
Received June 30, 2018, accepted August 5, 2018, date of publication August 23, 2018, date of current version September 7, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2866416

Impact of Social Interaction on the Capacity
of Hybrid Wireless Networks
QIUMING LIU 1, HE XIAO1, XIAOHONG QIU1, AND LI YU 2
1School of Software Engineering, Jiangxi University of Science and Technology, Nanchang 330031, China
2School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China

Corresponding author: Qiuming Liu (liuqiuming@hust.edu.cn)

This work was supported in part by the Project of the National Natural Science Foundation of China (NSFC) under Grant 61871437 and in
part by the Doctoral Research Fund of the Jiangxi University of Science and Technology.

ABSTRACT In this paper, we jointly consider the optimal max-L-hops routing policy and social features for
the throughput capacity of a hybrid wireless network, which is different from the existing works that ignored
the network traffic model. For the social feature, each node’s social group is determined by a probability
related to the distance from the source node. To embody the features of social behavior, we propose a traffic
model within a social group. Under themax-L-hops routing policy in the hybrid wireless network, we analyze
the effects of physical distance, clustering property, and a number of base station on throughput capacity.
We also study the influence of different social group sizes on the throughput capacity. Our results demonstrate
that: 1) the optimal L is not only related to social group size, but also the selection of destination nodes;
2) when the social contact factors α and β increase, the throughput capacity trends to be independent of the
number of base station and routing parameter L. Particularly, our results show that the wireless network is
scalable with the number of node, if the social contact factor is large enough; and 3) the results demonstrate
that the base station and social interaction improve the throughput capacity of hybrid wireless networks.

INDEX TERMS Throughput capacity, social group, paw-law distribution, hybrid wireless network.

I. INTRODUCTION
Wireless ad hoc network is a decentralized type of wire-
less network which consists of a set of nodes. Each node
communicates with each other over a wireless channel using
multi-hops transmission. Due to the distributed control and
potential mobility of nodes, it causes a lot of problems in
the network design. The main problem is that of network
capacity. Network capacity has been a hot topic in the past few
years. Gupta and Kumar [1] started a groundbreaking work
on network capacity. They analyzed the network capacity
from the perspective of scaling law. Specifically, for a net-
work that contains n nodes, an average per-node throughput
capacity was 2

(
1

√
n log n

)
1 as n → ∞, when each node fol-

lowed independent identical distribution (i.i.d) and the desti-
nation was selected randomly and independently. The results
indicated that per-node throughput would be vanished as
n → ∞. The reason of the pessimistic result is that each
node not only needs to relay other traffics, but also interfered

1Given two functions x(n) and y(n): x(n) = O(y(n)) indicates
limn→∞ x(n)/y(n) = c < ∞; x(n) = o(y(n)) indicates
limn→∞ x(n)/y(n) = 0; if y(n) = O(x(n)), x(n) = �(y(n)) w.h.p.; if
both x(n) = �(y(n)) and x(n) = O(y(n)), x(n) = 2(y(n)); x(n) = 2̃(y(n))
indicates x(n) = 2(y(n)) when logarithmic terms are ignored.

by simultaneous transmission in the network. To alleviate
the relay load, Liu et al. [2] and Li et al. [3] assigned some
base stations into the network, which was named as hybrid
wireless network (HWN). In the HWN, the base stations
were connected by an infinite capacity wired network and did
not consume wireless bandwidth resource. Each node could
utilize ad hoc mode or cellular mode to deliver packets. If the
destination was located far from the source node, the packets
would be delivered by cellular mode. It not only mitigates the
relay load of each node, but also alleviates the interference,
such that per-node throughput could be increased in some
extent. There are two major routing policies employed in the
HWN: same cell routing policy [2] and Max-L-hops routing
policy [3]. For first policy, the data is delivered by ad hoc
mode if the destination node is served by a same base station.
Otherwise, it will be served by cellular mode using one hop
transmission. As for the Max-L-hops routing policy, the data
is delivered by ad hoc mode if the destination node is located
within L hops from the source node. Otherwise, it would be
served by cellular mode.

Most works on the two policies focused on the destination
was randomly and uniformly selected, such that the traffic
flows were uniform. However, it can not reflect the realistic
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node/user’s behavior, where each user may appear social
behaviors. Studies on wireless social networks in conformity
with abundant datasets of realistic networks had received
widely concern. In [4], Palla et al. demonstrated that actual
networks were made of highly overlapping cohesive groups
of nodes, and in [5], Mislove et al. studied the characteristics
of large scale online social network, the result showed that
social network could be interpreted as a power-law, small-
world, and scale-free networks. Later, Viswanath et al. [6]
extended the work in [5] and addressed an evolution model
between users in the online social network. For the wireless
social networks, each node belongs to a social group and only
communicates to its social group nodes. In particular, each
source chooses its destination according to a given priority.
In [7], Barabási and Albert showed that the social group had
a power-law distribution and the connection between source
and destination was related to the distance between them.
Milgram [8] showed that the social network was essential a
small-world network, which was proposed by Kleinberg [9].
They investigated a planar grid network and found the social
connection of each node could be divided into local contact
and long range contact. The local contact was defined as
the four possible directions within one hop transmission.
While the long range contact denoted the connection of a
destination far away from the source. The probability of
long range contact was inverse proportion to the distance
between source and destination. Based on the Kleinberg’s
model, which is a fundamental mode of social network,
Li et al. [10] investigated the effect of power-law distribution
traffic flows on the capacity of wireless network. However,
they did not consider the influence of social group. Later,
Azimdoost et al. [11], [12] and Garcia-Luna-Aceves [13]
jointly considered the social network and wireless ad hoc
network to derive the throughput capacity. Specifically, they
assumed there were four neighboring contacts and one long
range contact of each node. Nevertheless, the assumption
of only one long range contact was too limited. In [14],
they extended the number of long range contact node to
exactly q. The selection of q nodes followed a power-law
distribution related to their location. In particular, for a node v,
the probability of node v was selected as a long range contact
of node s was proportional to d−α(s, v), where α > 0 and
d−α(s, v) was the lattice distance from s to v. Then the source
node uniformly and randomly selected a destination from
its q size social group, i.e., for any social group node k ,
the probability of node k was selected as the destination
was 1

