
Received July 5, 2018, accepted August 17, 2018, date of publication August 22, 2018, date of current version September 21, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2866573

Buffer-Aware Data Migration Scheme
for Hybrid Storage Systems
MINGWEI LIN 1, RIQING CHEN 2, LI LIN1, XUAN LI1, AND JINGCHANG HUANG3
1College of Mathematics and Informatics, Fujian Normal University, Fuzhou 350117, China
2Institute of Big Data for Agriculture and Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
3IBM-Research China Lab, Shanghai 201203, China

Corresponding author: Riqing Chen (riqing.chen@fafu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61502102 and 61502103, in part by the
Natural Science Foundation of Fujian province, China, under Grant 2016J05149 and 2017J01737, and in part by the Distinguished Young
Scientific Research Talent Training Plan in Universities of Fujian province (2017).

ABSTRACT Since solid-state drives (SSD) have high read speed, they are integrated into a traditional hard
disk drive (HDD)-based storage systems for improving the overall performance. The data migration, which
is responsible for moving the data between the HDD and SSD so as to maximize the I/O performance,
may result in the overhead in terms of unnecessary page migrations. To deal with it, we develop a novel
buffer-aware data migration scheme to boost the performance for hybrid storage systems consisting of HDD
and SSD by exploiting the content information in the buffer cache. It first introduces two new data states
to reclassify the data, which are placed on the hybrid storage systems equipped with HDD and SSD. Then,
it tries to improve the efficiency of data migration by copying the newly updated data in the buffer cache
instead of the old version in the HDD or SSD into the other device. We also model the process of data
migration operation and assess the effectiveness of the buffer-aware data migration scheme theoretically.
Experimental results reveal that the buffer-aware data migration scheme can reduce the runtime time by
up to 18% and the write count by up to 14% over the buffer-unaware data migration scheme under three
benchmarks and a real workload.

INDEX TERMS Buffer management, data migration, SSD, HDD.

I. INTRODUCTION
Hard disk drives (HDDs) have been broadly employed as the
primary storage medium for computer systems in the past
decades due to their large storage capacities and relatively
low price per gigabyte. The storage capacity of a single HDD
has been increasing to 60TB, but the access performance has
been improving slowly and the performance gap between
HDD and CPU has been becoming bigger and bigger [1]–[3].
The HDD has become the performance bottleneck of the
computer systems. Moreover, with the explosive growth of
data, modern computer systems impose higher requirements
on their storage performances. Hence, ideal storage systems
in current time should not only own big storage capacities,
but also have high access performance.

To meet the above-mentioned requirements, the solid-state
drives (SSDs) are installed into the traditional HDD-based
storage systems so that the HDD/SSD hybrid storage systems
can be built to boost the computer performance [4]–[6]. The
SSDs are produced using the NAND flash memory (NFM)

chip [7]–[9], so they can inherit both the attractive advan-
tages and unique physical characteristics from the NFM
chip [10]–[12]. It owns non-volatility, fast random read
speed, small size, strong shock resistance, and low power
consumption [13].

However, it also shows some physical characteristics. First,
it has an erase-before-write limit, which forces all the blocks
in the NFM to be erased prior to being written. It often
exploits an out-of-update scheme for solving the limit. This
scheme writes the modified data into the free area of NFM
and then invalidates the original version by marking them as
invalid. Next, it can perform three basic operations, which are
read, write, and erase. Read operation is issued to read the
data from the target page, while write operation is executed
to write data to a free page. Therefore, the basic access unit
of read and write operations is a page. Erase operation is
employed to erase a block after its valid pages are copied to
the free space. Hence, the basic access unit of erase operation
is a block [14]. Finally, it has asymmetric costs for three basic

47646
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-2026-7178
https://orcid.org/0000-0001-7828-550X

M. Lin et al.: Buffer-Aware Data Migration Scheme for Hybrid Storage Systems

I/O operations. Its write operation cost is higher than the read
operation cost and its erase operation cost is higher than the
write operation cost [15].

