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ABSTRACT This paper addresses the problem of energy disaggregation/non-intrusive load monitoring.
It introduces a new method based on the transform learning formulation. Several recent techniques,
such as discriminative sparse coding, powerlet disaggregation, and deep sparse coding, are based on the
synthesis dictionary learning/sparse coding approach; ours is based on its analysis equivalent. The theoretical
advantage of analysis dictionary compared to its synthesis counterpart is that the former can learn from fewer
training samples—this has implications in reducing the cost of energy disaggregation. Experiments have been
carried out on two benchmark data sets—REDD and Dataport (Pecan Street). Comparison has been done
with factorial HMM, discriminative sparse coding, powerlet disaggregation, and deep sparse coding. In the
low training data regime, our method always excels over the others.

INDEX TERMS Dictionary learning, energy disaggregation, non-intrusive load monitoring.

I. INTRODUCTION
Non intrusive load monitoring (NILM) is a single channel
blind source separation problem, where the smart-meter is
the only channel that reads the total power consumption, and
the problem is to find the power consumption of individual
appliances. This means that there is a single observation
(smart meter reading) and many variables (appliances); this
is a highly under-determined problem and hence impossible
to solve directly.

Today, homes and offices (not accounting industrial loads)
consume about 40% of the total energy; studies estimate that
20% of it could be saved by modification in user behav-
ior [1]. Energy disaggregation via non-intrusive load mon-
itoring estimates the consumption patterns of individuals.
It is believed that by giving a feedback on the consumption
pattern, the awareness of the consumer can be increased
which in turn would reduce wastage [2].

The earliest work in NILM dates back to the early 90’s [3].
In those days, most of the appliances were ON-OFF devices
(e.g. fan, light, heater, oven, cooler etc.); therefore mod-
elling them as finite state machines (FSM) was a reason-
able idea. With time, more complex multi-state appliances
were introduced, e.g. computers, printers, etc. These did
not show quantum increase/decrease in power, consump-
tion varied smoothly. FSM failed to model such appliances.

More recent techniques, based on stochastic finite state
machines (Factorial Hidden Markov Models) [4], [5], have
improved upon the prior approach. Such techniques can
handle noise in multi-state appliances but still are not optimal
for continuously varying loads.

Dictionary learning and sparse coding [6], [7] is the most
current approach in energy disaggregation. Such dictionary
learning based methods are not limited by the assumptions
of stochastic finite state machines and hence are capable of
handling all kinds of loads – multi-state and continuously
varying.

There is yet another class of methods that is gaining pop-
ularity in recent times based on the multi-label classification
approach [8]–[10]. These do not model the electrical appli-
ance in any way but want to predict the state of the appliance
(ON/OFF) given the aggregate power signal. Since multiple
appliances can be ON at the same time, this turns out to be a
multi-label classification problem. However these techniques
cannot estimate the consumption accurately.

The generality of dictionary learning methods in energy
disaggregation motivates our work. Standard dictionary
learning is a synthesis formulation. It learns a basis so as to
synthesize the data along with the learnt coefficients. In the
past decade, it has enjoyed significant amount of success in
machine learning and signal processing. Our work is based
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on the analysis version of dictionary learning – Transform
learning [11]–[13].

Most NILM techniques are based on a learning based
paradigm. The training stage is intrusive. It requires instru-
menting the homes at plug level for collecting data that is later
used for learning appliance specific models. These models
are later used for disaggregating during the operational phase;
at this stage the plug level sensors are removed. There are a
few recent studies that do not need actual power consumption
from every device and can act on aggregate data; they are
based on the multi-label classification paradigm [8]–[10].
Studies such as [14]–[16] proposes completely unsupervised
techniques for energy disaggregation. However, to the best
of our knowledge, the supervised techniques are significantly
more accurate than these.

For supervised approaches, data acquisition at the training
phase is expensive owing to the cost of buying/renting the
plug level sensors – this determines the ‘cost’ of NILM.
If one can reduce the training phase by reducing the period
over which data needs to be collected (for training mode
disaggregation) or reduce the number of homes from which
the data needs to be collected (for testing mode) the cost of
NILM will reduce proportionately. This will have significant
cost implications on the utilities and the consumers. More
number of consumerswill benefitwithout increase in any data
acquisition cost.