q . Varying q = 2(1) to q = 2(n), in [12], they
studied the effect of social group size on the throughput
capacity of wireless network. The results revealed that the
throughput capacity was not only impacted by social group
selection factor α, but also influenced by social group size q.
Since the social group would be evolutional, Fu et al. [16]
studied the capacity of wireless network based on an evo-
lutional social network, where each node followed a power
law distribution. While Wang [17] analyzed the throughput
capacity under a population-based formation social model,

in which contained three-layered structure and each layer was
controlled by a factor. As for the mobile wireless network,
Lu et al. [18] analyzed capacity and delay in the vehicular net-
work with social-proximity. While in [19], Ren et al. focused
on the multicast capacity by employing directional antenna to
decrease the interference. After that, plenty of works had been
done on the throughput capacity of wireless social network.
Following the social network model in [16], Zheng et al. [20]
analyzed the throughput capacity of inhomogeneous wire-
less network. While Wei et al. [21] studied the through-
put capacity of three-dimensional wireless social network.
Due to the broadcast nature of wireless channel [22],
Zheng et al. [23] further considered the secrecy capacity
of inhomogeneous wireless social network. Since direc-
tional antenna can improve the capacity to some extent,
Qin et al. [24] improved the throughput capacity by assum-
ing that each node was equipped with directional antenna.
Besides, Jia et al. [25] combined the social network with
cognitive network and derived the throughput capacity.
However, all the works mentioned above only concerned
pure ad hoc network. As for the hybrid wireless network,
Hou et al. [26] assigned base stations to the wireless network.
According to the social contact model proposed in [14], they
addressed the impact of social interaction on the throughout
capacity of HWN,where each node had exactly q social group
nodes. Nevertheless, they only considered a simple social
traffic model, which can not reflect the realistic flow of social
network.

In this work, we extend our previous work [27] to hybrid
wireless network. Specifically, in order to better reflect the
data flows of social network, each node chooses nodes as
its social group according to a power-law distribution with
factor α. The selection of destination node within the social
group also follows a power-law distribution with factor β.
By using the Max-L-hops routing policy, we investigate the
impact of base stations, routing policy, social group factors α
and destination selection factor β on the throughput capacity.
The results show that, under the optimal routing parameter L,
social interaction can increase the throughput capacity of
hybrid wireless network. Moreover, we also find the optimal
number of base station to maximize the throughput capacity.

The main contributions in this work are concluded as
follows:
• We proposed a more realistic social network model.
Different from that of [26] where the selection of desti-
nation node within social group is uniform, we consider
an evolution social interaction model, where the selec-
tion of destination node follows a power-law distribution
with factor β.

• Considering the impact of factor β on the selection
of destination node, we find an optimal Max-L-hops
routing policy in HWN, as well as the optimal number
of base station.

• Wealso jointly analyze the effect of social feature factors
α andβ, optimal hop lengthL and number of base station
on the throughput capacity.
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The rest of the paper is organized as follows. In section II,
we introduce the system model with social features. The
procedure of capacity analysis is presented in section III.
In section IV, we derive the throughput capacity of ad hoc
layer and combine it with cellular layer in section V. We
give a numerical simulation and comparison with the previ-
ous works in Section VI. Finally, the paper is concluded in
section VII.

II. SYSTEM MODELS
We consider a hybrid wireless network (HWN) with n ad
hoc nodes and m base stations in an unit disk. As shown in
Fig. 1, there are n nodes randomly and uniformly distributed
in the network, while m base stations are regularly deployed.
The HWN can be divided into two layers: ad hoc layer and
cellular layer. The cellular layer is composed bym cells which
is divided by m base stations, such that the coverage area
of each cell is 1

m . The base stations are connected by an
infinite bandwidth wired network. In order to guarantee the
connectivity of network, we assume the transmission range

of each node is r(n), where r(n) = 2

(√
log n
n

)
[28]. Since

there exists interference caused by simultaneous transmis-
sion, we employ protocol model [1] to define a successful
transmission. Let Xi, Xj and Xk be the locations of node vi, vj
and vk , respectively. Node vi at location Xi can successfully
transmit information to node vj at location Xj, if for any
nodes vk at location Xk , vk 6= vi, that transmit information
simultaneously with vi, then node vi can transmit information
successfully to node vj if |Xi − Xj| ≤ r(n) and |Xk − Xj| ≥
(1+1)r(n), where1 > 0 is a constant of guard zone factor.

FIGURE 1. Hybrid network mode. If flow 1 (source s1 and destination d1
line) is within L hops, the transmission uses multihops ad hoc model.
Otherwise uses cellular mode, such as flow 2 (source s2 and
destination d2 line).