To exploit the high random read performance owned by
SSD and hide the difference between the HDD and SSD,
a number of hybrid storage systems that are composed of the
HDD and SSD have been devised to manage the data, which
are placed at the HDD/SSD hybrid storage media. However,
these systems focus on identifying hot data from cold data
accurately and perform data migration operation to copy hot
ones from HDD to SSD and cold ones from SSD into HDD
for improving the access performance. The data migration
may result in the performance overhead since it generates
unnecessary page migrations.

To raise the access performance of hybrid storage systems,
a buffer cache is usually used to buffer partial data, which
may be hit for being accessed in the near future. However,
these storage systems do not take full advantage of using a
buffer cache. It can be observed that hybrid storage systems
usually result in the overhead in terms of unnecessary page
migrations during data migration. These unnecessary page
migrations occur when the live pages in the storage device,
which have the newly updated version in the buffer cache,
are migrated between HDD and SSD and then their newly
update versions are written back to the storage media.

To eliminate these unnecessary page migrations, we put
forward an efficient buffer-aware data migration scheme for
HDD/SSD hybrid storage systems. Our contributions can be
summarized as follows.

(1) We first show a typical target system architecture to
illustrate the HDD/SSD hybrid storage systems that manage
both HDD and SSD in the same level of storage hierarchy.

(2) We introduce two new states to reclassify the data
stored in the HDD/SSD hybrid storage systems and then
describe the transitions among four data states, which are the
live, duplicate, obsolete, and dead.

(3) We devise a novel buffer-aware data migration scheme
based on the new data states. It transfers the newly updated
versions in the buffer instead of moving the original data in
the storage device into the other storage device.

(4) We model the buffer-aware and buffer-unaware data
migration processes and testify that the buffer-aware data
migration scheme performs better than the buffer-unaware
one theoretically.

We have conducted a series of experiments to compare the
buffer-aware data migration scheme with the buffer-unaware
data migration scheme with several different kinds of traces.
Our experiment results reveal that the proposed buffer-aware
data migration scheme decreases the runtime by up to 18%
and eliminates the write count by up to 14% over the
buffer-unaware data migration scheme under three bench-
marks and a real workload.

The rest of this paper is organized as follows. Related
works are briefly reviewed and the motivation of our work
is given in Section II. Section III presents our target system
architecture. Section IV shows the new data states that are

introduced to assort all the data, which are placed at hybrid
storage systems. The proposed buffer-aware data migration
scheme is described in Section V. Performance evaluation
are shown in Section VI. Finally, our work is summarized in
Section VII.

II. RELATED WORK AND MOTIVATION
A. EXISTING WORKS ON HYBRID STORAGE SYSTEMS
Aiming to enhance the access performance of hybrid storage
systems, a large number of research results have been given.

Based on the placement position of SSD deployed in the
storage hierarchy, previous hybrid storage systems consisting
of HDD and SSD are divided into three types: 1) SSD as a
buffer for HDD, 2) HDD as a buffer for SSD, and 3) HDD
and SSD as the same level of the storage hierarchy.

1) SSD AS A BUFFER FOR HDD
In [16], a hybrid hard drive, which introduces a NFM chip to
be a buffer of HDD, is developed. Liu et al. [17] proposed
a hybrid data storage architecture called RAF. It consists of
a SSD-based cache and a hard disk. The SSD-based cache
is logically divided into a read cache and a write cache.
The read cache is dedicated to serve random-access data,
while the write cache serves as a circular write-through
log. Sehgal et al. [18] integrated SSD as a read-write cache
for HDD and then devised a SLO-based resource manage-
ment algorithm, which adjusts the amount of SSD dynam-
ically according to the workload. Lin et al. [19] showed a
self-optimizing hybrid storage system, named HRO, which
utilizes SSD as a by-passable cache for hard disk. The SSD-
based cache is used to serve a majority of random I/O
accesses. He et al. [20] and [43] studied a hybrid architecture
called the Smart Selective SSD Cache that uses a small set of
SSD-based file servers as a cache for selectively serving the
performance critical data for conventional HDD-based file
servers. In [21], the SSD is designed as a cache for slowHDD,
which migrates partial data from HDD to SSD so as to reduce
the application launch time.

