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ABSTRACT Industrial cyber-physical systems (ICPSs) are the backbones of Industry 4.0 and as such,
have become a core transdisciplinary area of research, both in industry and academia. New challenges
brought about by the growing scale and complexity of systems, insufficient information exchange, and the
exploitation of knowledge available have started threatening the overall system safety and stability. This work
is motivated by these challenges and the strategic and practical demands of developing ICPSs for safety-
critical systems such as the intelligent factory and the smart grid. It investigates the current status of research
in ICPS monitoring and control, and reviews the recent advances in monitoring, fault diagnosis, and control
approaches based on data-driven realization, which can take full advantage of the abundant data available
from past observations and those collected online in real time. The practical requirements in the typical ICPS
applications are summarized as the major issues to be addressed for the monitoring and the safety control
tasks. The key challenges and the research directions are proposed as references to the future work.

INDEX TERMS Cyber-physical system (CPS), data-driven, system monitoring, fault diagnosis, smart grid,
plug-and-play control.

I. INTRODUCTION
In the era of Industry 4.0, the cyber-physical system (CPS)
has become the central object of investigation in both indus-
trial and academic domains [1]. From the viewpoint of system
architecture, a bridge is built between the virtual and the
physical dimensions. As a transdisciplinary topic, CPS is
receiving extensive research interests covering a wide spec-
trum of subjects such as industrial design, industrial technolo-
gies, computer science, electrical engineering and so forth.
While cyber-physical systems commonly exist in both the
industrial domain and in human daily life, this review studies
the advances in industrial CPS (ICPS), with special focus on
novel approaches to system monitoring, fault diagnosis and
control.

Typical examples of industrial CPS include the smart grid,
intelligent factory and intelligent traffic systems, where the
physical entities and the virtual cyber world benefit from
mutual association with each other [2]–[4]. A major new
challenge is that the traditional problems regarding hard-
ware, software and networked systems are correlated [5], [6].

As a result, feasibility analysis, robustness analysis, per-
formance evaluation, and performance optimization of the
ICPS monitoring and control strategies become an impera-
tive requirement to be investigated in an overall systematic
level.

In addition to interpreting the abstract concept of ICPS,
this review will discuss the recent advances based on the
practical challenges in the design of ICPS monitoring and
safety control systems and the future horizons.

Figure 1 shows the trend of research focus in recent
years. Indexed by the Web of Science core collection,
the statistics of the past five years illustrate the high qual-
ity research literature under the themes of cyber-physical
system (CPS), industrial CPS (ICPS), Industry 4.0, Internet
of Things (IoT), as well as the application oriented ones,
including smart grid, intelligent factory (intelligent manu-
facturing) and autonomous vehicles. It can be seen that the
research output in most topics has increased continuously,
with the number of journal publications in IoT surging over
8, 000 level in 2017. As a subtopic of CPS, ICPS has emerged
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FIGURE 1. Trend of research focus on related topics.

since 2013, and has received increasing attention ever after.
Among the application topics, smart grid first received most
investigations and has over 3,000 SCI core collection pub-
lications per year since 2014. Researches in autonomous
vehicles show steady growth since 2014 and have output
over 2,600 papers in 2017. By contrast, it is surprising that
the intelligent factory and intelligent manufacturing related
studies have seen the least outcome among the investigated
research areas during the past five years.

Figure 2 depicts the indexing results of IEEE publica-
tions. The journal and the magazine papers reflect the recent
advances in different subjects, while the conference pub-
lications indicate the popularity of the topics in the IEEE
community, and the number of books published reveals how
systematically they have been studied. The plots have pro-
duced results essentially in agreement with the above anal-
ysis based on the Web of Science, except that the IEEE
publications on intelligent factory notably outweigh those
on ICPS. Smart grid and IoT are the most systematically
studied. By contrast, few books about Industry 4.0 and ICPS
are seen. It is also interesting to note that autonomous vehicle
related research is the hottest topic in terms of the volume of
conference papers.

Dedicated to producing a systematic and thorough review,
the contributions of this work are as follows. Firstly, the cur-
rent status of the theoretical research and the applications
of ICPS monitoring and control are investigated. Secondly,
the novel sensing techniques that provide the primary infor-
mation used in the data-driven approaches are categorized
and compared. Thirdly, recent advances in data-driven moni-
toring, fault diagnosis and control approaches, as well as their
applications to the smart grid and the autonomous vehicles
are reviewed in detail. Fourthly, key challenges and future
research directions are pointed out.