Everything else remaining the same, a transform can gen-
eralize better than a dictionary, i.e. it has better representation
capability. In other words, for a problem of fixed complexity
the size of the transform can be much smaller than a given
dictionary. Therefore, given limited volume of training data,
the smaller sized transform will be less prone to over-fitting
than the dictionary. This is the major benefit of transform
learning – it can learn from far less training data. This in
turnmeans that practical advantagementioned in the previous
paragraph will become feasible. This motivates our proposed
formulation.

Relevant literature will be reviewed in the next section. Our
proposed formulation is given in section III. The experimental
results are discussed in section 4. The concluding remarks are
in section 5.

II. LITERATURE REVIEW
A. SYNTHESIS SPARSE CODING
The idea of learning a basis for modelling each appliance was
introduced by Kolter et al. [6]. It follows the typical NILM
scenario. Training data is collected over time, where the smart
meter logs consumptions from every single device. This is
achieved by plug level monitors (such as jPlug). The training
data is expressed as Xi (real power) where i is the index for
an appliance. For each appliance they learnt a dictionary, i.e.
they expressed:

Xi = DiZi, i = 1 . . .N (1)

where Di represents the basis/dictionary, Zi are the loading
coefficients, assumed to be sparse and N is the total number

of appliances. Xi will have a dimension of hourly sampling
rate along the rows and dimension of 24 (hours) x the number
of training days along the columns. The number of dictionary
atoms (columns) for Di has to be specified by the user.
In the training phase a dictionary is learnt to model each

appliance. This is achieved by solving –

min
Di,Zi
‖Xi − DiZi‖2F + λ ‖Zi‖1 , i = 1 . . .N (2)

Since Zi’s are supposed to be loading coefficients, they are
supposed to be positive. This is assured by projecting the
solution of (2), from every iteration to the positive space.
The basic interpretation of the dictionary is that its columns

act as an abstract basis for representing an appliance. The
power consumption is therefore a linear combination of these
basis. To give a more concrete example, consider an electric
fan; the columns/basis in the dictionary can be thought of as
its distinct states (say 1 to 5); the coefficients then are the
proportions of how long each state had run during the time
period. This is the reason for the positivity constraint.
This concludes the basic dictionary learning approach to

NILM. In a quest to improve the results, [6] introduced other
complicated penalties; however in practice the pay off from
these penalties was nominal since the results did not improve
much over the basic formulation.
This model (2) does not account for the time varying nature

of the appliances. This was accounted for in [7] where they
introduced an auto-regressive model on the dictionary atoms.
So far we have discussed about the training stage. The

test/operational stage remains the same for all methods. Let
X denote the total power from N appliances (the columns
indicate smartmeter readings over the same period of time
as in training). This is expressed as:

X =
N∑
i=1

Xi =
N∑
i=1

DiZi (3)

Given the additive model, one can estimate the loading
coefficients for each appliance by solving the following
sparse recovery problem,

min
Z1,...,ZN

∥∥∥∥∥∥X − [D1| . . . |DN ]

 Z1
. . .

ZN

∥∥∥∥∥∥
2

F

+ λ

∥∥∥∥∥∥
Z1
. . .

ZN

∥∥∥∥∥∥
1

(4)

The interpretation here is that, given the basis for each device,
one needs to estimate the corresponding loading coefficients.
As before, positivity constraints are enforced on the load-

ing coefficients estimated from (4). The formulation for
disaggregation (4) is convex. From the estimated loading
coefficients the device level power consumption can be
computed.

X̂i = DiZi, i = 1 . . .N (5)

In a very recent work [17], a deep version of sparse coding
has been proposed. In there, multiple layers of dictionaries are
learnt for each appliance; the rest of the mechanism remains
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the same. This is by far the state-of-the-art for standard
supervised evaluation protocols.