2) HDD AS A BUFFER FOR SSD
Yang et al. [22] combined SSD and HDD to build a hybrid
storage system, named HB-Storage, which manages HDD
as a write buffer to optimize the SSD write request. In [23],
a hybrid storage device, calledGriffin, is put forward to utilize
a HDD as a write cache for the SSD. However, the SSD is
expensive and cannot be afforded by many companies.

3) HDD AND SSD AS THE SAME LEVEL OF
STORAGE HIERARCHY
Jacobi [24] used flash memory-based SSD to supple-
ment or replace hard disks. Applications and files are mapped
into SSD for extending battery life and speeding up boot-ups
of laptops. Since SSDs have different physical characteristics
from HDDs, in [25], a hybrid file system, referred to as the
HybridFS, is put forward to manage two kinds of storage

VOLUME 6, 2018 47647

M. Lin et al.: Buffer-Aware Data Migration Scheme for Hybrid Storage Systems

media, which are HDD and SSD. The HybridFS is designed
to place data blocks of files at the HDD and then map their
metadata into the SSD [26]. In [27], a hybrid copy-on-write
(CoW) storage device is devised to combine the SSDs and
HDDs for consolidated environments. In the hybrid system,
read-only template images are placed at the SSDs, while the
write operations are mapped into the HDDs. Hsu and Bai [28]
devised a SSD, which was connected to a PC system using
the SATA bus. In this work, SSD is used to place frequently
accessed files.

No [29] presented a hybrid file system, named N-hybrid,
for combining the strengths of the HDD and SSD.
Kim et al. [30] designed and evaluated a hybrid storage sys-
tem, called Hybird Store, to obtain the trade-offs between the
HDD and SSD in terms of cost, performance, and lifetime.
Hui et al. [31] proposed a new hybrid storage system, referred
to as the E-HASH, which is composed of a SSD and multiple
HDDs. In E-HASH, the most frequently read data is stored
in the SSD, while all the writes are served by the HDDs.
Fisher et al. [32] put forward a hybrid SSD-HDD storage sys-
tem to make full use of the high random access performance
of the SSD, as well as the high sequential access performance
and the large storage capacity of HDD. In [33], a hybrid stor-
age system, referred to as the PASS, is put forward to obtain
the tradeoff between I/O performance and data discrepancy
of HDD and SSD. In the PASS, all of the I/O requests are
remapped into SSD first and then the updated data blocks
are migrated into HDD.Welch and Noer [8] exploited the file
size distributions to optimize the data layout of hybrid storage
system by storing all of block-level and file-level metadata,
and all of small files into SSD and holding large file extents
in HDD. In [34], an improved capacity planning technique
named the HybridPlan is studied for hybrid storage systems
to obtain the most cost-effective hybrid storage configuration
with HDD and SSD.

Xu et al. [35] proposed a storage architecture called SOHO
for write-once-read-once scientific applications to process
the raw data in the SSD and move the processed data to the
HDD. In [36], a measurement-driven data migration method
named MDDM is given for hybrid storage systems to move
the data blocks between the HDD and SSD according to their
access patterns. Xie and Madathil [37] and Xie and Sun [38]
have put forward a file layout strategy, named SAIL, for
hybrid disk arrays, which combine the hard disks (HDDs)
with flash disks (SSDs) as the data storage devices. In [3],
the dying state is utilized to reclassify the data and a victim
chunk selection method is put forward for the hybrid stor-
age systems. However, this work does not move the data,
which has copies in the buffer cache, between the HDD and
SSD. It may lose partial data and incur data inconsistency.
Moreover, it does not offer theoretical analysis to support
the proposed method. He et al. [44]–[47] studied the layout
scheme for parallel file systems equipped with HDD and
SSD. In [44] and [45], a selection and distribution algorithm
is put forward to develop an efficient data layout scheme
namedHAS to select the optimal data layout solution. In [46],

a data layout scheme called HARL is put forward to split
a file into several fine-grained regions with varying sizes
and then distribute them into different servers based on their
performance. In [47], to boost the performance of parallel file
systems under heterogeneous access patterns, a data layout
scheme called MHA is proposed to move the file data with
similar access patterns into different regions and determine
the appropriate stripe sizes on the storage servers based on
their performance.