The remainder of the paper is organized as follows.
The next section summarizes popular sensing devices and
novel techniques. In Section III, the recent advances in
the data-driven ICPS monitoring and fault diagnosis are
reviewed, with a special focus on smart grid applications.

FIGURE 2. Comparison of publication numbers in IEEE.

In Section IV, recent progress in data-driven control
strategies is reviewed. Based on the analysis of the
requirements in ICPS applications given in Section V,
Section VI proposes the key challenges and significant
topics of future research. The last section concludes the
paper.

II. INTELLIGENT SENSING TECHNIQUES
A. SMART SENSORS
In most cyber-physical systems, sensing or perception acts
as an important process of interacting with the external envi-
ronment, through which the current status of the system is
represented with quantified features. From the viewpoint of
multi-agent systems, each intelligent device can be regarded
as an agent that takes up some computing power and has some
autonomous capabilities, sharing data and information that
other agents cannot observe.
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Smart sensors are sensing devices that have digitaliza-
tion ability and digital information processing functionalities
[7]–[9]. Smart sensors generally consist of micro-processor,
electronic circuits and I/O interfaces. Compared with tradi-
tional sensors, smart sensors have greater capabilities for data
processing, storage and information transformation. Useful
functions such as automatic calibration, zero correction and
scaling of the measured signals are achieved by the micro-
processors, and thus do not require as much meticulous elec-
tronic design, debugging and testing as the traditional analog
signal based sensors do [10]–[12]. In addition, efficient com-
munication and flexible networking are also irreplaceable
features of smart sensors in order to implement standardized
I/O interfaces [13].

B. FREQUENCY DISTURBANCE RECORDER (FDR)
Frequency disturbance recorders have been developed as a
plug-and-play (PnP) device which has easy access to the
power grid by simply plugging into the 110 Volts or 220 Volts
power outlets. They collect the frequency data in real-
time and send them to the information management sys-
tem through long-distance communication (Ethernet) for the
dynamic monitoring purpose. The first generation of fre-
quency disturbance recorder is based on the GPS timing
mechanism, while the second generation is based on the
Internet timing synchronization technique.

C. SCADA
SCADA is the abbreviation of ‘‘supervisory control and data
acquisition’’. The SCADA system is a computer based pro-
duction process control and dispatching automation system.
It can monitor and control the field devices. Applications of
SCADA systems include real-time process monitoring such
as oil refining and water treatment processes, as well as
critical urban infrastructure such as the power grid and the
transportation systems [14]. As for the third generation of
SCADA systems, they can be deployed over long physical
distances and the design targets are for the distributed con-
trol tasks and large-scale networked monitoring systems. For
the fourth generation of SCADA systems, the open network
protocol plays a central role in the design of more powerful
SCADA systems, enabling cloud computing and Internet-
of-things (IoT) technologies to be employed to increase
the robustness and flexibility of the objective systems [15].
However, these open configurations bring about increased
security vulnerability and expose the monitoring systems to
various potential cyber-attacks.

D. SOFT SENSORS
Soft sensors are the software libraries or algorithms that
achieve state estimation and key-performance-indicator pre-
diction. In the data-driven process monitoring and fault
diagnosis framework, soft sensing approaches have been
developed based on data-driven observers, multivariate
analysis (MVA) and machine learning techniques.

Over the past decade, the relationship between the par-
ity vectors and the Luenberger type observer has been

extensively studied [16]. It has been revealed that there is
a one-to-one mapping from an arbitrary parity vector to a
normalized diagnostic observer if the observer dimension
is fixed. Using historical data rather than the demanding
knowledge about the systems’ mechanism models, the ‘‘par-
ity space design–observer realization’’ scheme can greatly
reduce the design effort of the diagnostic observer, which is
the core of constructing a data-driven state observer. It can
also be guaranteed that the observer achieves unbiased state
tracking and unbiased output estimation for LTI systems.

For nonlinear systems and large-scale complex systems,
the observer based approaches will lose their advantages.
In these circumstances, learning based schemes show bet-
ter performance and robustness against noises. Just-in-time
learning (JITL) and deep neural networks are some exam-
ples of the current research focus of soft sensing for non-
linear systems with robustness design against missing data,
infrequently measured key-performance-indicator (KPI) and
stochastic noise [17]–[20].