In a recent work [18], a co-sparse analysis formulation
has been proposed. Co-sparsity means that the signal is
sparse under analysis. The main difference from the sparse
coding/dictionary learning formulation is that, [18] learns a
co-sparsity promoting dictionary. This is given by

min
Di,X̂i

∥∥∥Xi − X̂i∥∥∥2
F
+ λ

∥∥∥DiX̂i∥∥∥
1

(6)

Here co-sparsity is accounted for by the
∥∥∥DiX̂i∥∥∥

1
term.

A device specific analysis basis is learnt such that the clean
version of the data (X̂i) is co-sparse. The major motivation
for moving from the synthesis to the analysis paradigm is to
reduce the problem of over-fitting in limited data regimes.
This will be explained in detail later.

B. TRANSFORM LEARNING
Dictionary learning is a synthesis formulation (Fig. 1a), it
synthesizes/generates the data (X ) from the linear combina-
tion of atoms (D) and learnt coefficients (Z ). It has been used
profusely for analysis [18], [19] and synthesis problems [20].
Transform learning is the analysis equivalent (Fig. 1b).
It learns a transform (T ) so that it operates/analyses the
data (X ) to generate the coefficients (Z ).

FIGURE 1. (a) Dictionary Learning; (b) Transform Learning.

Unlike dictionary learning/sparse coding, transform learn-
ing is relatively new. For the interested reader, we request to
peruse [11], [12]. We will discuss the formulation briefly for
the sake of completeness. Transform learning analyses the
data by learning a transform/basis to produce coefficients.
Mathematically this is expressed as,

TX = Z (7)

Here T is the transform, X is the data and Z is the cor-
responding coefficients. The data matrix X consists of the
features along the rows and samples along the columns.

The number of transform atoms are determined by the user;
this also defines the coefficient matrix Z .
The following transform learning formulation was pro-

posed in [11] and [12] –

min
T ,Z
‖TX − Z‖2F + λ

(
‖T‖2F − log detT

)
+ µ ‖Z‖1 (8)

The factor − log detT imposes a full rank on the learned
transform; this prevents the degenerate solution (T = 0,
Z = 0). The additional penalty ‖T‖2F is to balance scale;
without this − log detT can keep on increasing producing
degenerate results in the other extreme.

An alternating direction approach was proposed to
solve (8). This is given by –

Z ← min
Z
‖TX − Z‖2F + µ ‖Z‖1 (9a)

T ← min
T
‖TX − Z‖2F + λ

(
ε ‖T‖2F − log detT

)
(9b)

Updating the coefficients (9a) is straightforward. It can be
updated via one step of soft thresholding. This is expressed
as,

Z ← signum(TX ) ·max (0, abs(TX )− µ) (10)

Here ‘·’ indicates element-wise product.
In the initial paper on transform learning [6], a non-linear

conjugate gradient based technique was proposed to solve the
transform update. In the more refined version [7] with some
linear algebraic tricks they were able to show that a closed
form update exists for the transform.

XXT + λεI = LLT (cholesky decomposition) (11a)

L−1XZT = USV T (SVD) (11b)

T = 0.5V
(
S + (S2 + 2λI )1/2

)
QTL−1 (11c)

The first step is to compute the Cholesky decomposition;
the decomposition exists since XXT + λεI is symmetric
positive definite. The next step is to compute the full SVD.
The final step is the update step. The proof for convergence
of such an update algorithm can be found in [13].

There are only a handful of papers on this topic. Theoretical
aspects of transform learning are discussed in the aforesaid
papers on transform learning. So far it has limited visibility
outside the signal processing community. The only appli-
cation of transform learning in machine learning has been
by [21] and [22]; where the same formulation has been
dubbed as ‘analysis sparse coding’. There it was used for
simple unsupervised feature extraction. A later study [20]
proposed a discriminative version for supervised feature
extraction. In signal processing, it is mainly used for solving
inverse problems [24]–[26].

III. PROPOSED FORMULATION
Today dictionary learning is a popular representation
learning tool. Standard dictionary learning is a synthesis
approach. However, recent studies in analysis dictionary
learning (such as [18]) empirically show improvement over
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its traditional synthesis counterpart; especially in limited data
regimes. Analysis dictionary learning/transform learning is
less prone to over-fitting [18], [22], and [23], i.e. can learn
from fewer samples.