It can be seen that existing works on the HDD/SSD hybrid
storage systems have not exploited the content information of
a buffer cache to optimize the data migration efficiency.

B. OUR MOTIVATION
In this section, a simple sample is introduced to illustrate the
benefit of exploiting the content information in the buffer
cache to improve the data migration efficiency in the hybrid
storage systems, which is considered as the motivation of our
work.

When the data migration operation is performed to move
the user data between the HDD and SSD, a number of page
migrations will be incurred, which not only block the normal
I/O operations of hybrid storage systems, but also incur lots
of read and write operations. It is observed that most of them
would be unnecessary if hybrid storage systems are aware of
the content information of a buffer cache.

FIGURE 1. An example of unnecessary page migrations.

Figure 1 gives an example of the data migration operation
in the hybrid storage systems. Assume that the granularity of
the data migration operation is a chunk that has eight pages
and the buffer cache can hold eight pages. It can be seen that
two pages, p3 and p5, in the buffer cache are dirty pages.
To perform the data migration operation as demonstrated

in Figure 1, there will be six page migrations in the existing
hybrid storage systems. However, it is useless to migrate the
pages, p3 and p5, from HDD to SSD because p3 and p5 will
be dead shortly when their newly updated versions p3 and p5
in the buffer cache are written back into the hybrid storage
medium. How soon the dirty pages will be written back to

47648 VOLUME 6, 2018

M. Lin et al.: Buffer-Aware Data Migration Scheme for Hybrid Storage Systems

the hybrid storage device is determined by the buffer manager
of operating system. The time interval for flushing the pages
in the buffer is set to 30 seconds by Linux kernel. If the
newly updated versions p3 and p5 in the buffer cache are
migrated to SSD instead of p3 and p5 within the HDD during
the data migration, two unnecessary page migrations will be
eliminated. This is the main motivation of our work.

Exploiting the content information of a buffer cache has
two positive impacts on the performance of data migration
scheme in the hybrid storage systems. First, it can reduce the
number of write operations to the hybrid storage device due
to the eviction of dirty pages in the buffer cache. Since the
dirty pages p3 and p5 in the buffer cache have been written
to the SSD during the data migration operation, these pages
in the buffer cache have changed to be clean and there is no
need to flush them into the hybrid storage device when they
are evicted from the buffer cache by the operating systems.
Second, it can delay the data migration operation that will be
performed from the SSD to HDD in the near future. In the
traditional hybrid data storage system, two pages p3 and p5
within the HDD are migrated into the SSD during the data
migration operation and their newly updated versions must
be flushed into the hybrid storage medium when they are
evicted from the buffer cache. In this case, eight free pages
in the SSD will be occupied. However, if the dirty pages p3
and p5 in the buffer cache are directly copied back into the
SSD when the data migration operation is performed, two
free pages will be saved and the data migration operation
from SSD to HDD in the near future will be delayed since
the SSD uses an out-of-place update scheme, which could
use up its free pages and incur the data migration operation
to migrate the data from the SSD to HDD and then make the
corresponding data chunk be free. These positive impacts of
exploiting the content information in a buffer cache to boost
the performance of data migration operation for the hybrid
storage systems are called potential benefits since they will
be achieved at a later time.

If p3 and p5 in the buffer cache are updated after they
are copied to SSD during the data migration operation,
they should be flushed into the hybrid storage device when
they are evicted from the buffer cache in the near future.
In this case, these two pagemigrations formigrating the pages
p3 and p5 during the data migration operation are useless.
This case could impose restriction on its positive effects on
the performance of the data migration operation in the hybrid
storage systems.