In contrast to real-time sensing, which corresponds to soft
measurement, predictive soft sensing can ‘‘measure’’ vari-
ables that traditional sensors cannot measure. This is espe-
cially meaningful for KPI oriented process monitoring and
high-level production scheduling. For instance, in the steel
production industry, the quality of steel plate rolled out of
the rollers cannot be instantly measured due to the extremely
high temperature. It usually takes a period of time before the
product is finally evaluated. Predictive soft sensing provides
the approximation of significant evaluation index before real
experimental tests are completed. To this end, various KPI
prognosis approaches have been proposed and applied to
wine production, chemical reaction process and battery health
monitoring [21]–[26]. Among these approaches, the mod-
ified partial least squares (PLS) based ones are effective in
terms of robust KPI prognosis and KPI oriented fault detec-
tion, since they can properly address the issues of high dimen-
sionality and collinearity. These algorithms were realized in
a recently published open source Matlab toolbox called the
Data based KPI oriented fault detection toolbox (DB-KIT)1.

III. ADVANCES ON DATA-DRIVEN MONITORING
AND FAULT DIAGNOSIS
A. THREATS IN INDUSTRIAL CPS
Industrial CPSs are exposed to more severe threats from
multiple sources than traditional industrial systems. This
part briefly summarizes different categories of threats with
supportive real cases.

There are external threats and internal threats endanger-
ing the industrial CPSs. Typical external threats include
hacking activities, APT (Advanced Persistent Threat) attacks
and hardware targeted attacks, while the internal ones can
be triggered intentionally by an employee or an external
contractor.

1https://cn.mathworks.com/matlabcentral/fileexchange/65348-db-kit
Or access via http://homepage.hit.edu.cn/yinshen (English version)
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While external attacks are mostly making use of the sys-
tems’ vulnerabilities, internal attacks access the central con-
trol units much more easily and can cause major breakdown
to the operations. A famous case tells about a disaffected
employee attacking the waste water treatment control sys-
tem [27], [28]. The employee worked for a company that
provides SCADA system installation service for Queens-
land Maroochy Shire Council. By hacking into the control
system and using unauthorized instructions, 800 thousand
litres sewage influxed into local parks, rivers and even hotel
lobbies. Serious damage to the environment was caused by
this shocking event.

Human error is also one of the biggest threats to indus-
trial control systems, despite being unintentional in most
cases. For example, investigations showed that the ThreeMile
Island nuclear accident started from the negligence of an
initial cleaning equipment [29]. The reactor was completely
destroyed, and the whole process took only 120 seconds.
Reports show that this event was graded as a five level nuclear
accident, caused by a series of erroneous human operations
and failing to deploy an effective fault diagnosis system.

The unsafe operation of complex industrial systems has
caused huge losses to people’s lives and property. In 1993,
an explosion that occurred at the Beilun power plant in
Zhejiang, China led to 22 deaths and 8 serious injuries.
In 2005, an explosion occurred at the Petro China Jilin
Petrochemical Corporation, resulting in serious environmen-
tal pollution, and the water supply to 9 million people in the
downstream city was cut off for five days. The large-scale and
networking of modern industry also magnifies local and tiny
failures through the control loops [30]. Based on the above
facts, reliable process monitoring and fault diagnosis system
design schemes that can be applied to large-scale processes
are urgently in need.

B. DATA-DRIVEN STATE ESTIMATION
Traditionally, state estimation approaches rely on a system
model with known structures and parameters, and are well
developed in the framework of state observers [31]. For
instance, Kalman filter is recognized as a powerful estima-
tor for linear time varying systems with stochastic noise.
However, the a priori knowledge these approaches required is
not usually available, in which circumstances the data-driven
state estimation methods are necessary.

Multivariate statistical analysis (MVA) based and subspace
aided approaches are two typical alternatives. For smart
grid state estimation, a notable property is the frequent and
significant changes in power generation and power con-
sumption [32]. Compared with traditional power grid, power
generation and consumption in smart grid is uncertain in
nature because (i) New energy, such as wind energy and solar
energy, is hooked up to the grid. These new energy sources
are seriously influenced by natural conditions. (ii) Newly
introduced scheduling of the power in the large-scale grid
re-distributes the power generation requirement. (iii) Plug-
and-play devices such as the hybrid electric vehicles bring

variability to the energy consumption end. Considering these
facts, the least square based state estimation approach has
the ‘‘local optimum problem’’, where the current state is not
suitable for the initial guess of the next state [33]. Likewise,
the gradient descent based approaches become invalid in
these cases. To deal with the above concerned problem, recur-
sive tracking techniques of the statistical properties based
on first order perturbation are used for continuous varying
process [34]. For processes with abrupt changes and strong
nonlinearity, locally weighted projection regression (LWPR)
based approaches show better performance and robustness.