Without loss of generality, we employ the time division
multiple access (TDMA) medium access strategy to schedule

the transmission. In particular, the system is time-slots and
the network area is tesselated into squares with side-length
C1r(n) (C1 <

1
4 ). Each square in a big square grouped by K

2

squares takes turns to transmit, whereK ≥ (2+1). As shown
in Fig. 2, the squares with cross sign are the simultane-
ous transmitting squares. The packet of source node can be
transmitted by multi-hops transmission (ad hoc model), also
can be directly delivered to the base station (cellular mode).
Let Wa and Wc denote the bandwidth resources allocated
to the ad hoc model and cellular mode, respectively. The
total bandwidth is W = Wa + Wc. We assume each source
node predicts the location of its local contacts and long range
contacts. Thus, the packet is firstly transmitted to the local
contact which is nearest to the destination, then continued to
deliver to the destination.

FIGURE 2. The network is divided into squares with side length C1r (n).
For a given source node s, the innermost circle denotes the transmission
range. Gradual gray level from inner to outside indicates the probability
that a node is selected as a member of social group is decreasing.
R1(R2) is the distance from the source s to its destination. Squares
({s1, s2, ...s4x }) contain the nodes with probability P(hvt = x). Squares
with cross are the squares that can transmit simultaneously and M
(16 squares in this figure) squares form a group to take turns to transmit.

Since the network contains ad hoc layer and cellular layer,
before transmitting the packet to the destination, the source
should decide which mode to transmit the packet, i.e., ad
hoc mode and cellular mode. As shown in Fig. 1, we apply
the Max-L-hops policy to determine the transmission mode.
That is, if the location of destination is within L hops far
from the source node, the packet would be delivered by ad
hoc model, where L is variable and impacts the performance
of network. Otherwise, the packet would be transmitted by
one hop cellular model. In the ad hoc model, the packet is
delivered by multi-hops transmission which is relayed by the
intermediate nodes.While for the cellular model, source node
sends the packet to its nearest base station using one hop
transmission, then the packet is delivered to destination from
the base station near to the destination.
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To evaluate the influence of social interaction on the
throughput capacity, we adopt the social model proposed in
our previous work [27] to describe the node’s social behav-
iors. Specifically, for each source node, there exists one local
contact within its four adjacent cells. As shown in Fig.2,
each source actually has four local contacts. However, as we
are investigating the asymptotic result, the communication of
local contact does not impact the order of throughput capacity
results. Thus, we ignore the influence of local contact, only
consider the long range contacts. Additionally, we assume the
number of social group node for each node is q, where q can
vary from a constant to n. Define G as the social group of
node s, then, for a node j located at a distance dj away from s,
the probability that j belongs toG is proportional to d−αj . That
is, for nodes n1, n2, . . . , nq, the probability that these nodes
belong to G is

Pr(G = {n1, n2, . . . , nq}) =
d−αn1 d

−α
n2 . . . d−αnq∑

1≤i1<i2...<iq≤n d
−α
i1
. . . d−αiq

.

(1)

Particularly, the probability of a particular node vk as a
member of G is

Pr(vk ∈ G) =

∑
1≤i1<i2...<iq−1≤n,ij 6=k d

−α
k di1 . . . diq−1∑

1≤i1<i2...<iq≤n d
−α
i1
. . . d−αiq

=
d−αk σq−1,n−1(dkn)

σq,n(dn)
. (2)

where dn , (d−αi1 , . . . , d−αin ).
To simplify the formula, we utilize some notions in ele-

mentary symmetric polynomials [29]. For an n variables
x = {x1, . . . , xn}, an elementary symmetric polynomials
with q-th degree of these variables is defined as σq,n(x) =
σq,n(x1, . . . , xn) =

∑
1≤i1<i2...<iq≤n xi1 . . . xiq . Similarly,

the elementary symmetric polynomials of the set where xk
is absent from the former set of variables as σ k̄q,n−1(x) =
σq,n−1(x1, . . . , xk−1, xk+1, . . . , xn).
For each source node, the destination node is selected

within its social group. Given a destination vt and node vk ,
we have Pr(vt = vk |vk /∈ G) = 0, and

Pr(vt = vk ) = Pr(vt = vk |vk ∈ G)Pr(vk ∈ G). (3)

Different from [26] in which the authors considered the
source uniformly selected destination from its social group,
we consider that, in each social group, source node constructs
its social nodes related to the distance from source node
which follows a power law distribution with factor α. Within
the social group, the probability that a node is selected as the
destination is related to the distance from its source, which is
also followed a power law distribution [9], [30] with factor β.
For a social group, let dq = {d

−β
i1
, d−βi2 , . . . , d−βiq }, we have

Pr(vt = vk |vk ∈ G) =
d−βk∑q
j=1 d

−β
j

=
d−βk

σ1,q(dq)
. (4)

Combining (2) and (4), (3) can be rewritten as

Pr(vt = vk ) = Pr(vt = vk |vk ∈ G)Pr(vk ∈ G)

=
d−α−βk σq−1,n−1(dnk )
σ1,q(dq)σq,n(dn)

. (5)

In [26], Hou et al. considered that nodes in a social group
enjoy an equal probability to be selected as a destination.
Actually, nodes may exhibit different intimating degree, even
they are in the same social group, such that we introduce
a power law distribution on the selection of destination.
Although it is just a factor difference on destination selec-
tion, the derivation of throughput capacity would be more
complicated than previous work [26]. The result shows that
the intimating degree can influence the throughput capacity
significantly.

III. CAPACITY ANALYSIS
Based on the proposed social traffic model, we investigate
the impact of social interaction on the throughput capacity
of HWN. Varying social group size q and maximum hop
length L and social group size factor α, social interaction
factor β, the throughput capacity is derived.

