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ABSTRACT Cognitive radio (CR) is a revolutionary paradigm to solve the spectrum scarcity problem in
wireless networks. In cognitive radio networks, cooperative spectrum sensing is regarded as a promising
approach method to significantly improve the performance of spectrum sensing, but it can be threatened by
Byzantine attack. The existing defense references have focused on how to mitigate the negative effect of
Byzantine attack, but with some strong assumptions, such as the attackers are in minority and/or a trusted
node exists for data fusion. This observation motivates us to comprehensively analyze the strategies of
Byzantine attack and the fusion center (FC) in the absence of these restrictions. To be specific, we consider
a generic Byzantine attack model by analyzing sophisticated malicious behaviors, which goes beyond the
existing models for its generalization. Under this generalized attack model, we derive the condition which
makes the FC blind frommalicious perspective. On this basis, the optimal attack strategy to maximize Bayes
risk is analyzed, respectively, in the case of the unknown and known fusion rule. Furthermore, we extend our
analysis to the scenario where the FC has the knowledge of the attack strategy by an estimation algorithm
and adopts the optimal fusion rule. Thus, we also give the closed form expression, in terms of the optimal
attack strategy under different scenarios, sequentially. At last, the extensive numerical results are provided
to verify our theoretical analyses and proposed estimation algorithm.

INDEX TERMS Cognitive radio networks, cooperative spectrum sensing, Byzantine attack, Bayes risk,
attack strategy.

I. INTRODUCTION
With wireless devices and applications booming, the problem
of inefficient utilization of the precious radio spectrum has
arisen. Recent studies have shown that a considerable amount
of licensed spectrum is rarely occupied. Cognitive radio (CR)
is a key technology to improve spectrum utilization and solve
the problem of spectrum shortage. There are three main CR
systems: underlay, overlay, and interweave [1]. The inter-
weave system based on the idea of opportunistic communi-
cation is the original motivation for CR and adopted in this
paper. CR can be categorized as spectrum sensing based way
and database-driven based way to determine channel avail-
ability. In the former, a secondary user (SU) finds an available
channel by listening and analyzing the primary user’s (PU’s)
signal in the channel, namely spectrum sensing, while in the

latter, an SU queries a database to get spectrum availability
information at its location [2]. In database-driven CR, the SU
is required to query the database with its physical location,
so that the database can inform it about spectrum availability
in its vicinity. This explicit exposure of SUs’ location infor-
mation to third (commercial) parties raises serious privacy
concerns [3]. Therefore, spectrum sensing is still the direction
of our efforts.

Spectrum sensing unit as part of CR technology deals with
detecting the licensed spectrum that is not used by the PUs.
Under the help of spectrum sensing, SUs can opportunis-
tically access the licensed spectrum without changing the
operations of PUs. Some spectrum sensing methods include
matched filter, energy detection, cyclostationary detec-
tion, and wavelet detection [4]. However, these single-user
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spectrum sensing methods are extremely difficult to fulfill
the detection accuracy due to noise uncertainty, multipath
fading, and shadowing. Once the PU signal experiences deep
fading or blocked by obstacles, the power of the received PU
signal at the SUmay be too weak to be detected. To overcome
these impacts, cooperative spectrum sensing is proposed to
enhance the detection accuracy by exploiting spatial diversity
via the observations of spatially located SUs. In cooperative
spectrum sensing, there exist two groups of strategies for
combining individual reports, e.g., soft-combining and hard-
combining. Soft-combining technique combines raw signal
power measurements from SUs, whereas in hard-combining
technique a 0/1 decision from each SU is considered [5].
Finally, the FC is responsible for making a global decision
on the presence or absence of the primary signal based on its
received information.

However, security vulnerabilities can be exploited by
different types of attacks that can be launched in CRNs,
for example, jamming, spoofing, wiretap disruption attacks,
etc [6]. Apart from these well-known traditional security
threats, several recent studies consider the spectrum sensing
data falsification attack (SSDF) attack (known as a Byzantine
attack) and primary user emulation (PUE) attack. Fortunately
the effects of PUE attack are transient, once the attacker
vacates the frequency, the SUs notice the spectrum being once
again idle, and can resume using it. In contrast, Byzantine
attack is considered to be a hazardous attack [7], because
the nature of aggregating data makes cooperative spectrum
sensing offer opportunities for malicious users (MUs) to
sneak into cooperative SUs. Those MUs send falsified local
spectrum inference in order to confuse the FC, resulting in
that the FC falsely concludes that there is or not an ongoing
incumbent transmission [8]. This mode of operation is a
typical Byzantine attack, and their aims are to prevent reliable
SUs from using the idle channel or to allure them to access
the channels in use and cause excessive interference to PUs,
thereby undermining the premise of CR technology [9].

A. RELATED WORK
Byzantine attack has been widely studied as a serious threat
to cooperative spectrum sensing in CRNs, and extensive
malicious detection and suppression algorithms have been
proposed to defend against it. Zeng et al. [10] present a
trusted node assistance scheme to secure cooperative spec-
trum sensing based on reputation accumulation for combating
the adverse effects ofMUs. [11] learns about the CR potential
malicious behaviors over time by estimating their proba-
bilities of false alarm and detection and thereby identifies
Byzantine attack. The proposed algorithm of [12] combines
with [10], [11] to identify and weed out both of independent
and balanced collaborative attackers. Reference [13] studies
the problem of distributed sensing in the presence of Byzan-
tine attack when the number of sensor nodes is finite and
propose a likelihood-based algorithm to identify Byzantine
nodes. Chaitanya and Chari [14] propose a reputation-based
clustering algorithm to mitigate SSDF attack in a centralized

cooperative spectrum sensing CRN. Althunibat et al. [15]
consider symmetric cryptographic mechanism, which can
produce a message authentication code (MAC) to verify
the spectrum sensing data reports, but using MAC requires
extra energy consumption to provide some additional bits
and they also ignore the influence of SUs’ report error rate.
S. Althunibat also present a robust algorithm against two
types of SSDF attack in [16], including greedy attack and
malicious attack.

Zhang et al. [17] propose a probabilistic soft SSDF attack
model and discover a trade-off between destructiveness and
stealthiness. By dividing the entire area of interest into cells,
removing MUs based on their updated reputation scores
and then providing larger weighting coefficients for detected
results from cells with better channel conditions, the pro-
posed reputation-based cooperative spectrum sensing algo-
rithm in [18] is able to accurately remove MUs in a mobile
CRN. Ye et al. [19] propose a faithworthy cooperative spec-
trum sensing scheme based on the Dempster-Shafer theory of
evidence and holistic credibility to effectively defend against
SSDF attack fromMUs. In [20], a novel method of using clus-
tering techniques for detecting and isolating SSDF attackers
in a CRN is investigated by K. Rina et al. Pei et al. [21] pro-
pose a neighbor detection based spectrum sensing algorithm
to solve the problem of wrong or inconsistent decision due to
attackers or connectivity failure. Reference [22] proposes an
easy, efficient and fast collaborative spectrum sensing scheme
in CRNs to counter Byzantine attack by counting mismatches
between their local decisions and the global decision at the
FC over a time window, and removes attackers from the data
fusion process. Reference [23] and [24] provide a comprehen-
sive overview of the studies on Byzantine attack and defense
for cooperative spectrum sensing in CRNs.