III. TARGET SYSTEM ARCHITECTURE
Figure 2 presents a real architectural overview of our target
hybrid storage systems, which are equipped with the HDD
and SSD as the storage media at the same level of memory
hierarchy. Both of them are connected to the host systems
through a standard block device interface such as SATA.
The buffer management layer is responsible for managing
the buffer cache, which is used to temporarily hold partial
data that have high probabilities to be accessed in a short

FIGURE 2. Our target system architecture.

time [39], [40]. The storage management layer works as a
pseudo block device. Then the upper-level file system can
view it as a single block device simply. The storage space of
HDD is logically split into a fixed number of chunks, whose
size is equal to that of the block in SSD. The storage manage-
ment layer consists of three major components, namely the
address remapper, data mover, and I/O monitor. To reduce
the query time, the address remapper should store an address
mapping table in the SSD to track the locations of pages in the
hybrid storagemedium.When the computer system is booted,
this address mapping table is loaded into the main memory.
To achieve the data consistency during the system failure,
the address remapper updates the address mapping table and
its in-memory version at the same time. The I/O monitor is in
charge of collecting I/O requests and profiling the workload
access pattern. The data mover can perform data migrations
operation according to the workload access pattern. In this
paper, we focus on how to exploit the content information
of a buffer cache to boost the performance instead of how to
identify the hot degree of each page or each file in the hybrid
storage device accurately.

When a page is written from the buffer cache to one of
HDD or SSD, it requires data transmissions for three times.
First, a page within the buffer cache managed by the buffer
management layer is sent into the internal buffer of storage
management layer via a system bus. Then, it is transmitted
into the register of HDD or SSD. Finally, the page is moved
into the target page in the HDD or SSD. Therefore, the time

VOLUME 6, 2018 47649

M. Lin et al.: Buffer-Aware Data Migration Scheme for Hybrid Storage Systems

that is taken to move a page from the buffer cache owned by
the buffer management layer to one of the HDD and SSD is
(Tb + Tre + Tw). The term Tb is the time that is consumed
to migrate a page between a buffer cache and the internal
buffer of storage management layer. The term Tre is the time
that is consumed to transfer a page between the internal
buffer of storage management layer and the register of the
HDD or SSD. The term Tw is the time that is consumed to
perform a write operation on the page from the register to the
target page. Their values are defined as follows.

Tre =

{
Thre if the target device is a HDD
Tsre if it is a SSD

(1)

Tw =

{
Thw if the target device is a HDD
Tsw if it is a SSD

(2)

Reading a target page from HDD or SSD to the internal
buffer of storage management layer needs data transmissions
for two times. First, a page is moved into the register of
HDD or SSD. Then, the page is transferred into the internal
buffer of storage management layer. Hence, the time taken to
read a page from the HDD or SSD to the internal buffer of
storage management layer is (Tr + Tre), where Tr is the time
that is consumed to read a page from the physical page into
the register in the HDD or SSD. The value of Tr is defined as
follows.

Tr =

{
Thr if the target device is a HDD
Tsr if it is a SSD

(3)

A total data migration operation between HDD and SSD
requires several data transmissions. Suppose that a page is
moved from HDD to SSD. First, a page in the chunk is
read into the register of HDD and then it is transferred into
the internal buffer of the storage management layer. Next,
it is moved into the register of SSD. Finally, it is written
to the target page in the SSD. Hence, the total time that is
taken to migrate a page from HDD to SSD is (Thr + Thre)+
(Tsre + Tsw) and the total time required to move a page from
SSD to HDD is (Tsr + Tsre)+ (Thre + Thw).

IV. DATA STATES
In this section, we introduce two new liveness states, called
obsolete and duplicate, to redefine the states of data, which
was placed at the hybrid storage device.