In disaggregation, datasets such as REDD (testing mode)
define 4:1 splits for training and testing [27]. These are
impractical training scenarios. In most practical cases, it is
not possible to instrument so many houses with sensors –
the situation is exactly the opposite. One needs to disaggre-
gate/test on a large number of houses by learning from far
fewer labeled (instrumented) households.

For the training mode (where the data from the same house
if used for training), one needs to ensure that the number
of training days is minimized. This would directly benefit
the utilities and consumers. It would enable the utilities to
instrument more houses (for collecting training data) and thus
bring the benefits of disaggregation to more consumers.

In such data scarce scenarios, it is likely that, analysis trans-
form learning, with its capacity to learn from fewer samples
will yield better generalizability on unseen (test) cases than
the corresponding synthesis dictionary learning technique.

A. TRAINING
The methodology/protocol is exactly the same as in dictio-
nary learning [6]. As before, given the training data for each
device, we learn a device specific transform. Assuming Xi is
the training data for the ith device, this is expressed as,

TiXi = Zi (12)

The straightforward way to solve this problem is to learn one
transform for each device in a naïve fashion. Here Xi has the
same meaning as (1)

min
Ti,Zi

∑
i

‖TiXi − Zi‖2F + λ
(
‖Ti‖2F − log detTi

)
+ µ ‖Zi‖1

(13)

For disaggregation we would expect that the transforms
are discriminative, i.e. the transform for the ith appliance
should only produce sparse codes for the ith appliance but not
represent any other appliances; i.e. should not generate sparse
codes for other appliance. This means that TiXiC (the super-
script ‘c’ on ‘i’ indicates complimentary set of appliances)
should not be sparse – they should be dense and small.

The basic formulation (15) does not enable this. Therefore
we need to modify (15). We achieve this by adding the
additional term (for each i)

∥∥TiXiC∥∥2F ; the Frobenius norm
would ensure that the coefficients obtained from TiXiC should
be dense and very small (approximately Normal distribution).
Incorporating these terms into (15) leads to,

min
Ti,Zi

∑
i

‖TiXi − Zi‖2F + λ
(
‖Ti‖2F − log detTi

)
+µ ‖Zi‖1 + γ

∥∥TiXiC∥∥2F (14)

We follow the same alternating minimization approach
as proposed by [11] and [12]. The formulation (16) can be

Algorithm 1 Transform Learning for Load Disaggregation
For every appliance i solve:

min
Ti,Zi
‖TiXi − Zi‖2F + λ

(
‖Ti‖2F − log detTi

)
+µ ‖Zi‖1 + γ

∥∥TiXiC∥∥2F
Initialize: Compute SVD:Xi = USV T ; initialize Zi = SV T

Until convergence run

(
Xi|
√
γXiC

) ( XTi√
γ (XiC )

T

)
+ λεI = LLT

L−1
(
Xi|
√
γXiC

) ( ZTi
0

)
= USV T

Ti = 0.5R
(
S + (S2 + 2λI )1/2

)
QTL−1

Zi← signum(TiXi) ·max (0, abs(TiXi)− µ)

decoupled for each device, leading to –

min
Ti,Zi
‖TiXi − Zi‖2F + λ

(
‖Ti‖2F − log detTi

)
+µ ‖Zi‖1 + γ

∥∥TiXiC∥∥2F (15)

Alternating minimization leads to,

min
Ti
‖TiXi − Zi‖2F + λ

(
‖Ti‖2F − log detTi

)
+ γ

∥∥TiXiC∥∥2F
(16a)

min
Zi
‖TiXi − Zi‖2F + µ ‖Zi‖1 (16b)

The sparse coding step (16b) remains exactly the same as
before (9b). Hence can be solved using (8).

For the transform update, we can express (16a) as,

min
Ti

∥∥Ti [Xi|√γXiC ]− [Zi|0]
∥∥2
F

+ λ
(
‖Ti‖2F − log detTi

)
(17)

The [·|·] means that the matrices are stacked horizontally.
This brings the transform update to the same form as (9a).
Hence we can use the same technique as (11).

In a succinct fashion, the entire training algorithm can be
expressed in Algorithm 1.