In the field of Byzantine attack mitigation, the above
approaches are nothing more than reputation-based, evidence
theory, clustering-based, consensus theory, etc. They often
involve unrealistic assumptions such as MUs are in minor-
ity or trusted node(s) exist for data fusion. Most of them
assume a somehow simplified attack strategy, i.e., the essence
of two types of SSDF attack in [16] is a simple ‘‘always
attack’’. It is noteworthy that this static attack strategy can
be easily identified, especially when the malicious percent-
age is relatively small. Thereupon, there are different attack
strategies that is adopted by the FC being compromised and
controlled by the intelligent MUs, which are spread in the
following research.

Marano et al. [25] consider distributed detection in the
presence of Byzantine sensors created by an intruder and
characterize the power of attack analytically. But they
assume very strong Byzantine sensors that actually know
the true hypothesis. This model is overly conservative.
Rawat et al. [26] significantly extend the results of [25] in the
context of wireless sensor networks to the context of CRNs.
There are still many questions that remain to be explored
such as an analysis of the dynamic interaction among the
Byzantines and the FC to find the optimal strategy which can
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maximize their performance. Kailkhura et al. [27] consider
the problem of distributed Bayesian detection with Byzantine
data, and obtain the closed form expression for the opti-
mal attack strategy that most increase the error probability.
The knowledge regarding the optimal attack strategy can
be further used to implement the optimal detector at the
FC. The non-asymptotic case is further presented in [28].
Unfortunately, Kailkhura et al. [27], [28] only focus on a dis-
tributed network and their researches are carried out under the
assumption of the known proportion of Byzantine attack, but
fail in considering an effective method to estimate or deter-
mine attack parameters. Not only that, but the performance
criterion they choose are also questionable.

B. OUR CONTRIBUTIONS
Such limitations fuel the motivation in providing a broader
and a more complete view on Byzantine attack and defense
strategy of cooperative spectrum sensing. In this paper,
there is continuing effort to comprehensively analyze var-
ious dynamic scenarios where both the FC and Byzantine
attacker act in a strategic manner, but without any limitations
on Byzantine attack and unrealistic assumptions. This paper
makes three major contributions as follows.
• Starting with an objective to consider a generic Byzan-
tine attack model, we analyze the negative effects of
Byzantine attack on the network and derive the con-
dition which makes the FC blind from the malicious
perspective.

• When MUs are unaware of the fusion rule adopted by
the FC, we analyze the optimal attack strategy how to
maximize the local Bayes risk. Besides, in a known
fusion rule (i.e., the majority rule), the optimal attack
strategy is also deduced formaximizing the global Bayes
risk.

• Another interesting extension to the scenario where both
the FC and MUs know opponent’s strategies. The FC
employs an estimation algorithm to estimate the fraction
of MUs and attack parameters, aiming to minimize the
global Bayes risk while MUs take advantage of the opti-
mal attack strategy to maximize the global Bayes risk.

Additionally, in order to comprehensively characterize
strategies from MUs and the FC, we provide numerical
results to verify our theoretical analyses and estimation
algorithm. The rest of the paper is structured as follows:
Section II formulates system mode including network model
and Byzantine attack model; The preliminary analysis is
provided in Section III, including the condition to make
the FC blind and the performance criterion; Section IV dis-
cusses the attack strategy of scenario where MUs know or do
not know the FC’s strategy; Section VI further analyzes
the attack strategy of scenario where both the FC and
MUs act in a tragic manner to optimize their own utili-
ties; Next in Section V, extensive simulations corroborate
the correctness of theoretical analyses and effectiveness of
the proposed algorithm; Finally, Section VII concludes this
paper.

II. SYSTEM MODEL
A. NETWORK MODEL
Considering Byzantine attack has more impact in a cen-
tralized CRN wherein the false information can propagate
quickly [29]. We assume a centralized CRN consisting of a
FC, a PU and N collaborative SUs, a fraction ρ of N SUs is
malicious.

In order to opportunistically access available spectrums,
various spectrum sensing methods can be applied in CRNs,
among which the most common is energy detector as it can
be facilely implemented in hardware and without knowing
any prior information about the PU signal. The PU signal
detection can be formulated as a binary hypothesis test in the
energy detection, and the spectrum sensing model at the i-th
SU can be described as follows

yi(n) = ui(n), H0

yi(n) = hi(k)s(n)+ ui(n), H1 (1)

where H0 and H1 represent the hypothesis on the pres-
ence or absence of the PU signal, prior probabilities of which
are denoted by P(H0) and P(H1), respectively. The SU’s
received signal s(n) transmitted by the PU is distorted by the
channel gain hi(k) at the k-th sensing interval, ui(n) denotes
the additive white Gaussian noise (AWGN) with mean zero
and variance σ 2

0 . Without loss of generality, s(n) and ui(n) are
assumed to be independent. The test statistic of the i-th SU
for energy detector is calculated as

Ei(k) =
Ns∑
n=1

|y(n)|2 =


∑Ns

n=1
|ui(n)|2,H0∑Ns

n=1
|hi(k)s(n)+ ui(n)|2,H1

(2)

where Ns is the number of samples over a sensing interval.
For a large Ns (i.e. Ns > 10), using central limit theorem,
the probability density function (PDF) ofEi(k) can be approx-
imated by a Gaussian distribution as follows

Ei(k) ∼

{
N (µ0, σ

2
0 ),H0

N (µ1, σ
2
1 ),H1

(3)

where µ0 = Nsσ 2
0 , σ

2
0 = 2Nsσ 4

0 , µ1 = Ns(γi(k) + 1)σ 2
0 ,

σ 2
1 = 2Ns(γi(k)+1)2σ 4

0 , γi(k) = |hi(k)|
2σ 2

1 /σ
2
0 is the average

SNR of the PU measured at the i-th secondary receiver of
interest.

Then, the local sensing performance (i.e., the false
alarm and miss detection probability) can be calculated by
comparing the local measured energy with a predefined
threshold. Each SU individually submits raw signal power
measurement or a bit decision to the FC according to soft-
combining or hard-combining technology. Several recent
methods of quantifying sensing data have also been proposed
in [30] [31]; however, this study is beyond the scope of our
work. Due to space consideration, we only present the binary
hard-combining case with a relatively low communication
overhead but similar results are also obtained in the case of
soft-combining.
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FIGURE 1. Local spectrum Sensing.

After each SU independently performs local spectrum
sensing via energy detection and make a bit decision 0 or 1
regarding the presence of the phenomenon. The false alarm
and miss detection probability for the i-th reliable SU can be
further represented as

Pf ,i = P(Si = 1|H0) (4)

and

Pm,i = P(Si = 0|H1) (5)

Under a prior channel status, the reliable SU truly submits
the sensing result Si to the FC, the report result Ri received by
the FC is consistent with the sensing result from the reliable
SU (i.e., Ri = Si), as depicted in Figure 1.