A. DEFINITION AND NOTIONS
The definition of throughput capacity is the average
bits or packets transmitted per unit time. Each node trans-
mits 3 bits or packets per second is feasible if there exists
a spatial and temporal scheme to schedule the transmission.
Correspondingly, the network capacity is 3′ = n3. Let
2(f (n)) bits or packets per second define the throughput
capacity. For constants c′ > 0 and c′′ < ∞, the throughput
capacity is achievable with high probability, and

lim
n→∞

P{3 = c′f (n) is feasible} = 1, (6)

lim
n→∞

P{3 = c′′f (n) is feasible} < 1. (7)

In Table 1, we list all the parameters that will be used in
later analysis, proofs and discussions.

TABLE 1. Notations.

B. DERIVATION OF THROUGHPUT CAPACITY
We firstly analyze the capacity contributed by the base sta-
tions. In the cellular layer, if we allocate Wc bandwidth
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resource to the cellular transmission, then throughput capac-
ity of each cell is upper bound by Wc and lower bounded
by Wc

1c
, where 1c is an interfering coefficient [3] and it is

independent of n and m. Thus, for each cell, the capacity
contributed by a base station is 2(Wc). Let 3c denote the
capacity contributed by cellular layer, we can conclude that
3c = 2(mWc) since the network contains m base stations.
As for the ad hoc layer, the case is much more compli-

cated. Firstly, we present the baseline to derive the capacity
contributed by ad hoc layer.

Similar to the work of [11] and [14], as shown in Fig. 2,
the network is divided into squares with side length ofC1r(n),
where r(n) is the transmission range of each node. Such
that each node can transmit packets to any nodes located in
the neighboring squares. Note that a cell of cellular layer
may consist several squares. Since each source may select
ad hoc mode or cellular mode to transmit, let Pa denote the
probability that the source transmits data using ad hoc mode,
which is determined by the distance from source node to the
destination. Then the average number of ad hoc flows in the
entire network is Na = nPa. Correspondingly, the expected
number of hops for each ad hoc flow is calculated according
to the social traffic model. Let E[h] denote the average hop
count of each ad hoc flow. Then, the total number of hops in
ad hoc layer is H = NaE[h].
Since we are considering an uniform network model and

there are 1/r2(n) squares in the network, the average number
of ad hoc flows intersected a certain square is E[I ] = Hr2(n).
It indicates that the rate at which each square needs to transmit
is less than c0nE[I ] with high probability, where c0 is a con-
stant. Without loss of generality, we adopt TDMA to sched-
ule the transmission. In particular, the number of interfering
squares of a given square is at most c = O((2 + 1)2) [1].
As shown in Fig. 2, only one square (crossed square) in
each grouped squares (with group size c = 16) can transmit
simultaneously, where c is independent of n and m. Since the
bandwidth allocated to ad hoc layer is Wa, the rate at which
each square gets to transmit is Wa/c bits per second. This
rate can be achieved by all squares if it is less than the rate
available, i.e., c0nE[I ] ≤ Wa/c. Considering the perspective
of scaling law, the average throughput capacity of each ad hoc
flow is30

a = 2( Wa
E[I ] ). Correspondingly, the network capacity

contributed by ad hoc layer is 3a = Na30
a.

As illustrated in Fig. 2, under the ad hoc model, the max-
imum hop count from source node to destination node is L.
If a destination located at x hops from the source node, there
exist 4x squares that contain such destination. Ignoring the
effect of edge in a surface torus and defining P(hvt = x)
as the probability that the destination located at x hops,
we have

P(hvt = x) =
4x∑
l=1

∑
vk∈Al

P(vt = vk ), (8)

where Al is a square at a distance of l hops away from the
source square.

Correspondingly, on the basis of Max-L-hops resource
allocation strategy, we now calculate the total number of hops
that using ad hoc transmission mode.

Na = nPa = n
L∑
x=1

P(hvt = x) = n
L∑
x=1

4x∑
l=1

∑
vk∈Al

P(vt = vk ).

(9)

Combining the Max-L-hops routing policy [3], we get
Theorem 1 as follows,
Theorem 1: Under the Max-L-hops policy, the average

number of ad hoc flows cross each square is nr2(n)E[h],
where E[h] =

∑L
x=1 xP(hvt = x).

Proof: Let hi denote the number of hops of ad hoc flow i.
Since there areNa ad hoc flows in the ad hoc layer, the average
total number of hops H generated by ad hoc flows is

E[H ] = E

[ Na∑
i=1

hi

]
=

Na∑
i=1

E[h]. (10)

Let Igf = 1 represent that flow f passes square g, otherwise,
Igf = 0. According to the Law of Large Numbers (LLN),
we have Igf = r2(n). Thus, the average number of flows
passing a given square can be denoted as:

E[I ] = EH [E[I |H ]] = EH [HE[I
g
f ]]

= E[H ] · I [I fg ] = Na · E[h] · r2(n).s (11)

Additionally, we have Na = nPa and

E[h] =
L∑
x=1

xP(hvt = x|ad hoc flow)

=

L∑
x=1

x
P(hvt = x, ad hoc flow)

P(ad hoc flow)

=
1
Pa

L∑
x=1

xP(hvt = x). (12)

�
According to (8), we also have

L∑
x=1

xP(hvt = x) =
L∑
x=1

x
4x∑
l=1

∑
vk∈sl

P(vt = vk ). (13)

Combining (12) and (13), we get the average number of ad
hoc flows crossing each square is

E[I ] = nr2(n)
L∑
x=1

x
4x∑
l=1

∑
vk∈sl

P(vt = vk ). (14)

To derive the capacity, the key point is Na and E[I ], which
is influenced by the size of social group. To analyze the effect
of social interaction on Na and E[I ], we will discuss the size
of social group with q = 2(n) and q = 2(1), respectively.
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C. WHEN q = 2(n)
Before we analyze the case q = 2(n), we present the
following Lemma firstly.