Note that even though both the proposed formulation
and [18] are based on the analysis paradigm, they are com-
pletely different. In [18] an analysis basis is learnt so as to
‘clean’ the data; it does not learn any representation. In our
proposed formulation, we learn an analysis transform to gen-
erate the coefficients.

B. TESTING
During testing, the transform based disaggregation is not as
straightforward as the dictionary learning based formulation;
it needs further analysis. We start with the standard model
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that the total power is the sum of the power consumed by the
individual devices. This is expressed as,

X =
∑
i

Xi (18)

Applying the learnt transform leads to – T1
. . .

TN

 (X1 + X2 + . . .+ XN ) (19)

=

 T1 (X1 + X2 + . . .+ XN )
. . .

TN (X1 + X2 + . . .+ XN )


=

 T1X1
. . .

TNXN

+
 T1 (X2 + . . .+ XN )

. . .

TN (X1 + X2 + . . .+ XN−1)

 (20)

The terms TiXiC ’s will be close to zero or negligibly small –
this follows from our training formulation. We have learnt the
transforms in such amanner that the transforms for one device
when applied on the data for another, will produce almost zero
valued coefficients. This allows representing (20) as,

=

 T1X1
. . .

TNXN

+
 ε1. . .
εN

 (21)

Here T1 (X2 + . . .+ XN ) = ε1, T2 (X1 + X3 . . .+ XN ) =
ε2 and so on. The error terms εi’s are small (approximately
Normal distribution). In a concise fashion, from (18), (20)
and (21) we have the following expression, T1
. . .

TN

X=
 T1X1

. . .

TNXN

+
 ε1. . .
εN

=
 Z1
. . .

ZN

+
 ε1. . .
εN

 (22)

where TiXi = Zi as per definition of the transform.
The transforms for each device have already been learnt

during the training phase. Therefore one can solve for the
coefficients from (22) by sparse coding.

min
Z ′i s

∥∥∥∥∥∥
 T1
. . .

TN

X −
 Z1
. . .

ZN

∥∥∥∥∥∥
2

F

+ µ

∥∥∥∥∥∥
 Z1
. . .

ZN

∥∥∥∥∥∥
1

(23)

The l2-norm on the data-fidelity arises from the fact that
the errors εi’s are Normally distributed (by definition from
the training phase).
Solving (23) is straightforward. It requires one step of

soft-thresholding, similar to (10). Once the sparse codes are
obtained, one needs to solve the following set of inverse
problems to generate the corresponding power consumptions
for each device.

TiXi = Zi (24)

This has an analytic solution – Moore Penrose
pseudo-inverse.

Xi =
(
T Ti Ti

)−1
T Ti Zi (25)

TABLE 1. Description of appliances in REDD.

Notice that even though the analysis of the Transform
based testing algorithm is slightly more involved than the dic-
tionary counterpart; operationally/computationally it is much
simpler and efficient. Both (23) and (25) have closed form
solutions. For (23) one only requires a simple thresholding
step; for (25) one needs amatrix vector product (the pseudoin-
verses for the Ti’s can be pre-computed). Thus, operationally
it is very fast – capable of real-time disaggregation.

IV. RESULTS
Our proposed algorithm is tested on benchmark datasets. For
the sake of reproducibility we experiment on two publicly
available ones – REDD and Pecan Street.

In principle, we could have applied this technique on any
kind of electrical signal. However, in practice, smart meter
readings are more practical. Hence, we stick to the traditional
datasets.

A. REDD DATASET
The REDD dataset [27] is of moderate size. It comprises
of power consumptions from six different houses. Table 1
shows appliances in different houses. For each house,
the total/aggregate electricity consumption as well as indi-
vidual consumptions of about twenty different household
devices are recorded. The data is available for a period of two
weeks with a very high frequency sampling rate of 15kHz.
Such a high sampling rate is impractical; to emulate real-life
scenario the training and testing data is aggregated over a
time period of 10 minutes. We follow the standard evaluation
protocol where the 5th house is omitted owing to very limited
availability of samples.