B. BYZANTINE ATTACK MODEL
To avoid interference to the primary network, strict require-
ments on the detection accuracy are set, but the local sensing
performance is limited by the fundamental characteristics
of dynamically changed wireless channel. Therefore, coop-
erative spectrum sensing has been proposed to overcome
this problem, the cooperative sensing performance can be
improved by exploiting independent fading and multiple-user
diversity.

FIGURE 2. Cooperative spectrum sensing model.

In the process of cooperative spectrum sensing, as shown
in Figure 2, after the local spectrum sensing is completed,
each SU submits individual sensing report to the FC via
a common control channel (the common control channels
between SUs and the FC are assumed to be error-free). The
FC uses data fusion technology to make a global decision

regarding the PU activity. Although the participation of mul-
tiple SUs contributes to the improvement of detection accu-
racy, the global decision may be misguided when MUs flip
individual sensing results via Byzantine attack and send these
sensing results falsified to the FC, which further degrades the
global performance.

Existing Byzantine attacks toward cooperative spectrum
sensing generally fall into three categories based on the way
they send false sensing reports [32]. The first type of attack is
the one who always declares that the PU is active (i.e., theMU
always submits a bit decision 1 to the FC), called Always-
Yes (AY) attack. Always-No (AN) attack which always
reports the absence of primary signal (i.e., the MU always
submits a bit decision 0 to the FC) is the second type. The
third type is Always-False (AF) attack which always reports
the information opposite to the sensing result. In details,
it submits 0 to the FC when the MU has sensed the PU’s
presence, while submits 1 when the PU is absence.

Apparently, ‘‘always attack’’ is an unadvisable strategy
when MUs encounter drastic countermeasures or hostile
environments. If the attack probability is appropriately set,
such as, misleading the network occasionally but behaving
correctly during the rest of the time [23], the MU exploits
the opportunity of collaboration to sneak into a reliable
SU and to launch stealth attack without being identified.
On this account, a dynamic attack probability will be a rea-
sonable choice in consideration of dynamic environment and
countermeasures.

To gain a better understanding about malicious behaviors
from Byzantine attack, let us present two phenomena in the
decision-making. The first one is that a MU flips own sensing
result 0 into 1 and submits it to the FC, its ultimate aim is to
mislead the FC declaring that the channel is busy, resulting
in the false alarm. The second one is that a MU flips own
sensing result 1 into 0 and submits it to the FC announcing the
channel as idle, with the intention of the miss detection. Com-
bining these two phenomena, we show a generic Byzantine
attack model in the process of cooperative spectrum sensing,
one such example is the j-th MU, as illustrated in Figure 3.
This generalized attack model can be mathematically
represented as {

P(Rj = 1|Sj = 0) = α
P(Rj = 0|Sj = 1) = β

(6)
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FIGURE 3. Generic Byzantine attack model.

where Sj is the sensing result and Rj is the report result. To be
specific, on the one hand, when the j-th MU’s sensing result
Sj is 0, but the result Rj it actually reports to the FC is 1, this
is false alarm attack, and α is the probability of false alarm
attack which varies from 0 to 1. On the other hand, when the
j-th MU’s sensing result Sj is 1, but the result Rj it actually
reports to the FC is 0, this is miss detection attack, and β is the
probability of miss detection attack which varies from 0 to 1.

In this paper, each MU decides to launch Byzantine attack
independently relying on its own observation and decision,
the local performance is assumed to be the same among all
SUs irrespective of whether they are honest or malicious,
i.e., Pf ,1 = Pf ,2 = · · · = Pf ,N = Pf , Pm,1 = Pm,2 =
· · · = Pm,N = Pm. Using the local spectrum sensing and
attack model, the false alarm probability and miss detection
probability of the j-th MU can be represented as

Pmf ,j = P((Rj = 1|Sj = 0)|H0)+ P((Rj = 1|Sj = 1)|H0)

= (1− Pf )α + Pf (1− β) (7)

and

Pmm,j = P((Rj = 0|Sj = 0)|H1)+ P((Rj = 0|Sj = 1)|H1)

= Pm(1− α)+ (1− Pm)β (8)

where Pmf ,1 = Pmf ,2 · ·· = Pmf ,ρN = Pmf and Pmm,1 = Pmm,2 · ·· =
Pmm,ρN = Pmm.

The generic Byzantine attack model is more consistent
with malicious behaviors, and it can evolve different attack
strategies because both of α and β can independently vary
from 0 to 1, including ‘‘always attack’’. The traditional
‘‘always attack’’ is a special case of the generic attack model,
such as, that is AN attack when α = 1, β = 0; that is AY
attack when α = 0, β = 1; that is AF attack when α = 1,
β = 1.

Similar to our proposed Byzantine attack model, some
researches assume an identical false alarm attack probability
and miss detection attack probability, i.e., α = β [33] [34],
even some of them arbitrarily regard themalicious percentage
ρ as attack strength, such as [35]. Obviously, they fail to
take the independence between the false alarm attack and the
miss detection attack into consideration, and even confuse the
difference between the attack probability and the malicious
percentage. Besides, Li and Han [36] also propose a similar
generic attack model, but one main limitation is that they

only consider a MU in CRNs. In contrast, there is no spe-
cial or a priori assumption in our proposed generic Byzantine
attack model.

C. BYZANTINE FRAMEWORK
Now, we focus on a Bayesian detection framework for the PU
signal detection. After the FC receives the report vector R =
[R1,R2, · · ·,RN ] from SUs, the global decision is made by
considering the maximum a posteriori probability rule which

is expressed by P(R|H1)
P(R|H0)

H1
≷
H0

P(H0)
P(H1)

[37].

Given the independence of report results, the maximum a
posteriori probability rule simplifies to the K -out-of-N rule.
Therefore, the global false alarm and detection probability
under this rule for data fusion are given by [28]

Qf =
N∑

n=K

(
N
n

)
Pnfa(1− Pfa)

N−n (9)

and

Qd =
N∑

n=K

(
N
n

)
Pnda(1− Pda)

N−n (10)

where Pfa is the conditional probability of the report result 1
given H0 and Pda is the conditional probability of the report
result 1 given H1 over a sensing interval. By incorporat-
ing Byzantine attack into cooperative spectrum sensing,
Pfa and Pma can be represented as

Pfa=ρPmf +(1−ρ)Pf =Pf +ρ((1−Pf )α−Pf β) (11)

and

Pma=ρPmm+(1− ρ)Pm=Pm+ρ((1−Pm)β−Pmα) (12)

where Pda = 1− Pma.