C. UNOBSERVABLE ATTACKS
While some researchers are dedicated to designing reliable
monitoring systems against disturbances and uncertainties,
some others are trying to reveal the defects of the exist-
ing fault diagnosis systems by proposing potentially fac-
titious attacking schemes, among which the low-sparsity
unobservable attack is one of the most challenging types
in the anti-hacker-attack practice. Low-sparsity unobservable
attack refers to the adversarial false data injection methods
that tamper with minor measurement variables. A successful
attack will not trigger alarms when the traditional monitoring
and fault detection approaches are used, such as the bad data
detection (BDD) approach [35]. Specifically, the monitoring
and control of the smart grid requires a timely update of
the system status, which is determined based on real-time
collected meter data. There is a potential security hazard for
the smart grid when the polluted measurements from the
unprotected and easily attacked meters are used to monitor
and manage the smart grid, because the false data could
mislead the SCADA system to make wrong decisions. It is
revealed that using partial (low-sparsity) meter leakage data
could launch an unobservable attack to the smart grid. It is of
vital importance to prevent this from happening.

There has been literature reporting potential unobserv-
able attack schemes, which provides references for sys-
tem safety design before an actual attack makes use of
these defects of the monitoring and fault diagnosis systems.
Reference [36] proposed a subspace aided unobservable
attack approach using partial measurement data. It was also
shown that although such an attack triggers an alarm with the
existing fault diagnosis systems, it ‘‘launders’’ the injected
data and incriminates the normal data.

D. DATA-DRIVEN FAULT DIAGNOSIS
Traditionally, industrial systems operating in the steady
state are monitored with univariate statistical analysis meth-
ods or signal processing methods. However, these methods
fail to explore the patterns and correlation relationship among
the variables, knowledge of which is characteristic in reveal-
ing the malfunctioning in the systems. This fact is even more
noticeable for the modern large-scale complex systems with
multi-loop, multi-level coupling and correlated features [34].
Considerable efforts have to be made to monitor multiple
monitoring screens if these methods are applied in such
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systems, which introduces potential threats to the safety and
reliability of the system.

In recent years, multivariate statistical analysis (MVA)
based process monitoring and fault diagnosis approaches
have been extensively investigated. The corresponding sys-
tem design and realization procedure follows an ‘‘offline
training—online implementation’’ procedure [37]. Principal
component analysis (PCA) and PLS techniques are two
representative basis of the MVA monitoring and diagnosis
schemes [38]. For PCA, it is assumed that there exists a lower
dimensional principal component space, which represents
significant variance information of the whole dataset. This
assumption enables the monitoring of a lower dimension
principal component space rather than the high dimensional
mutually coupled variables. In PLS based schemes, optimal
decomposition of the measurement space is achieved in the
sense of maximizing the correlation between the input and
output variables [39].

In practice, for those systems where process dynamics can-
not be omitted, the performance of the basic MVA based pro-
cess monitoring and fault diagnosis schemes will be seriously
affected [40], [41]. Specifically, the normalization procedures
are no longer suitable for these processes due to the time-
varying nature of the variables’ statistics such as themean and
variance values. As a result, the estimations are biased, and
the interpretability of these statistics is weakened. To handle
the problem, the state space representation of the dynam-
ical processes is used to characterize necessary dynamics.
In this context, data-driven analytical redundancy is used to
describe the process and generate virtual estimation signals,
which are used for subsequent fault diagnosis procedures,
as well as performance analysis and evaluation [42]. It can
also be regarded as a reformulation of the fault diagnosis
system design objective: variation detection by comparing
and evaluating of the difference between the real plant and
its analytical redundancy. Furthermore, by means of the
so-called stable kernel representation (SKR), it is possible
to bridge the observer based methods with their data-driven
realizations [43].

Approaches based on fault detection filter (FDF), diagnos-
tic observer (DO) and Kalman filter have been designed for
systems corrupted with deterministic disturbances and pro-
cess faults [44], [45]. The observer based residual generation
schemes are in closed-loop configuration with a feedback
gain to be designed. Through a proper choice of this gain,
the residual dynamics can be designed to possess arbitrary
convergence rate given any initial value while suppressing
the effects of model uncertainties. Robust approaches against
unknown input signals such as disturbances have been pro-
posed based on Kalman filter. It should be noted that for data-
driven process monitoring and fault diagnosis, the parameters
of the mechanism models are not known a priori, which
indicates that the systemmatrices in the Luenberger equations
are unavailable in the design of the feedback gain L for state
tracking [46]. To handle this issue, it was reported in [16] that
these observer based residual generators can be constructed

using the relationship with parity vectors (as mentioned in
Section II-D), which can be identified using the historical
input and output data.