The disaggregation accuracy is defined by [27] as follows,

Acc = 1−

∑
t

∑
n

∣∣∣x̂(i)t − x(i)t ∣∣∣
2
∑
t
x̄t
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where t denotes time instant and n denotes a device; the
2 factor in the denominator is to discount the fact that the
absolute value will ‘‘double count’’ errors. Here yt denotes
the actual (measured) power, ŷt the estimated power and ȳt
the mean of the actuals.

We benchmark our proposed technique against – the
Factorial HMM (FHMM) [4], Powerlet based Energy
Disaggregation (PED) [7], discriminating sparse coding
(discSC) [6] and deep sparse coding (DSC) [15]; on the
standard training protocols (with enough training data) DSC
is the most accurate disaggregating technique known.

Note that in this work, we do not compare with multi-
label classification techniques. The reason has been discussed
at the onset. These methods can only estimate the state of
the appliance and cannot estimate its consumption directly.
Power consumption can be indirectly estimated but that gives
a very crude value, which is worse than simple disaggregation
techniques like FHMM.

There are two protocols for evaluation [27]. In the first one
(called ‘training), a portion of the data from every household
is used as training samples and rest (from those households)
is used for prediction – this is the easier protocol. In the sec-
ond mode, the data from some households are used for
training and the remaining ones are used for prediction
(called ‘testing’).

Usually the split between training and testing is 4:1. This
is an overtly optimistic scenario. In real life situations, the
training data will always be small compared to the testing
data. In this work, we will show that for smaller volumes of
testing data (practical situation), our proposed method yields
better results than all other techniques.

We first show results for the training mode. The results are
shown in Fig. 2. We are showing the mean disaggregation
accuracy over all houses. In the graph, the X-axis shows the
percentage of data (from each house) used for training; the
Y-axis the corresponding aggregate (over all houses) disag-
gregation accuracy on the remaining portion (of each house).
Since this is a small dataset, in order to make the results
reproducible we have always taken the portion of training
data starting from the beginning.

The parameter setting for the benchmarking techniques
have been taken from the respective studies. Even though,
the training and testing ratios differ between the aforesaid
work and ours, the configurations will remain the same.
This is because the configuration, for example the number
of states of FHMM or the number of basis used for discSC,
PED or DSC are representatives of the complexity of the
device and not the volume of training data available. Since
the devices remain the same, the configurations remain the
same as well.

For FHMM, we use the function from NILMTK1; it is
available there with pre-tuned parameters for these datasets.
For discSC, we need to specify the sparsity promoting param-
eter (which is 2), the discriminative parameter (which is

1https://github.com/nilmtk

FIGURE 2. REDD Training Mode Disaggregation Results. Y-axis shows the
disaggregation accuracy.

0.001) and the number of atoms (twice redundant). For DSC,
we use the sparsity promoting parametric value of 0.1 and
the number of dictionary atoms are reduced by half in each
subsequent layer. For PED, we use the sparsity promoting
prior and the co-occurrence parameters are both unity and the
temporal smoothness parameter is 30. As mentioned before,
all these values are obtained from the corresponding papers.

For our proposed method, we have used 6 transform
basis for each device; this is not a true representative of
the complexity, e.g. a laptop or washing machine is more
complex than a CFL or stove, and hence would require more
basis – but such device specific fine tuning is time consuming.
The parametric values used for transform learning have been
tuned using the greedy L-curve method [28]. Here we first
put µ to zero and tune λ; we obtain λ = 0.1 by the L-curve
method. Then we fix the value of λ and tune µ to get a value
µ = 0.5.
In Fig. 2a we show how different methods perform with

change in training volume; the results are grouped by the
disaggregation technique. In Fig. 2b we show the same results
in a different fashion; we see how different methods perform
for a fixed training volume.

Especially from Fig. 2a, we find that our proposed method
is the most robust. There is only a small drop in disaggrega-
tion accuracy across the various proportions of training data;
the drop is around 7%. All other dictionary learning/sparse
coding based methods drop more than 12%.

In [15] it has been claimed that deep sparse coding yields
the best results; but we can see here that for limited training

VOLUME 6, 2018 46261



M. Gaur, A. Majumdar: Disaggregating Transform Learning for NILM

FIGURE 3. REDD Testing Mode Disaggregation Results. Y-axis shows the
disaggregation accuracy.

volume it performs bad. This is true for deep learning in
general; they only yield good results when the volume of
training data is large.