III. PRELIMINARY ANALYSIS
In this section, how a group of MUs make the FC blind
in cooperative spectrum sensing is of our concern. We first
formulate the blind problem of decision-making and then
provide a closed form expression of the blind condition. Sub-
sequently, we adopt Bayes risk instead of the error probability
and Kullback-Leibler divergence (KLD) as the performance
criterion and give the expression of overall Bayes risk.
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A. BLIND CONDITION
Through Byzantine attack,MUs try to undermine the network
operability, that is, the FC’s ability of making the correct deci-
sion regarding the PU’s presence or absence [26]. If possible,
they would want to make the FC completely unable to decide
on a particular decision, i.e., to make the cooperative sensing
performance no better than a random guess of the channel
status [38].

Numerous efforts have been paid to combat Byzantine
attack threat and have shown the satisfactory performance in
some setting, but little attention to the blind problem. This
motivates us to address the question: what is the condition
which makes the FC blind? In the Bayesian framework,
we say that the FC is blind, if the received data does not
provide any information about the hypotheses to the FC [28].
In other words, the report result received by the FC is com-
pletely independent of the hypothesis test. That is, the condi-
tion to make the FC blind can be stated as

P(R|H0) = P(R|H1) (13)

Given the hypothesis, assume that each SU’s sensing
obseravtion is subject to conditional independent and iden-
tically distribution, the condition (13) becomes Pfa = Pda.
Accordingly, we have

Pf +ρ((1−Pf )α−Pf β)=1−Pm+α(Pmα−(1−Pm)β)

(14)

By some simple algebraic manipulations, (14) can be
simplified as

ρ =
1

α + β
(15)

From (15), a critical value of 50% of MUs can completely
blind the FC when α = β = 1, it is also the minimum
malicious percentage that makes the FC blind. Obviously,
the assumptions about a low malicious percentage or especial
‘‘always attack’’ strategy enable the previous works to escape
the blind problem.

B. BAYES RISK
The false alarm and detection probability or the error prob-
ability are the commonly used performance metric to char-
acterize the system performance. In addition, KLD is also
employed as the performance metric to measure the differ-
ence between two probability distributions, i.e., [25] [26], but
the probability distribution of R is less affected by Byzantine
attack when there only exist a few MUs or the attack proba-
bility is small. The more importance lies in that the different
impacts of false alarm attack and miss detection attack are
ignorant. For the network administrator, there may be a trade-
off between the waste of spectrum resources and the harmful
interference to the primary network respectively caused by
false alarm attack and miss detection attack, because they
impose different risks on the secondary and primary network.
It therefore makes sense to ask, ‘‘what is the risk (loss)?’’

In the Bayes theory, the criterion is minimum Bayes risk,
where Bayes risk is defined as the average of a risk func-
tion with respect to the joint distribution of R and hypothe-
ses [39]. In this regard, we elect Bayes risk as a performance
metric instead of the error probability and KLD, which is
represented as

L =
1∑

u=0

1∑
v=0

Lu,vP(Hv)P(Hu|Hv)

= L0,1P(H1)P(H0|H1)+ L1,0P(H0)P(H1|H0)

= L0,1P(H1)(1− Qd )+ L1,0P(H0)Qf (16)

whereP(Hu|Hv) is the conditional probability of declaringHu
when Hv is true (u = 0, 1; v = 0, 1), and Lu,v is the corre-
sponding risk, where L0,0 = L1,1 = 0. Specifically, Bayes
risk simplifies to the error probability when L0,1 = L1,0 = 1.
In practice, our research could be also applied for KLD.

IV. BYZANTINE ATTACK V. S. UNKNOWN
OR KNOWN FUSION RULE
In this section, we derive the optimal attack strategy under
various parameters to achieve the maximal local Bayes risk
when MUs are unware of the fusion rule. Furthermore,
a series of analyses will be provided on howMUs achieve the
maximal global Bayes risk by the optimal Byzantine attack
(α∗, β∗) under the majority fusion rule.

A. SCENARIO I: UNKNOWN FUSION RULE
Starting with the scenario where MUs have no knowledge of
the FC’s strategy, that is to say, the K -out-of-N rule used by
the FC for MUs is unknown. The lack of knowledge of the
fusion rule makes MUs only consider how to maximize the
local Bayes risk. Since the local Bayes risk is independent of
the fusion rule, we can formulate the local Bayes risk as

Ll = L0,1P(H1)Pma + L1,0P(H0)Pfa
= L0,1Pm+P(H0)(L1,0Pf −L0,1Pm)+h1ρα+h2ρβ (17)

where h1 = L1,0P(H0)(1 − Pf ) − L0,1P(H1)Pm, h2 =
L0,1P(H1)(1− Pm)− L1,0P(H0)Pf .
The local Bayes risk Ll is a linear function of α and β,

respectively. It can be seen from (17) that the signs of h1 and
h2 determine the optimal attack strategy (α∗, β∗). According

to the relation of L1,0
L0,1

, P(H1)Pm
P(H0)(1−Pf )

and P(H1)(1−Pm)
P(H0)Pf

, (α∗, β∗)

can be summarized below.

(a) If L1,0
L0,1

<
P(H1)Pm

P(H0)(1−Pf )
and L1,0

L0,1
<

P(H1)(1−Pm)
P(H0)Pf

, then
h1 < 0 and h2 > 0, (α∗, β∗) = (0, 1).

(b) If L1,0
L0,1

>
P(H1)Pm

P(H0)(1−Pf )
and L1,0

L0,1
>

P(H1)(1−Pm)
P(H0)Pf

, then
h1 > 0 and h2 < 0, (α∗, β∗) = (1, 0).

(c) If P(H1)Pm
P(H0)(1−Pf )

<
L1,0
L0,1

<
P(H1)(1−Pm)
P(H0)Pf

, then
h1 > 0 and h2 > 0, (α∗, β∗) = (1, 0).

(d) If P(H1)Pm
P(H0)(1−Pf )

>
L1,0
L0,1

>
P(H1)(1−Pm)
P(H0)Pf

, then h1 < 0 and
h2 < 0, (α∗, β∗) = (1, 0).
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(e) If L1,0
L0,1
=

P(H1)Pm
P(H0)(1−Pf )

=
P(H1)(1−Pm)
P(H0)Pf

, then h1 = 0 and
h2 = 0, the local Bayes risk is a constant value, regardless of
the attack strategy.