From the sampled data point of view, the observed vari-
ables represented in time series forms can be transformed into
a compact form where only one sample of the historical state
variables is of concern [47]. By stacking the state variables
into a compact data form, the so-called parity relation is
established. In order to achieve precise estimation of the
outputs and force the residual signals to converge to zero
under fault-free condition, the term with the state variables
should be eliminated by a parity vector orthogonal to the
coefficient matrix. All the qualified parity vectors constitute
the parity space, which is the null space of the coefficient
matrix of the state variables. Therefore, the selection of parity
vector used for residual generation becomes an important
research focus. The goal is to choose such favorable parity
vectors that lead to fault detectors sensitive to the faults
and at the same time ensures robustness to uncertainties and
disturbances. Other research efforts in this area are dedi-
cated to reducing the computational load by dimensional-
ity reduction [48] and dealing with nonuniform sampling
issues [49].

IV. ADVANCES IN DATA-DRIVEN CONTROLLER DESIGN
Industrial cyber-physical systems that have hierarchical
control architecture generally consist of four levels: the com-
ponent level, the control loop level, the functional subsys-
tem level, and the plant-wide decision-making level. The
component and control loop levels have been the subjects
of traditional control theory and the system identification
area [30], [50]. The upper decision-making levels have access
to the cyber resources so they are more ‘‘intelligent’’. By con-
trast, the lower levels have to complete their tasks under the
specifications from the upper levels. This part reviews two
categories of fault-safe approaches applicable to the lower
levels and to the higher levels, respectively.

A. PLUG-AND-PLAY CONTROL
In terms of the existing control systems, especially those with
encapsulated modules in complex control loops, equipping
them with fault-tolerant capability requires embedding addi-
tional monitors and controllers without modifying the exist-
ing ones. This requires the monitoring systems to have strong
scalability andmodularity. Plug-and-play (PnP) control aims
at designing control strategies that add new controller mod-
ules while reserving the existing ones in use (such as the
widely deployed PID controllers) [51], [52]. In practice, full-
time operating processes and live systems are frequently
maintained. Redesign of the whole system in response to
small changes is usually not feasible due to cost and com-
missioning concerns. In this sense, PnP strategies are one of
the most practically applicable alternatives to improve the
systems’ long-term performance and optimize the set-point
configuration according to the instructions from the upper
decision-making levels.
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FIGURE 3. Schematic of the idea and realization of PnP control.
(a) Existing control system (b) Controller cannot be modified due to
encapsulation (c) PnP architecture (d) PnP realization.

FIGURE 4. Complete control diagram of PnP-PMCA [53].

In [53], an advanced PnP process monitoring and con-
trol architecture (PnP-PMCA) was proposed, which is an
integrated implementation of process monitoring and con-
trol with scalable structure and modularized components.
By introducing Youla parameterization, all stabilizing con-
trollers are represented in a uniform formula [54]. This
achieves a smooth transformation from the original system
to the modified system with guaranteed internal stability.
Based on these studies, some fundamental schemes have
been proposed for observer-based residual generator design
and online configuration. In [53], the plug-in module of
process monitoring system is developed. In order to achieve
self-configuration, adaptive and iterative online configuration
approaches are proposed in [55]. The adaptive approach has
a high convergence speed, however, it carries huge online
computational load at each sampling instant. Compared with
the adaptive approach, the iterative scheme avoids the numer-
ical sensitivity problem and significantly reduces the online
computational load. On the other hand, the scheme has a
lower convergence speed. Considering the fact that the pro-
cess industries are generally corrupted with unknown distur-
bances, a reliable process monitoring scheme is developed
in [56] for stationary processes to ensure the monitoring
performance.

Another challenging problem is the online configuration of
the controllers to accommodate faults and retain the system
stability and performance. For data-driven fault-tolerant con-
trol, some passive control schemes have been developed with
the aid of predesigned fault scenarios [57]. However, passive
control improves the system robustness while introducing
more conservativeness, which limits the online performance.
In recent years, active fault tolerant control schemes have
been attracting extensive attention. Badihi et al. [58] have
extended attention to adaptive control strategies of actuator
faults. The work [59] is one of the first that proposed an active
fault tolerant scheme for uncertain strict-feedback nonlinear
systems. Kamal et al. [60] proposed a multi-observer switch-
ing control strategy for robust active fault tolerant fuzzy
control of variable-speed wind energy conversion systems.