The next set of experiments are in testing mode.We choose
k houses; for each k, there are 5Ck possible combinations of
training houses. We carry out experiments on all of them and
test on the remaining houses for each training set. The results
are shown in Fig. 3. The average disaggregation accuracy is
reported. As before we have shown the same result in two
different ways. In Fig. 3a the variation within a technique
for changing training volume (number of houses) is shown,
and in Fig. 3b, the variation among the methods for a fixed
training volume is shown.

One finds that the testingmode results show a similar trend;
especially from Fig. 3a. As the number of houses (training
data) decreases, the disaggregation accuracy suffers as well.
But our method suffers the least drop in accuracy (less than
3% drop); all other methods show significant drops. FHMM
and discSC drops by 12%, PED and DSC drops more than
15%. When the volume of training data is high, DSC yields
better results than ours. But as the training volume decreases
(practical scenario), we perform better.

B. DATAPORT PECAN STREET DATASET
The Dataport dataset is available in NILMTK (non-intrusive
load monitoring toolkit) [29] format. Experiments were
carried out on a subset of it. This dataset contains 1minute cir-
cuit level and building level measurements from 240 houses.

FIGURE 4. Dataport Testing Mode Disaggregation Results. Y-axis shows
the disaggregation accuracy.

The readings have been collected from 18 different devices:
air conditioner, kitchen appliances, electric vehicle, and
electric hot tub heater, electric water heating appliance,
dishwasher, spin dryer, freezer, furnace, microwave, oven,
electric pool heater, refrigerator, sockets, electric stove,
waste disposal unit, security alarm and washer dryer.

On this dataset, the usual protocol is to test on the ‘testing’
mode. Usually about 66% of the homes form the training
dataset and the remaining 34% of the homes form the test
set [29]. In this work, we train on fewer homes and test on
the remaining; this is a more practical scenario. For each
proportion of the training set, the homes are chosen randomly.
This is done 100 times for each configuration. For each such
configuration, the remaining homes are used for testing. The
mean disaggregation accuracy from various techniques is
shown in Fig. 3.

As we did before for REDD, the training and testing data
are prepared by aggregating the data for a period of 10 min-
utes. This reflects real life scenario and is the usual protocol
on this dataset.

As in the previous sub-section, the configuration for the
benchmarking techniques have been taken from the respec-
tive papers; the same parametric values mentioned before
have been used. The configuration for our proposed algorithm
and parametric values also remain the same.

In Fig. 4a we show the variation of disaggregation accuracy
within a technique for changing proportions of training data.
In Fig. 4b, the same results are shown in a different fashion;
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TABLE 2. Normalized error for common devices at 40% and 5% training volume.

it shows the variation in accuracy among the methods given
the training volume.

The results show a similar to that of REDD. As can be
seen from Fig. 4a. For high volume of training data, deep
sparse coding (DSC) yields very good results. But when the
training volume decreases, the accuracy falls significantly;
the drop in disaggregation accuracy is more than 15%. For
FHMM and PED the drop in accuracy is around 13% and
for discriminative sparse coding it is around 15%. For our
proposed method, the drop is only 7%.

For this dataset, we show the normalized absolute error
(defined below) on some common devices (indexed as i)
in Table 2; the results are shown for two training volumes
– 40% and 5%.

Err(i) =

∑
t

∣∣∣x̂(i)t − x(i)t ∣∣∣∑
t
x(i)t

The error metric normalizes the sum of the absolute differ-
ences between the predicted and actual power consumptions
of the ith device, summed over all instances of time.
One can see that as the training volume is reduced, the error

increases sharply for all the method compared against; apart
from the refrigerator and the washer, the errors for the other
devices increase by two fold. Our method is the least per-
turbed by the extreme change in training volume. In the low
training sample regime, our method yields the best results.

This has implications in cost; the training phase of energy
disaggregation is intrusive; the appliances need to be sensed
separately. Such sensors (such as jPlug) are expensive. By our
method it will be possible to get the same disaggregation
results with far lesser cost (fewer houses need to be instru-
mented for training mode and in testing mode fewer number
of training days).