B. SCENARIO II: MAJORITY FUSION RULE
When the majority rule is adopted by the FC, K =

d(N + 1)/2e, the attack strategy is considered. Although the
FC has control of the fusion rule, it is not strategic. Hence,
MUs make use of the known majority rule to maximize the
global Bayes risk, while the FC cannot take effective action
against Byzantine attack due to unknown information about
attack strategy. Under the majority rule, the global Bayes risk
can be stated as

Lg = L0,1P(H1)(1−
N∑

n=d(N+1)/2e

(
N
n

)
Pnda(1− Pda)

N−n)

+L1,0P(H0)
N∑

n=d(N+1)/2e

(
N
n

)
Pnfa(1− Pfa)

N−n (18)

In contrast to the local Bayes risk, the global Bayes risk
Lg is a non-linear function. Therefore, before going into
deep analysis of the optimal attack strategy, we declare the
property of Lg separately regarding α and β. For this aim,
assuming that ρ < min

{
0.5 − Pf , 1 − N

(2N−2)(1−Pm)

}
,

which implies that it is not sufficient to blind the FC. Under
this assumption and (11) (12), the following result can be
obtained as

Pda = (1− Pm)(1− ρβ)+ ρPmα

= (1− Pm)(1− ρβ)+ ρPmα ≥ (1− Pm)(1− ρ)

> N/(2N − 2) (19)

Otherwise,

Pfa = Pf + ρ((1− Pf )α − Pf β)

≤ Pf + ρ(1− Pf )α ≤ Pf + ρ < 0.5 (20)

Depending on (19) and (20), a comprehensive analysis
on the relation between the global Bayes risk Lg and attack
strategy (α, β) is presented as below.

1) GLOBAL BAYES RISK W. R. T. α
First, for a fixed β, the partial derivative of Lg to α is obtained
as follows:

∂Lg(α, β)
∂α

= −L0,1P(H1)
∂Qd
∂α
+ L1,0P(H0)

∂Qf
∂α

(21)

where ∂Qf
∂α
= N

(N−1
K−1

) ∂Pfa
∂α

PK−1fa (1 − Pfa)N−K and ∂Qd
∂α
=

N
(N−1
K−1

)
∂Pda
∂α

PK−1da (1 − Pda)N−K . See Appendix for details.
The derivation can be given as:

∂Lg(α, β)
∂α

= NρL0,1

(
N − 1
K − 1

)
P(H1)Pm(1− Pda)N−K

·PK−1da [
L1,0
L0,1

P(H0)
P(H1)

(1− Pf )P
K−1
fa (1− Pfa)N−K

PmP
K−1
da (1− Pda)N−K

− 1] (22)

It is expedient to reformulate (22) as:

∂Lg(α, β)
∂α

= fα(α, β)[egα(α,β) − 1] (23)

where fα(α, β) = NρL0,1
(N−1
K−1

)
P(H1)PmP

K−1
da (1 − Pda)N−K

and gα(α, β) = ln(L1,0L0,1
P(H0)
P(H1)

1−Pf
Pm

) + (K − 1)ln( PfaPda
) +

(N − K )ln( 1−Pfa1−Pda
).

Observing (23), it is easily recognized that fα(α, β) > 0,
while the sign of gα(α, β) should be further confirmed.
Taking the partial derivative of gα(α, β) with respect to α as
follows:
∂gα(α, β)
∂α

= ρ(K − 1)(
1− Pf
Pfa

−
Pm
Pda

)

− ρ(N − K )(
1− Pf
1− Pfa

−
Pm

1− Pda
) (24)

In order to further confirm the sign of (24), we start from
1−Pm
Pm

>
Pf

1−Pf
to obtain

ρα + (1− βρ)
1− Pm
Pm

> ρα + (1− βρ)
Pf

1− Pf

⇔
Pda
Pm

>
Pfa

1− Pf

⇔
1− Pf
Pfa

>
Pm
Pda

(25)

Similarly, it can be shown that
1− Pf
1− Pfa

>
Pm

1− Pda
(26)

According to our assumption, an inequity can be
formulated as

(1− Pfa)(1− Pda)
PfaPda

> −1

⇔
1
Pfa
−

1
1− Pfa

>
1
Pda
−

1
1− Pda

(27)

Since Pfa < 0.5 and 1−Pf
Pm

> 1, (27) is equivalent to

1− Pf
Pm

(
1
Pfa
−

1
1− Pfa

) >
1
Pda
−

1
1− Pda

⇔
1− Pf
Pfa

−
Pm
Pda

>
1− Pf
1− Pfa

−
Pm

1− Pda
(28)

Using the above facts, we will prove that (24) is the non-
decreasing function according to the parity of N respectively.
When the number of SUs N is odd, K = (N + 1)/2,

an inequity can be derived as

(
N + 1

2
− 1)(

1− Pf
Pfa

−
Pm
Pda

)

> (N −
N + 1

2
)(
1− Pf
1− Pfa

−
Pm

1− Pda
) (29)

When the number of SUs N is even, K = N/2 + 1,
combining (26) (28), an inequity can be obtained as
N
2
(
1− Pf
Pfa

−
Pm
Pda

) >
N
2
(
1− Pf
1− Pfa

−
Pm

1− Pda
)

− (
1− Pf
1− Pfa

−
Pm

1− Pda
) (30)
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(29) and (30) are sufficient to show that ∂Lg(α,β)
∂α

> 0,
then, Lg is a quasi-convex function of α under a fixed β when
ρ < min

{
0.5− Pf , 1− N

(2N−2)(1−Pm)

}
.

2) GLOBAL BAYES RISK W. R. T. β
Next, we continue to analyze the property of Lg with respect
to β for a fixed α. Observing that the partial derivative
of Lg to β,

∂Lg(α, β)
∂β

= N
(
N − K
K − 1

)
[L1,0P(H0)

∂Pda
∂β

PK−1fa (1− Pfa)N−K

−L0,1P(H1)
∂Pda
∂β

PK−1da (1− Pda)N−K ]

= ρN
(
N − K
K − 1

)
L1,0P(H0)Pf P

K−1
fa (1− Pfa)N−K

· [
L0,1
L1,0

P(H1)
P(H0)

(1− Pm)P
K−1
da (1− Pda)N−K

Pf P
K−1
fa (1− Pfa)N−K

− 1] (31)

The above can also be restated as follows:
∂Lg(α, β)
∂β

= fβ (α, β)[egβ (α,β) − 1] (32)

where fβ (α, β) = NρL1,0
(N−1
K−1

)
P(H0)Pf P

K−1
fa (1 − Pfa)N−K

and gβ (α, β) = ln(L0,1L1,0
P(H1)
P(H0)

1−Pm
Pf

) + (K − 1)ln(PdaPfa
) +

(N − K )ln( 1−Pda1−Pfa
).

Because fβ (α, β) > 0, we further figure out the sign of
gβ (α, β). By a mathematical investigation, the partial deriva-
tive of gβ (α, β) with respect to β can be given as follows:

gβ (α, β)
β

= ρ(N − K )(
1− Pm
1− Pda

−
Pf

1− Pfa
)

− ρ(K − 1)(
1− Pm
Pda

−
Pf
Pfa

) (33)

To confirm the sign of (33), an inequity is proposed as

(1−
2
N
)

PdaPfa
(1− Pda)(1− Pfa)

> −1

⇔ (1−
2
N
)(

1
1− Pda

−
1

1− Pfa
) >

1
Pda
−

1
Pfa

⇔ (
N
2
− 1)(

1
1− Pda

−
1
Pda

)−
1
Pda

> (
N
2
− 1)(

1
1− Pfa

−
1
Pfa

)−
1
Pfa

(34)

which follows our assumption.