B. REINFORCEMENT LEARNING AIDED
CONTROL STRATEGIES
Reinforcement learning (RL) is an experience based approach
to achieve (near) optimal control policy design using only
data obtained from actual observations [61]. Without an
explicit model of the system dynamics, RL keeps maintaining
updates of the value function to achieve better approximation,
based on which to select actions that approach to the long
term goal formulated by the accumulated future rewards.

For vehicle control problems, one of the major difficul-
ties to apply RL approaches in learning a controller from
scratch lies in the oversized state space. Traditional ‘‘tabular
approaches’’ estimate the value function v(s) (or the value-
action function q(s, a)) by keeping updates of values corre-
sponding to the individual states (or state-action pairs). These
approaches are no longer suitable because (1) the memory
requirement for storing the values are exponentially explod-
ing (2) values in some states could never be learned or updated
during the value function estimation phase (3) from the
incremental learning point of view, the online computational
burden is too heavy to meet the real-time requirement.

The research towards solving the above mentioned chal-
lenges fall into two directions. The first direction focuses
on the Q-learning and actor-critic learning where conver-
gence condition should be carefully discussed and the balance
between exploration and exploitation be addressed.

In [61], a Takagi-Sugeno fuzzy inference system was con-
structed to generate control signals, and a Q-estimator net-
work formulated as a time-delay neural network was used to
approximate the state-action value function. Then the param-
eters of the controller were adjusted based on theQ-estimator
network so as to maximize Q(x, a). To ensure exploration of
actions in all states, a stochastic action modifier was added to
change the actual control command. This scheme was suc-
cessfully applied to a vehicle longitudinal-control problem
which aims to maintain a safe distance of the object from
its preceding vehicle, and maintained a spacing difference
within 6 meters at all time after only 68 learning episodes.
Reference [62] proposed a batch-learning control approach
developed under the actor-critic framework where batch
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processing was designed for both value function estimation
and value function update. The value function approximator
was parameterized as a linear combination of the kernel basis.
The work suggested to share the same kernel based features
in the actor and the critic to obtain better generalization
capability. Experimental results also showed that the learned
policy (actor) processes better adaptability to multiple work-
ing conditions including road sloping and slippery pavement.

The second direction is closer to trivial solutions since
it treats RL as an optimization tool to optimize existing
stabilizing controllers with undetermined parameters to be
tuned. In this scenario, parameterization of the stabilizing
controllers and the definition of optimization goals play the
central role. The advantage is that the systems’ stability can
be guaranteed. The only concern would be the controller’s
performance. One of the possible means of Youla parameteri-
zation has gained extensive research attention and is expected
to be integrated with the fault-tolerant controllers.

V. PRACTICAL REQUIREMENTS AND CURRENT
STATUS OF ICPS APPLICATIONS
A. SMART GRID
Power grid is the electric network that provides the electrical
energy to the users. In the broad sense, power grid consists of
all the connections between the power generation end and the
customer end. The major functions of the traditional power
grid include power transmission, power transformation and
power distribution. Real-time monitoring of such large-scale
complex systems requires robust and efficient approaches,
as well as reliable measurement devices and communication
networks.

To manage the huge system of power grid, measurement
devices are installed at a great number of terminals tomeasure
and inspect the real-time voltage, current and frequency. This
open loop configuration is incapable of achieving grid-wide
fault diagnosis and energy scheduling. It should be noted
that unlike water supply systems, electrical energy is difficult
and expensive to store. Large-scale electricity storage plan is
not a economical option to compensate the excessive electric
supply at peak hours for that at low hours, and relies heav-
ily on the power infrastructure. How to balance the power
generation capacity and guarantee the supply for heavy loads
at peak hours is essential for environmental and economic
concerns.

Smart grid development not only aims at including more
supervisory equipment to enhance the observability and con-
trollability of the network system, but also extends various
forms of energy sources [63]. Compared with traditional
power grids, smart grids have the following features:

1) Network scales are enlarged with better expendabil-
ity. In the CPS framework, the local power plants
are treated as the input terminals that can serve glob-
ally. In other words, their energy can be delivered to
remote customers with less border limitation. In addi-
tion, a variety of new energy sources and types such as
wind power and solar energy are hooked up to the grid.