C. COMPARISON OF RUN-TIME
Consider the computational complexity of testing during
sparse coding (and its variants). The expression is given in (4),
repeated here for the sake of convenience.

min
Z1,...,ZN

∥∥∥∥∥∥X − [D1| . . . |DN ]

 Z1
. . .

ZN

∥∥∥∥∥∥
2

F

+ λ

∥∥∥∥∥∥
Z1
. . .

ZN

∥∥∥∥∥∥
1

This is an l1-norm minimization problem. This needs to be
solved iteratively and the usual complexity being a perturbed

linear programming problem is O(n3). The same time com-
plexity applies for other discSC, PED and DSC.

Our proposed method on the other hand requires
solving (23) and (25), repeated here for the sake of conve-
nience.

TiXi = Zi

Xi =
(
T Ti Ti

)−1
T Ti Zi

Both of them are simple matrix products (the pseudo-inverse
can be pre-computed since it only depends on the transform
learnt during the training stage). The complexity of this is
O(n2) – in optimization it is usually not possible to solve a
problem any more efficiently. Thus, in theory our method is
significantly faster than the sparse coding based techniques.

In terms of computational complexity during training,
we need to solve two problems iteratively – (16a) and (16b).
The cost of solving the sparse coding problem is O(n2). The
cost of solving the transform update is O(n3) since it is domi-
nated by the singular value decomposition. This cost is at par
with the cost of dictionary learning. In there the complexity
of updating the dictionary is O(n2) since it has a closed form
update via the pseudoinverse. The cost of updating the sparse
codes is O(n3) since it needs to be solved iteratively via l1-
minimization. The variants discSC and PED have the same
complexity. The cost for solving the DSC problem (during
training) increases linearly in the number of layers.

The experiments have been carried out on a desktop PC
running 64 bit Windows 10. It has an i7 CPU clocked at
3.1 GHz. The RAM size is 16 GB. The testing and training
run-times are shown in Tables 3 and 4, respectively. These
results are shown for the usual protocols, i.e. 4:1 testing mode
for REDD and 3:1 for Pecan Street.

TABLE 3. Testing times in seconds.

The results corroborate the theory. Note that discSC is
slightly slower than DSC because the overall dictionary size
(after training) for deep sparse coding is smaller than that
of discriminative sparse coding. Our proposed method is
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TABLE 4. Training times in seconds.

about an order of magnitude faster than sparse coding based
methods; this is expected from theory.

In terms of training times, we see that the proposed method
is comparable to other techniques. Is it slightly faster than the
synthesis sparse coding techniques (although they have the
same computational complexity) because it converges faster.

V. CONCLUSION
This paper proposes a new energy disaggregation/NILM tech-
nique. Our formulation is based on the transform (analy-
sis equivalent of dictionary) learning formulation. The main
advantage of the analysis formulation (as opposed to the
synthesis sparse coding/dictionary learning) is that it has been
seen to be less prone to over-fitting and hence can learn from
fewer samples. We tested this capability experimentally in
this paper; it has been seen that when the training volume
is limited (practical scenarios) our method outperforms the
state-of-the-art. With only 20% training data, our method
can supersede results from standard approaches like FHMM
(trained on 60% training data) and state-of-the-art approaches
like deep sparse coding (trained on 80% training data).

This has implications on cost. The proposed technique can
potentially reduce cost of instrumentation during the training
phase. This allows the utilities to bring more customers under
the umbrella in NILM.

The other additional advantage of analysis transform learn-
ing is operational speed. Since we are working on 10 min
interval meter readings, this may not be of much importance
right now – all techniques can disaggregate in this large time
interval. But for faster sampling, the operational speed would
become important. In such a scenario, our method would
excel over others.

The proposed method excels over others at low training
volumes. The advantages have been clearly pointed out. How-
ever, in cases where the training data is large, it loses out to
deep techniques. This is seen across all domains of applied
machine learning. We believe the only way to improve results
for larger volumes is to propose a deeper architecture based
on transform learning formulation. Some initial work on this
topic has been done [30].
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