Further, since the fact that 1−Pm
Pf

> 1, we have

1− Pm
Pf

(
1

1− Pda
−

1
Pda

) >
1

1− Pfa
−

1
Pfa

⇔
1− Pm
1− Pda

−
Pf

1− Pfa
>

1− Pm
Pda

−
Pf
Pfa

(35)

Depending on the above results, we will prove that (32) is
a non-decreasing function when N is an odd or even number.

When the number of SUs N is odd, K = (N + 1)/2,

(N −
N + 1

2
)(
1− Pm
1− Pda

−
Pf

1− Pfa
)

> (
N + 1

2
− 1)(

1− Pm
Pda

−
Pf
Pfa

) (36)

When the number of SUs N is even, K = N/2 + 1,
using (35), we have

1− Pm
Pf

[(
N
2
− 1)(

1
1− Pda

−
1
Pda

)−
1
Pda

]

> (
N
2
− 1)[(

1
1− Pfa

−
1
Pfa

)−
1
Pfa

]

⇔
N − 1

2
(
1− Pm
1− Pda

−
Pf

1− Pfa
)

>
N + 1

2
(
1− Pm
Pda

−
Pf
Pfa

)

⇔ (N −
N
2
+ 1)(

1− Pm
1− Pda

−
Pf

1− Pfa
)

> (
N
2
+ 1− 1)(

1− Pm
Pda

−
Pf
Pfa

) (37)

Since ∂gβ (α,β)
∂β

> 0 follows the proof of (36) and (37), it is
concluded that when ρ < min

{
0.5− Pf , 1− N

(2N−2)(1−Pm)

}
,

Lg is a quasi-convex function of β for a fixed α.
By analyzing the property of Lg with respect to α and β,

the optimal attack strategy (α∗, β∗) can be easily determined,
as depicted in the Section IV.

V. BYZANTINE ATTACK V. S. OPTIMAL FUSION RULE
In this section, we investigate a scenario where the FC has the
knowledge of the attack strategy by means of an estimation
algorithm. Once the FC knows the attack strategy, the optimal
fusion rule is expected to minimize the global Bayes risk.
Meanwhile, the MU’s goal is to maximize the global Bayes
risk by acting in the optimal attack strategy. Next, we will
analyze the optimal strategies of both sides for own utilizes
in details.

A. OPTIMAL FUSION RULE
According to the K -out-of-N rule, the global Bayes risk can
be stated as:

Lg = L0,1P(H1)(1−
N∑

n=K

(
N
n

)
Pnda(1− Pda)

N−n)

+ L1,0P(H0)
N∑

n=K

(
N
n

)
Pnfa(1− Pfa)

N−n (38)

From (38), the global Bayes risk Lg is an objective function
with respect to the value of K . In order to find the optimal
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Kopt , we calculate the partial derivative of Lg with respect to
K as follows:

∂Lg(K )
∂K

≈ Lg(K + 1)− Lg(K )

= L0,1P(H1)
(
N
K

)
PKda(1− Pda)

N−K

−L1,0P(H0)
(
N
K

)
PKfa(1− Pfa)

N−K (39)

When ∂Lg(K )
∂K = 0, then we have

L0,1P(H1)
L1,0P(H0)

PKda
PKfa

(1− Pfa)K

(1− Pda)K
=

(1− Pfa)N

(1− Pda)N
(40)

Taking the Napierian logarithm on both sides of (40),
when Pda > Pfa (ρ < 1

α+β
), the optimal fusion rule is

given as:

K∗ =
Nln( 1−Pfa1−Pda

)− ln(L0,1L1,0
P(H1)
P(H0)

)

ln( 1−Pfa1−Pda
Pda
Pfa

)
(41)

When Pda < Pfa (ρ > 1
α+β

), the optimal fusion rule is
given as:

K∗ =
Nln( 1−Pda1−Pfa

)− ln(C1,0
C0,1

P(H0)
P(H1)

)

ln( 1−Pda1−Pfa
Pfa
Pda

)
(42)

Therefore, the optimal fusion rule can be expressed asKopt ,
where Kopt = K∗ (K∗ may not be an integer). Accord-
ing to (41) and (42), the optimal fusion rule is related to
attack parameters, it is necessary to estimate attack param-
eters (ρ, α, β). The estimation algorithm is formulated in the
following subsection.

B. ATTACK PARAMETERS ESTIMATION
There have been many estimation algorithms available to
estimate attack parameters, but they often involve unrealistic
assumptions such as a few MUs and/or the special type of
attack, in addition to increasing the computational complex-
ity. Here, we propose a simple and straightforward algorithm
to estimate attack parameters. The main idea of our proposed
estimation algorithm is to distinguish between the MU and
reliable SU by observing the local sensing performance of all
SUs. Due to the unfavorable channel condition of wireless
transmission, it is a tough task to accurately identify the
MU in a short time. A proper observation period is needed
to observe the performance of all SUs. Next, we introduce
an estimation algorithm consisting of consistency check and
error-tolerant selection.

1) CONSISTENCY CHECK
Although cooperative spectrum sensing significantly improve
the detection accuracy, the global decisionmay not be reliable
because of the presence of Byzantine attack. Subsequently,
the global decision as a criterion is not applicable for mea-
suring the local decision. Therefore, an alternative method

should be considered to confront Byzantine attack, even is
also feasible in the presence of a large number of MUs.
In the framework of CRNs, the whole knowledge about the
channel is grasped by the primary network, but the PU has
no obligation to convey the channel status for helping the
CRN [40]. Therefore, it is necessary to reconsider the process
of periodic spectrum sensing for consistency check of the
local decision.

In retrospect, a sensing interval consists of a sensing slot,
a report slot, a transmission slot in CRNs. In the sensing slot,
each SU individually performs the local spectrum sensing,
and then submits individual decision to the FC in the report
slot. The FC is responsible for the global decision making
on the presence or absence of the primary signal based on its
received information and determines whether SUs can access
idle channels to delivery data transmission or not. Encouraged
by [41] and [42], the main idea of data transmission evalua-
tion is to take advantage of the delivery of the transmitted data
of the scheduled SU after the sensing slot. The difference,
however, is that delivery-based assessment of [41] and [42]
only considers one case when the licensed channel is decided
as idle by the FC while our data transmission evaluation cov-
ers two cases, which is described in more detail below. In the
one case, the FC declares the licensed channel as idle, which
implies that at least one of SUs can be scheduled to access the
unused channel for data transmission. The successful delivery
of the transmitted data reveals that the global decision was
correct and the channel is unused. If the transmitted data can-
not be successfully delivered, the global decision is identified
as incorrect, and the channel is occupied.

In the other case, the FC declares the licensed channel as
busy, all SUs need to switch to another channel and sense
its availability in the next sensing interval. If there is no
data transmission (the reason for this is that the reliable SUs
have switched another channel to continue spectrum sensing)
which represents the global decision was correct, otherwise
incorrect.