Lemma 1: If q = 2(n), then
d−αk σ kq−1,n−1(dn

−α)

σq,n(dn−α)
=

q
n =

2(1).
Proof: According to definition of elementary symmetric

polynomials, the probability that a particular node vk is a
member of G is

Pr(vk ∈ G) =
d−αk σq−1,n−1(dnk )

σq,n(dn)

=

∑
1≤i1<...<iq≤n,∃h:ih=k

∏q
i=1 d

−α
ij∑

1≤i1<...<iq≤n
∏q

i=1 d
−α
ij

. (15)

Assume that d−αij = Yij = exp(Zij) for 1 ≤ ij ≤ n,

d−αk σq−1,n−1(dnk )
σq,n(dn)

=

∑
1≤i1<...<iq≤n,∃h:ih=k

∏q
i=1 Yij∑

1≤i1<...<iq≤n
∏q

i=1 Yij

=

∑
1≤i1<...<iq≤n,∃h:ih=k exp(

∑q
j=1 Zij )∑

1≤i1<...<iq≤n exp(
∑q

j=1 Zij )
.

(16)

Due to q ranges from q0 + 1 to n − 1, we can exploit the
LLN for q > q0. For any small ε > 0, there exists a small δ(ε)
such that lim(Large q)

1
q

∑q
i=1 Zi = Z̄ + ε, with probability

1 − δ(ε) → 1. where Z̄ is the mathematical expectation of
random variable Zi.

d−αk σq−1,n−1(dnk )
σq,n(dn)

=

∑
1≤i1<...<iq≤n,∃h:ih=k exp(q(Z̄ + ε))∑

1≤i1<...<iq≤n exp(q(Z̄ + ε))

=
Cq−1
n−1

Cq
n
=
q
n
. (17)

�
Lemma 2: when q = 2(n), we have

E[I ] =


2

n(√ log n
n

)4−β

L3−β

, 0 ≤ β ≤ 2

2(log nL3−β ), 2 ≤ β ≤ 3
2(log n), 3 ≤ β

(18)

Proof: According to Lemma 1, (14) can be simplified as

E[I ] = nr2(n)
L∑
x=1

x
4x∑
l=1

∑
vk∈sl

P(vt = vk )

= nr2(n)
L∑
x=1

x
4x∑
l=1

∑
vk∈sl

d−βk
σ1,q(dq−β )

. (19)

This summation can be further simplified as follow:

L∑
x=1

x
4x∑
l=1

∑
vk∈sl

d−βk

≡

L∑
x=1

4x∑
l=1

∑
vk∈sl

(ckx2r(n))−β ≡ nr(n)2−β
L∑
x=1

x2−β

(Approximated by integral for sufficient large L)

≡ nr(n)2−β
∫ L

x=1
u2−βdu

≡

{
2(nr(n)2−βL3−β ), 0 ≤ β ≤ 3
2(nr(n)2−β ), 3 ≤ β

(20)

By the same approximation method, we also have

σ1,q(dq−β ) ≡ σ1,2(n)(d(2(n))
−β )

≡

2(n)∑
k=1

d−βk

≡

d
2

C1r(n)
e∑

x=d 1
C1
+1e

4x∑
l=1

∑
vk∈sl

(ckxr(n))−β

≡ nr(n)2−β
d

2
C1r(n)

e∑
x=d 1

C1
+1e

x1−β

≡ nr(n)2−β
∫
d

2
C1r(n)

e

x=d 1
C1
+1e

u1−βdu

≡

{
2(n), 0 ≤ β ≤ 2
2(nr(n)2−β ), 2 ≤ β

(21)

Let r(n) = 2

(√
log n
n

)
substitute to (19), (20) and (21).

Then combining (20) and (21), we finish the proof. �
Since

Na = nPa = n
L∑
x=1

P(hvt = x) = n
L∑
x=1

4x∑
l=1

∑
vk∈Al

P(vt = vk ).

(22)

Removing x and r2(n) in (19) and using the same process
as (20) and (21), we obtain the following Lemma without
proof.
Lemma 3: when q = 2(n), we have

Na = nPa =


2

n(√ log n
n

)2−β

L2−β

, 0 ≤ β ≤ 2

2(n), 2 ≤ β
(23)

D. WHEN q = 2(1)
The case of q = 2(1) is more complicated than that
of q = 2(n), since it is hard to directly calculate E[I ].
To derive E[I ], we analyze the upper bound and lower
bound of E[I ], respectively. Before we calculate E[I ] and Na,
we refer the following Lemma from [29].
Lemma 4: Let 9 = {ψ1, . . . , ψn} denote a set of nonneg-

ative real numbers, where n ≥ 2. Then we have

σ1,n(9)σp,n(9)
(p+ 1)σp+1,n(9)

= 2

(
n

n− p

)
, (24)

where p is finite and n goes to infinite [29].
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Lemma 5: When q = 2(1), we have

E[I ] =


2

(
n
(√

log n
n

)4−α

L3−α−β
)
,

0 ≤ α ≤ 2,
0 ≤ α + β ≤ 3

2(log nL3−α−β ),
2 ≤ α,
0 ≤ α + β ≤ 3

2(log n), else
(25)

Proof: To derive the upper bound and low bound of
average number of ad hoc flow crossing each square, we refer
the following two inequalities:

σq−1,n(dn−α)− d−αk σq−2,n(dn−α) ≤ σ kq−1,n−1(dn
−α), (26)

and

σ kq−1,n−1(dn
−α) ≤ σq−1,n(dn−α). (27)

First, using the upper bound in (27), we have

E[I ] = nr2(n)
L∑
x=1

x
4x∑
l=1

∑
vk∈sl

d−α−βk σq−1,n(dn−α)

σ1,q(dq−β )σq,n(dn−α)

= nr2(n)
σq−1,n(dn−α)

σ1,q(dq−β )σq,n(dn−α)

L∑
x=1

x
4x∑
l=1

∑
vk∈sl

d−α−βk .