2) Interconnection is more complex. To achieve effi-
cient transmission, more city-wide connections will be
established and as a consequence the topological struc-
ture will be greatly changed. The number and location
of agents will change frequently.

3) Grid-wide scheduling with closed-loop control is inte-
grated. Based on the real-time information provided by
the smart monitoring devices, it is easier to redistribute
the available power resource.

4) More potential safety hazards. The smart sensors have
a decentralized physical distribution that is more vul-
nerable to hostile attack. Electrical substations at key
intersections are responsible for multiple domains.
Closed-loop configuration introduces stability issues.
New monitoring and fault diagnosis schemes are
required against hardware failure and cyber malfunc-
tioning (such as false data injection).

B. CONSTRAINED CONTROL
Another challenge to the controller design task lies in the
constrained control problem under system dynamics varia-
tion due to external environment changes [64]. Regarding
autonomous driving, the newly introduced difficulty of such
a problem mainly results from the contradiction between the
demanding high level commands and the limited ability of
low level execution. In particular, the control objectives are
set in real-time by the top decision making levels of the
autonomous system, which are oriented to the transactions
from external environment condition perception to internal
responses to adapt to variousworking conditions. By contrast,
the control loops and actuation components at the bottom
levels must guarantee the systems’ stability while trying to
achieve the tracking performance required by the upper lev-
els, which may be unachievable.

A reasonable balance and coordination among the hier-
achical cyber-physical system should be achieved. To this
end, researches in output constraint control were carried out
to deal with path following problem in [65], and trade-off
strategies for over-actuated vehicles using control allocation
laws were proposed to improve the operational efficiency and
motion control performance of the vehicle in [66] and [67].

C. INTELLIGENT FACTORY
Conventionally, the production lines in factories are yield
oriented. Given the desired specifications of final product
quality, production quantity and efficiency are the top pri-
orities. By contrast, the new generation of factories based
on ICPS aim to achieve plant-wide intelligent manufacturing
and mass customization, and the ultimate goal is oriented
to the marketing. This needs increased flexibility among the
departments and units so that data can be shared across the
levels of the multi-hierarchical architectures.

Qingdao HaierMould Corporation is the largest mould and
fixture manufacturer in China. Haier Mould Corporation is
equipped with world’s leading products, mold design, analy-
sis and processing software, as well as various kinds of high
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speedmachining center, spark machine, wire cutting machine
and many other types of professional equipment. To achieve
a deep fusion of informatization and industrialization, Haier
Mould Corporation started building smart factory based on
CPS management system since 2013.

FIGURE 5. An industrial CPS collaboration and management system.

The core of the intelligent factory is the integrated ICPS
collaboration and management system, as shown in Figure 5.
At the first stage, the production plans are input to the
collaborative platform based on higher level decisions. When
the processing tasks are updated, program preparation, tool
preparation and electrode preparation are carried out in par-
allel. In the meantime, status information of different subsys-
tems is transmitted to the corresponding sectors in charge.
Then, automatic check and automatic calibration will be car-
ried out before the raw material is pushed to the machine
tools. Throughout the process, the digital machine tools’
status is fed to the control and management center. The core
features of the intelligent mould production factory are listed
as below.
• Deep fusion of information software and manufacturing
equipment.

• Multi-sectoral collaboration and management.
• Decision support based on big data analysis.
• Improved OEE (Overall Equipment Efficiency).

D. INTELLIGENT TRAFFIC
The traditional research topics of traffic engineering have
been extremely complicated due to the simultaneous require-
ments from various subjects including systematics, engineer-
ing, law and regulations, etc. There are too many constraints
the system should fulfill. Therefore, in the general case, some
factors have to be compromised [68]. Intelligent traffic is
the central development direction of future traffic engineer-
ing. Oriented to the goal of high transportation capacity,
low traffic accident rate, low energy consumption and more
economical transport, intelligent traffic systems should make
full use of the newly built information infrastructure and
vehicles (from the hardware aspect), as well as advanced
prediction approaches and scheduling strategies (from the
software aspect) [68].

Over the past decade, the market has promoted the appli-
cations of a series of smart terminals and devices which serve
for information digitalization, data acquisition, open-loop
monitoring, etc. One of the most successful applications is
the vehicle license plate recognition system, using the reliable
pattern recognition based image processing techniques [69].
With the recognized digital plate numbers, the access infor-
mation of vehicles into a certain area can be automatically
collected. They are also used in the automatic snapping sys-
tem to record infringing vehicles, whose data are sent to the
public security website for self-serve fine payment.