In the above two cases, the data transmission reveals the
true channel status after a sensing interval, in other words,
the FC can be used to check consistency of received reports.
As an evaluation criterion, data transmission evaluation is
muchmore reliable than the global decision, even in the worst
scenario where Byzantine attack makes the FC blind. From
implementation point of view, the data transmission evalu-
ation approach can be easily applied in a centralized CRNs
where each SU individually accesses the spectrum, the data
transmission can be verified by the FC itself or another dele-
gated reliable SU [41], [42].

It should be noted that data transmission evaluation itself
is defect-free, however, the process of implementation is not
absolutely reliable. For example, although the global decision
is indeed correct in the first case, the data transmission failure
is possible due to environmental conditions and malfunc-
tioning. In the second case, the licensed channel is actually
being utilized by the PU, the data transmission from the SU
may also be successful, although it will the interfere with
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the primary network. Therefore, a certain error-tolerant is
considered in the next subsection.

2) ERROR-TOLERANT SELECTION
During the local spectrum sensing, Byzantine attack results in
that the MU’s sensing performance may not satisfy the target
performance requirements, such as, the target false alarm
probability P̄f and the target miss detection probability P̄m.
For a reliable SU, wireless network environment and the
malfunction of hardware may also affect its performance.
Hence, we take the error-tolerant into account and assume
that εf and εm respectively represent the tolerant false alarm
error and the tolerant miss detection error. In other words,
the false alarm and miss detection probability not exceeding
P̄f + εf and P̄m + εm for each SU is tolerable. Once the false
alarm probability Pf ,i or the miss detection probability Pm,i
is larger than P̄f + εf or P̄m + εm, the i-th SU is regarded as
a MU during an observation period.

After a sensing interval, those SUs who do not meet the
performance requirement constitute a set of MUs |N̂a|, thus
the estimated value of the proportion of MUs is expressed as

ρ̂ =
N̂a
N

(43)

where N̂a is the estimated value of the number of MUs.
We further average the performance of MUs in N̂a, which

is given as

P̄fa =

∑|N̂a|
i Pf ,i

N̂a
(44)

P̄ma =

∑|N̂a|
i Pm,i

N̂a
(45)

Using (9) and (10), the estimated values of the attack
probability can be calculated by

α̂ =
P̄fa(1− Pm)− (1− P̄ma)Pf

1− Pf − Pm
(46)

β̂ =
P̄ma(1− Pf )− (1− P̄fa)Pm

1− Pf − Pm
(47)

Utilizing all features discussed above, the parameter esti-
mation algorithm can be described in Algorithm 1.

3) OPTIMAL ATTACK STRATEGY
Utilizing the estimation algorithm, FC adopts the optimal
fusion rule Kopt to minimize the global Bayes risk Lg(Kopt ),
while MUs try to maximize Lg(Kopt ) by choosing the optimal
attack strategy.
Proposition: Given the optimal fusion rule Kopt and ρ ≤

0.5, Lg(Kopt ) is a monotonically increasing function of α for
a fixed β if gα(α, β) > 0. Similarly, Lg(Kopt ) is a monotoni-
cally increasing function of β for a fixed α if gβ (α, β) > 0.

Proof: Observing gα(α, β) > 0 and gbeta(α, β) > 0,
when gα(α, β) > 0, K satisfies the following inequity:

K < Ku (48)

where Ku =
Nln(

1−Pfa
1−Pda

)+ln( PdaPfa
)+ln(

L1,0P(H0)
L0,1P(H1)

)+ln(
1−Pf
Pm

)

ln[
Pda(1−Pfa)
Pfa(1−Pda)

]
.

Algorithm 1 Estimation Algorithm

1: Initial N̂a = 0, Pf ,i = 0, Pm,i = 0, i = 1, 2, 3, · · ·N .
2: for k = 1 : 1000 do
3: for i = 1 : N do
4: Count the local sensing performance: Pf ,i, Pm,i.
5: if Pf ,i − P̄f > εf or Pm,i − P̄m > εm then
6: N̂a = N̂a + 1;
7: else
8: continue;
9: end if
10: end for
11: Calculate the estimated value of the proportion ofMUs

ρ̂;
12: Average the false alarm and miss detection probabili-

ties of MUs;
13: Calculate the estimated values of the attack probability

α̂ and β̂;
14: end for

Otherwise, when gβ (α, β) > 0, K satisfies that

K > Kl (49)

where Kl =
Nln(

1−Pfa
1−Pda

)+ln( PdaPfa
)−ln(

L0,1P(H1)
L1,0P(H0)

)−ln( 1−PmPf
)

ln[
Pda(1−Pfa)
Pfa(1−Pda)

]
.

Proposition is definitely true if it is sufficient to showKu >
Kopt > Kl . Obviously, Kopt > Kl is true if we can prove
K∗ > Kl . Since

Kl − K∗ = ln(
Pf

1− Pm

Pda
Pfa

)/ln(
1− Pfa
1− Pda

Pda
Pfa

) (50)

Using the fact of Pm
1−Pm

<
1−Pf
Pf

, we have the following
inequity

Pm
1− Pm

+ ρ(β −
Pm

1− Pm
α)

<
1− Pf
Pf

+ ρ(β −
1− Pf
Pf

α)

⇔
Pm + ρ((1− Pm)β − Pmα)

1− Pm

<
1− Pf − ρ((1− Pf )α − Pf β)

Pf

⇔
1− Pda
1− Pm

<
1− Pfa
Pf

(51)

yielding K∗ > Kl which guarantees Kopt > Kl .
Besides, it can be observed that Ku > Kopt is equivalent to

Ku−K∗ > Kopt−K∗. Considering 1 > Kopt−K∗,Ku > Kopt
can follow by Ku − K∗ > 1. Since

Ku − K∗ = ln(
Pm

1− Pf

Pda
Pfa

)/ln(
1− Pfa
1− Pda

Pda
Pfa

) (52)

Using the fact of (25), Ku > Kopt is true. Consequently,
the proof is completed. Hence, according to Proposition and
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the blind condition, we can summarize the optimal attack
strategy to maximize the global Bayes risk as:

(α∗, β∗) =

{
(1, 1), if ρ ≤ 0.5
(ᾱ, β̄), if ρ > 0.5

(53)

where (ᾱ, β̄) satisfies ρ(ᾱ + β̄) = 1.

VI. NUMERICAL RESULTS
Numerical results are presented to corroborate theoretical
analyses in the context of various scenarios. The local and
global Bayes risk are simulated by varying attack strategy.
Given the importance of not causing interference to the
primary network, the loss of mistakenly declaring primary
absence L0,1 is set to be 4, and the loss ofmistakenly declaring
primary presence L1,0 is set to be 2.

A. UNKNOWN FUSION RULE
The local Bayes risk is of their concern when MUs are
unaware of the FC’s strategy. Thus, we first verify theoretical
analyses of Scenario I through simulation results.

FIGURE 4. Local Bayes risk when P(H0) = 0.2, Pm = Pf = 0.2.