(28)

Using (20), we have

L∑
x=1

x
4x∑
l=1

∑
vk∈sl

d−α−βk

≡

{
2(nr(n)2−α−βL3−α−β ), 0 ≤ α + β ≤ 3
2(nr(n)2−α−β ), 3 ≤ α + β

(29)

According to the lemma 4, we have

σq−1,n(dn−α)
σq,n(dn−α)

≡
1

σ1,n(dn−α)
2

(
nq

n− q+ 1

)
≡ 2

(
1

σ1,n(dn−α)

)
. (30)

Substituting factor β for α in (21), we have

2
(
σ1,n(dn−α)

)
≡

{
2(n), 0 ≤ α ≤ 2
2(nr(n)2−α), 2 ≤ α

(31)

Next, we need to find the order of σ1,q(dq−β )
Let xqi be the hop length of the ith member of long range

social group from the source node, then we have

σ1,q(dq−β ) =
q∑
i=1

d−βqi =
q∑
i=1

(Cir(n)xqi )
−β

= r−β (n)
q∑
i=1

(Cixqi )
−β . (32)

It holds with probability one as n→∞. It means that, within
a distance of2(1), we can find at least one long range contact

node, which is the dominant term in (32). Thus the summation
of (32) is 2(1), and

σ1,q(dq−β ) = 2(r−β (n)). (33)

According to (31) and (33), we have

σq−1,n(dn−α)

σ1,q(dq−β )σq,n(dn−α)
=


2(

r(n)β

n
), 0 ≤ α ≤ 2

2(
r(n)α+β−2

n
), 2 ≤ α

(34)

Combining (29) and (34), we have

L∑
x=1

x
4x∑
l=1

∑
vk∈sl

d−α−βk σq−1,n(dn−α)

σ1,q(dq−β )σq,n(dn−α)

≡


2(r(n)2−αL3−α−β ), 0 ≤ α ≤ 2, 0 ≤ α + β ≤ 3
2(r(n)2−α), 0 ≤ α ≤ 2, 3 ≤ α + β
2(L3−α−β ), 2 ≤ α, 0 ≤ α + β ≤ 3
2(1), 2 ≤ α, 3 ≤ α + β

(35)

Next, we compute the lower bound on E[I ]. Using (26),
we have

E[I ] = nr2(n)
( L∑
x=1

x
4x∑
l=1

∑
vk∈sl

d−α−βk σq−1,n(dn−α)

σ1,q(dq−β )σq,n(dn−α)

−

L∑
x=1

x
4x∑
l=1

∑
vk∈sl

d−2α−βk σq−2,n(dn−α)

σ1,q(dq−β )σq,n(dn−α)

)
. (36)

The first term in (36) has been derived in (35) and the sec-
ond term in (36) can be computed as

L∑
x=1

x
4x∑
l=1

∑
vk∈sl

d−2α−βk σq−2,n(dn−α)

σ1,q(dq−β )σq,n(dn−α)

=
σq−2,n(dn−α)

σ1,q(dq−β )σq,n(dn−α)

L∑
x=1

x
4x∑
l=1

∑
vk∈sl

d−2α−βk . (37)

Following Lemma 4, we get

σq−2,n(dn−α)
σq−1,n(dn−α)

≡
1

σ1,n(dn−α)
2

(
n(q− 1)
n−q+2

)
≡

1

σ1,n(dn−α)
.

(38)

Thus we have

σq−2,n(dn−α)
σq,n(dn−α)

≡

(
1

σ1,n(dn−α)

)2

≡


2((

1
n
)2), 0 ≤ α ≤ 2

2((
1

nr(n)2−β
)2), 2 ≤ α

(39)
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Based on (29), we also have

L∑
x=1

x
4x∑
l=1

∑
vk∈sl

d−2α−βk

≡

{
2(nr(n)2−2α−βL3−2α−β ), 0 ≤ 2α + β ≤ 3
2(nr(n)2−2α−β ), 3 ≤ 2α + β

(40)

Combining (33), (39) and (40), we have

L∑
x=1

x
4x∑
l=1

∑
vk∈sl

d−2α−βk σq−2,n(dn−α)

σ1,q(dq−β )σq,n(dn−α)

≡ 1



2(
1
n
r(n)2−αL3−α−β ), 0 ≤ α ≤ 2, 0 ≤ 2α + β≤3

2(
1
n
r(n)2−α), 0 ≤ α ≤ 2, 3 ≤ 2α + β

2(
1

nr(n)2−β
L3−α−β ), 2 ≤ α, 0 ≤ 2α + β ≤ 3

2(1), 2 ≤ α, 3 ≤ 2α + β

(41)

Comparing the upper bound and lower bound, we find the
order of lower bound is much less than that of upper bound.
Due to the number of average hop needs to large than 1,
the average number of hop, when 0 ≤ α ≤ 2, 3 ≤ 2α + β,
is modified to 2(1). Thus, on the basis of (35) and (41), and

substituting r(n) = 2(
√

log n
n ), we have the Lemma 5. �

Similarly, when q = 2(1), according to (9), the total
number of ad hoc flows Na can be derived.
Lemma 6: when q = 2(1), we have

