantages of our detection system make promise in
further applications.
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