For logistics companies, freight volume prediction and
route planning algorithms are also developed to maximize
the efficiency–cost ratio [70], [71]. They predict how busy
the highways and lanes are, so most traffic congestions
can be avoided, and optimal scheduling can be achieved.
However, the effectiveness of these schemes is subject to ideal
assumptions, and their performance will be greatly degraded
if the randomly occurring natural and social factors violate
the applicable conditions.

VI. KEY CHALLENGES AND FUTURE
RESEARCH DIRECTIONS
A. KEY CHALLENGES TO ICPS MONITORING
AND SAFETY CONTROL
In this paper, we have looked into ICPSs including the smart
grid, autonomous vehicle, as well as intelligent factory and
intelligent traffic systems. It can be seen that the transition
from the theoretical breakthroughs to applicable techniques
of the monitoring and control systems is urgently in need.

The existing monitoring and control schemes mostly focus
on lower level performance indices. For instance, at the con-
trol loop level, the closed-loop stability, the response time and
the tracking error are generally of concern. However, such
control loop level performance indices are insufficient in the
context of Industry 4.0. The conventional system monitoring
and control techniques are applied mostly to a few control
loops rather than the whole process. However, for large-
scale complex systems, it is more important to achieve global
stabilization and performance optimization at the plant-wide
decision making level [72]. From the overall system stability
and performance guarantee point of view, the plant-wide
oriented decisions such as a more reasonable resource allo-
cation strategy may outweigh the performance improvement
of a local maintenance action that is less urgent. Moreover,
the online learning and optimization policies are beneficial
for transparent global system management. The macroscopic
guidelines can avoid catastrophic breakdowns to the best
extent, and reduce the chance of a massive shutdown. In addi-
tion, the global performance indicators are more intuitive
and goal-oriented. It is therefore more feasible to alter the
overall economic strategy based on instructions given by the
plant-wide performance supervised monitoring and control
architecture. Such features are of great value to increase the
competitiveness in the current rapidly changing economic
environment and boost the economic benefits [73].
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TABLE 1. Traditional tasks and new challenges of ICPS monitoring and safety control.

Industrial standards and theoretical frameworks are being
established from the leading research institutes and scholars
around the world. Since the topic of ICPS monitoring and
control covers too many domains, we only summarize the
key challenges to the existing problems from a macroscopic
perspective. Table 1 compares the traditional tasks and the
corresponding new challenges in different stages of system
monitoring and control.

B. FUTURE RESEARCH DIRECTIONS
To achieve the target of plant-wide monitoring and safety
control of the large-scale complex ICPSs in a data-driven
manner, and in the face of the aforementioned challenges,
the following research topics are proposed.

• Design of data-driven fault-tolerant controllers against
unknown faults, especially for nonlinear systems, time
delay systems, and distributed systems.

• Online fault localization and isolation based on the fault
propagation analysis, with little or no a priori knowledge
of the system structure.

• Plant-wide key performance indicator supervised sys-
tem monitoring that reduces unnecessary shutdown
maintenance.

• Deep learning based data analysis against false data
injection and low sparsity unobservable attack.

• Reinforcement learning aided online optimization and
adaptive control of highly dynamic systems.

• Plug-and-play controller design (PnP-PMCA) that
reduces subsystem maintenance time.

• OEE oriented life cycle management based on key per-
formance indicator prediction and fault prognosis.

• Sensor data fusion based knowledge exploration, such
as feature selection, pattern recognition and statistical
modelling.

• Prototype system development based on microproces-
sors, FPGA based design for multi tasks, as well as GPU
acceleration for deep learning based solutions.

VII. CONCLUSIONS
Oriented to ICPS monitoring, fault diagnosis and control
tasks, this paper investigates the recent status of research
and reviews the advances in data-driven approaches over the
past two decades. Data sources and preliminary processing
and transmission are summarized in relation with the intel-
ligent sensing techniques. The new challenges in the smart
grid systems that the conventional monitoring approaches
cannot handle are pointed out. Furthermore, the data-driven
state estimation problems, unobservable attacks and recent
advances in the data-driven fault diagnosis schemes are dis-
cussed with a focus on their limitations in real systems.
Advances in the control strategies including the plug-and-
play control, reinforcement learning aided control and con-
strained control are reviewed. Finally, new challenges and
future research topics are proposed based on the practical
requirements of ICPS applications.
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