Na =



2

(
n
(√

log n
n

)2−α

L2−α−β
)
,

0 ≤ α ≤ 2,

0 ≤ α + β ≤ 2

2

n(√ log n
n

)2−α
 , 0 ≤ α ≤ 2

2 ≤ α + β

2(n),
2 < α,

2 ≤ α + β

(42)

IV. AD HOC NETWORK CAPACITY ANALYSIS
The throughput capacity of ad hoc layer can be calculated
by

30
a = 2

(
Wa

E[I ]

)
, and 3a = Na30

a. (43)

A. CASE I: WHEN q = 2(n)
Substituting (18) to (43), we have

Lemma 7: In the case q = 2(n), we have

30
a

= 2

(
Wa

E[I ]

)

=



2

 Wa

n
(√

log n
n

)4−β

L3−β

,
0 ≤ β ≤ 2,

L = �

(√ n
log n

) 2−β
3−β



2

(
Wa

log n

)
,

0 ≤ β ≤ 2,

L = O

(√ n
log n

) 2−β
3−β


2

(
Wa

L3−β log n

)
, 2 ≤ β ≤ 3

2

(
Wa

log n

)
, 3 ≤ β

(44)
Proof: To prove the above Lemma, we need discuss the

impact of parameter L on the throughout capacity.
(a) Case 0 ≤ β ≤ 2: according to (14) and∑L
x=1 x

∑4x
l=1

∑
vk∈sl P(vt = vk ) ≥ 1, i.e., the aver-

age number of hops needs to larger than 1, such that the
throughput capacity will be discussed under the cases of

L = �

((√
n

log n

) 2−β
3−β

)
and L = O

((√
n

log n

) 2−β
3−β

)
, respec-

tively. When L = �

((√
n

log n

) 2−β
3−β

)
, there is a deterministic

constant c > 0 not depending on n, Wa, such that we have

30
a =



2

 Wa

n
(√

log n
n

)4−β

L3−β

,
L = �

(√ n
log n

) 2−β
3−β


2
(
Wa
log n

)
, L = O

(√ n
log n

) 2−β
3−β


(45)

(b) When 2 ≤ β ≤ 3: since L ≥ 1, we have

30
a = 2

(
Wa

L3−β log n

)
. (46)

(c) When 3 ≤ β, the destination is near to the source with
high probability and located at a constant hop count away.
Therefore, the flow would be transmitted using a constant
hops in the ad hoc layer. Such that the per-node throughput
capacity is 30

a = 2( Wa
log n ), which is independent of routing

scheme parameter L. �
As for the network capacity contributed by ad hoc layer,

we have
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Lemma 8: If q = 2(n), we have

3a

= 2

(
NaWa

E[Z ]

)

=



2

(
nWa

L log n

)
,

0 ≤ β ≤ 2,

L = �

(√ n
log n

) 2−β
3−β


2

(
Wa

(√
n

log n

)β
L2−β

)
,

0 ≤ β ≤ 2,

L = O

(√ n
log n

) 2−β
3−β


2

(
nWa

L3−β log n

)
, 2 ≤ β ≤ 3

2

(
nWa

log n

)
, 3 ≤ β

(47)

B. CASE II: q = 2(1)
Similarly, substituting (25) to (43), the following Lemma is
obtained.
Lemma 9: If q = 2(1), we have (48), as shown at the

bottom of this page.
Similarly, we have
Lemma 10: If q = 2(1), we have (49), as shown at the

bottom of this page.

V. THROUGHPUT CAPACITY ANALYSIS OF
THE NETWORK
The network capacity is composed by the capacity of cellular
layer and that of ad hoc layer, i.e.,

3′ = 3a +3m. (50)

We will discuss the impact of number of base station on the
throughput capacity,we firstly take the following case as an
example, then get the other cases similar to the example
case. In addition, we summarize all the cases in the table 2.

Considering the case, 3a = 2
(

nWa
L log n

)
, where q = 2(n),

0 ≤ β ≤ 2, and L = �

((√
n

log n

) 2−β
3−β

)
, we have

3′ = 3a +3m = 2

(
nWa

L log n

)
+2(mWc). (51)

If m = �
(

n
L log n

)
, then we can have higher throughput

when the traffic flows are transmitted through cellular layer
and all bandwidth can be allocated to cellular communication,
i.e., Wa = 0 and Wc = W/2. Correspondingly, the network
capacity is

3′max = 2(mW ). (52)

and per-node throughput capacity is

3max =

2(W ), m = �(n)

2(
mW
n

), m = o(n)
(53)

If m = o
(

n
L log n

)
, then we can have higher throughput

when the traffic flows are transmitted through ad hoc layer
and all bandwidth can be allocated to ad hoc communication,
i.e., Wc = 0 and Wa = W . Correspondingly, the network
capacity is

3′max = 2

(
nW

L log n

)
. (54)

30
a = 2

(
Wa

E[Z ]

)
=



2

 Wa

n
(√

log n
n

)4−α

L3−α−β

 , 0 ≤ α ≤ 2, 0 ≤ α + β ≤ 2,L = �

(√ n
log n

) 2−β 3−α−β


2

(
Wa

log n

)
, 0 ≤ α ≤ 2, 0 ≤ α + β ≤ 2,L = O

(√ n
log n

) 2−β
3−α−β


2

(
Wa

L3−α−β log n

)
, 2 ≤ α + β ≤ 3

2

(
Wa

log n

)
, else

(48)