In Figure 4, the local Bayes risk with respect to α and β
is shown when P(H0) = 0.2, Pm = Pf = 0.2. Such that
P(H1)Pm

P(H0)(1−Pf )
= 1, P(H1)(1−Pm)

P(H0)Pf
= 16, thus L1,0

L0,1
<

P(H1)Pm
P(H0)(1−Pf )

<

P(H1)(1−Pm)
P(H0)Pf

, which is followed by (a) of (17). In fact, we can
see from Figure 4 that there is a negative linear correlation
between the local Bayes risk and α while a positive linear
correlation between the local Bayes risk and β. Undoubtedly,
the optimal attack strategy is (α∗, β∗) = (0, 1).
Figure 5 plots the local Bayes risk with respect to α and β

when P(H0) = 0.8, Pm = Pf = 0.2. Such that P(H1)Pm
P(H0)(1−Pf )

=

0.0278, P(H1)(1−Pm)
P(H0)Pf

= 2.25, thus we have P(H1)Pm
P(H0)(1−Pf )

<
L1,0
L0,1

<
P(H1)(1−Pm)
P(H0)Pf

, which is followed by (c) of (17). The
positive linear correlation between the local Bayes risk and
α or β is shown in Figure 5. Obviously, the optimal attack
strategy is (α∗, β∗) = (1, 1).

FIGURE 5. Local Bayes risk when P(H0) = 0.8, Pm = Pf = 0.1.

FIGURE 6. Local Bayes risk when P(H0) = 0.9, Pm = Pf = 0.2.

When P(H0) = 0.9, Pm = Pf = 0.2, Such that
P(H1)Pm

P(H0)(1−Pf )
= 0.0278, P(H1)(1−Pm)

P(H0)Pf
= 0.4444, thus we have

P(H1)Pm
P(H0)(1−Pf )

<
P(H1)(1−Pm)
P(H0)Pf

<
L1,0
L0,1

, the result complies with

(b) of (17). The positive or negative linear correlation between
the local Bayes risk and α or β is illustrated in Figure 6, which
implies that the optimal attack strategy is (α∗, β∗) = (1, 0).

B. MAJORITY FUSION RULE
In another scenario where MUs have known the fusion rule
while the FC does not act in a strategic manner, MUs achieve
the maximal global Bayes risk by the optimal attack strategy.
In the following simulation environments, unless otherwise
specified, we consider that the prior probability of the hypoth-
esis H0 is set to 0.8, the average SNR is 5 dB and the number
of samples Ns over a sensing interval is equal to 20. The
percentage of MUs ρ is taken as 0.4. The target false alarm
probability P̄f is fixed to constant value 0.02 as well as
the target miss detection probability P̄m, and the detection
threshold λ is determined by P̄f .
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FIGURE 7. Global Bayes risk when N = 21.

FIGURE 8. Global Bayes risk when N = 20.

The global Bayes risk with respect to α and β is dis-
played in the plot of Figure 7 when the number of MUs is
odd, i.e., N = 21. As we can see in Figure 7, the global
Bayes risk Lg is a quasi-convex function of α for a fixed β.
Similarly, Figure 8 illustrates the global Bayes risk with
respect to α and β in the presence of the even number of
MUs, i.e., N = 20. The global Bayes risk Lg can also be rec-
ognized as a quasi-convex function of β for a fixed α. Given
the malicious percentage ρ, it is concluded that simulation
results are consistent with theoretical analyses on the relation
between the global Bayes risk and the attack strategy (α, β).
Considering quasi-convexity, the optimal attack strategy
(α∗, β∗) can only be one of the following three possibilities:
(1,0), (0,1), (1,1).

C. OPTIMAL FUSION RULE
Before simulating the optimal fusion rule, numerical results
are first provided to illustrate the proposed estimation algo-
rithm. The number of collaborative SUs N is assumed to

be 20. The tolerant false alarm error εf is set to be 0.04 and
the tolerant miss detection error εm is set to be 0.06 by several
experiments, the larger or smaller εf or εm is not conducive
to accurately estimate attack parameters.

FIGURE 9. Estimation of attack parameters.

According to our proposed estimation algorithm, the con-
vergence of attack parameters for α = 0.8, β = 0.2 and
ρ = 0.4 is depicted in Figure 9. The estimated value α̂
and α̂, β̂ are converged to constant values after applying
almost 600 rounds of sensing. This result corroborates the
effectiveness of the estimation algorithm, in the simulation,
the initial stage can be set as the first 600 sensing intervals
where attack parameters are estimated and then used to obtain
the optimal fusion rule.

FIGURE 10. Optimal fusion rule when ρ = 0.4.

After estimating the attack strategy, the FC subsequently
adopt the optimal fusion ruleKopt to suppressMUs. As shown
in Figure 10, Kopt shows a step change under various attack
strategies when ρ = 0.4. Moreover, Figure 11 plots the
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FIGURE 11. Global Bayes risk when ρ = 0.4.

FIGURE 12. Global Bayes risk when ρ = 0.8.

global Bayes risk when the FC adopts the optimal fusion rule.
It is observed that the global Bayes risk respectively increases
asα and β varying from 0 to 1, thus the optimal attack strategy
(α∗, β∗) to maximize the global Bayes risk is (1,1). For the
other case ρ = 0.8, we can see that the optimal attack strategy
is not unique in Figure 12. This is due to the fact that MUs can
achieve the maximal global Bayes risk by setting appropriate
attack parameters (i.e., ρ, α, β) when the attack strategy
satisfies the blind condition. But once the blind condition is
satisfied, such as ρ = 0.8 ≥ 1/(α + β), in our simulation
environment, the global Bayes risk Lg is fixed at 0.8. This is
the worst performance that the FC offers and the best attack
gain that MUs achieve in the scenario, unless either party
change own strategies.

VII. CONCLUSION
In this paper, we make an in-depth investigation on strategies
of both Byzantine attack and the FC in cooperative spectrum
sensing for CRNs. First of all, a generic Byzantine attack

model has been considered, a MU has a certain probability,
varying from 0 to 1, to conduct attacks, followed by the
condition which makes the FC blind. On basis of this general-
ized attack model, we analyze a sophisticated scenario where
Byzantine attack makes the FC blind and derive the blind
condition. Then, we show the optimal attack strategy which
MUs maximize the local or global Bayes risk respectively
in the context of the unknown and known K -out-of-N rule.
Besides, numerous efforts on the scenario where the FC has
the knowledge of attack strategy by means of the proposed
estimation algorithm. Subsequently, the FC minimizes the
global Bayes risk by the optimal fusion rule while MUs
maximize the global Bayes risk by the optimal attack strategy.
Finally, numerical results are presented that show the cor-
rectness of our theoretical analyses and the effectiveness of
the estimation algorithm. Our work is different from existing
works in that we provide recent advances and open research
directions on applying the FC and Byzantine attack in various
scenarios focusing on the optimal attack strategy as well
as the optimal defense strategy for cooperative spectrum
sensing.

APPENDIX
THE PARTIAL DERIVATIVE OF Lg W. R. T. α
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