3a = Na30
a =



2

(
nWa

L log n

)
, 0 ≤ α ≤ 2, 0 ≤ α + β ≤ 2,L = �

(√ n
log n

) 2−β
3−α−β


2

(
Wa

(√
n

log n

)α
L2−α−β

)
, 0 ≤ α ≤ 2, 0 ≤ α + β ≤ 2,L = O

(√ n
log n

) 2−β
3−α−β


2

(
nWa

L3−α−β log n

)
, 2 ≤ α + β ≤ 3

2

(
nWa

log n

)
, else

(49)
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TABLE 2. The throughput capacity results of wireless social hybrid network.

and per-node throughput capacity is

3max = 2

(
W

L log n

)
. (55)

VI. NUMERICAL RESULTS AND DISCUSSIONS
Table 2 lists the throughput capacity results with different
social interaction extent and number of base station, as well
as optimal routing hops L. Fig. 3 illustrates the throughput
capacity versus the number of base stations. Due to the diver-
sity of results, we only consider two cases, i.e., 0 < β < 2,

L = �

((√
n

log n

) 2−β
3−β

)
, q = 2(n) and 0 < α < 2,

0 < α + β < 2, L = O

((√
n

log n

) 2−β
3−α−β

)
, q = 2(1).

While for other cases, they are similar. As shown in Fig. 3,
unsurprisingly, the throughput capacity is increased with the
number of base stations. For these two cases, if the number of
base station is up to �(n), the throughput capacity attains its
maximum order2( W

log n ). The reason is that, with the number
of base station increasing, more traffic flow would prefer to
the cellular mode.

In this paper, the results are obtained by mathematical
proofs and expressed in terms of scaling laws. To validate the
theoretical results with simulations, the number of nodes n

needs to be set very large. It is impossible to conduct a
practical simulation since the computational complexity is
non-polynomial. In this way, we will validate our results by
numerical simulation with appropriate social factor α and β.
Since our work employs the Max-L-hops routing policy,
we also compare our results with those in [3] and [26]. With-
out loss of generality, as shown in Table 2, if the size of social
group q = 2(n) and the destination is selected uniformly
β = 0, i.e., uniform trafficmode, then our results are the same
with those in [3]. The main influence of social interaction
on the throughput capacity of HWN can be summarized as
follows:
• The results demonstrate that, when q = 2(n) and the
destination is chosen according to its distance from the
source, the throughput capacity is independent of social
group size factorα. The reason is that, as the social group
size is proportional to n, the construction of social
group with factor α does not make much different, since
most of nodes are selected as to a social group. Fig. 4
shows the maximum throughput capacity with differ-
ent β when applying the optimal L and q = 2(n), as well
as comparison with that in [3] and [26]. The results
reveal that increasing the value of β, the throughput
is increased dramatically. It indicates that the selec-
tion of destination would dominate the throughput.
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FIGURE 3. The bounds of throughput capacity vs the number of base
station: 3(a) when q = 2(n), 3(b) when q = 2(1).

FIGURE 4. Effect of factor β on the throughput capacity when q = 2(n).

However, if the social factor α in [26] is larger than 3,
our result shows that the capacity order is less than that
of [26] when β is less than 3. The reason is that, for
large values of α, social groups are localized, transmis-
sion distance from sources to destinations involves only
2(1) hops.

• While q = 2(1), the case is much different. As shown
in Fig. 5, it shows that the factor α will play a role
and the nodes appear more selective in the construction
of their social groups. In particular, with increasing the
value of α, the throughput capacity increases and the
influence of cellular layer decreases. When α + β > 3,
social interaction becomes dominant factor on the
throughput capacity and the influence of cellular layer
can be ignored. The reason is that within a constant hop
counts, there exists a destination with high probability.

FIGURE 5. Effect of factors α and β on the throughput capacity when
q = 2(1).

Such that the average hop count is proportional to 2(1)
which means all the traffic flows would transmit by ad
hoc layer.

• Intuitively, we observe that the throughput capacity
increases as α and β increase. Nevertheless, when α
increases, the probability of selecting a node far from the
the source node as a member of social group reduces.
Comparing with [26], we observe that the throughput
capacity is not only influence by α, but also impact by β.
That is, even α equals 0, which means each node has
a equal probability to be select to a social group inde-
pendent of its distance from the source, the throughput
capacity is still relevant to its distance from the source,
since bigger β indicates that the source node would
communicate with the near social group nodes more
frequently. Thus, the average hop count of ad hoc flows
would be reduced. As a result, more ad hoc resources
would be allocated for each flow, and the ad hoc layer
capacity would be increased. Particularly, when β > 3,
the throughput capacity is independent of α.

• In the Max-L-hops routing scheme, we observe that
optimal L is determined by both α and β, but not q.
Intuitively, the optimal L is set to derive an appropriate
average hop count. Particularly, if β > 3when q = 2(n)
or α + β > 3 when q = 2(1), the throughput capacity
is not impacted by L. The reason is that the destination
node is located at a constant hops from the source with
high probability.

VII. CONCLUSION
This paper investigate the impact of an improved social traffic
model on the throughput capacity of HWN. Two cases of
social group size have been addressed as well as the selec-
tion of destination node. According to the double power-law
distribution on social characteristic, we derive the through-
put of HWN under the Max-L-hops routing scheme. The
results show that the throughput capacity is associated with
group size factor α, destination selection factor β, number of
nodes n, number of stationm and routing policy parameter L.
It is worth to emphasize that the effects of variable

social group of each node is not involved, Thus, a more
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solid work, should be considered in the future work. Fur-
thermore, the evolution and mobility of social group is also
ignored, to make a comprehensive understand the impact of
social interaction on the throughput capacity, all of these
characteristics should be integrated in the future work.
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