As illustrated in Figure 3, the data stored in the existing
storage systems has two states, which are the live and dead.
When the new data is written to the storage device by the host,

FIGURE 3. Transition between live and dead states.

the data owns a live state in the storage device. If the data is
modified and its new version is written to the storage device,
the state of the previous live data within the storage device
will changed to be dead. If a file that contains the live data
has been deleted by the upper-level file system, then the state
of the live data will also become dead.

As mentioned above, a buffer cache is usually designed as
a supplement of main memory to temporarily hold a portion
of data, which has a high probability to be hit in a short
time, for improving the I/O performance.When files are read,
their data are loaded from the data storage device into the
main memory and a portion of the data may be updated soon.
We have analyzed that exploiting the content information in
the buffer cache can eliminate the unnecessary page migra-
tions. Hence, we introduce another two new states, called
obsolete and duplicate, to reclassify all the data that are placed
at the hybrid storage device.

FIGURE 4. Transitions between live, duplicate, obsolete, and dead states.

As presented in Figure 4, the liveness state of each page
within the hybrid storage device, which is composed of HDD
and SSD, is divided into four types: live, duplicate, obsolete,
and dead. The live data is the data, which is not dead and
does not have any copy in the buffer cache. If the live data
is loaded into the main memory, its state becomes duplicate
since it has a copy in the buffer cache. When the copy is
modified, then its state becomes obsolete. When the newly
updated version in the buffer cache is written back into the
hybrid storage device, its state becomes dead. The state of
duplicate data will become live if the host system suffers from
the sudden power failure or its copy within the buffer cache
is flushed out. The state of obsolete data will become live
when the host system suffers from the sudden power failure,
because its newly updated version in the buffer cache will be
lost.

In this paper, we use two reserved bits of the data structure
representing the page to implement its state. For example,
00 stands for the live page, 01 for the duplicate page, 10 for
the obsolete page, and 11 for the dead page.

V. BUFFER-AWARE DATA MIGRATION SCHEME
The buffer-aware data migration scheme aims at optimizing
the data migration process. In order to decrease the useless
page migrations, the buffer-aware data migration process is
designed to write the data within the buffer cache back into

47650 VOLUME 6, 2018

M. Lin et al.: Buffer-Aware Data Migration Scheme for Hybrid Storage Systems

the target data storage device directly only if the states of the
migrated data are duplicate or obsolete.

A. BUFFER-AWARE DATA MIGRATION ALGORITHM
The process of data migration from HDD to SSD is the same
as that of data migration from SSD to HDD, so we only show
the buffer-aware data migration algorithm that migrates the
data from HDD to SSD in this subsection.

FIGURE 5. The algorithm for buffer-aware data migration from HDD to
SSD.

Figure 5 gives the buffer-aware data migration algorithm
to show that how a data migration operation works in detail.
Suppose that a chunk Ci in the HDD is selected as a victim
chunk. The term S (Ci) denotes a set of pages in the chunk
Ci. For each page pk within the chunk Ci, the algorithm
determines if pk is a duplicate or obsolete page. If it is
obsolete, it means that pk in the chunk Ci is out-of-date and
it has the newly updated version in the buffer cache. Hence,
copying pk in the chunk Ci to a free block Bj in the SSD is
useless. To eliminate unnecessary page migrations and also
prolong the lifetime of SSD, the algorithm writes the newly
updated version in the buffer cache to the free block Bj with
the lowest erase count in the SSD and makes it clean. If the
newly updated version of page pk in the buffer cache is not
modified again before being removed from the buffer cache,
then a write operation that flushes a dirty page into the SSD
will be eliminated.

If pk is a duplicate page, it means that this page owns a
equal copy within the buffer cache. The algorithm migrates
its copy in the buffer cache into the SSD instead of pk in the
chunk Ci. That is because the time that is consumed to write a
page from the buffer cache into SSD is less than the time that
is consumed to migrate a page from the HDD to the SSD.
It can be proved as follows.

As discussed in Section III, the time, which is con-
sumed to write a page from a buffer cache into SSD,
is (Tb + Tsre + Tsw), while the time, which is taken tomigrate
a page from HDD into SSD, is calculated as (Thr + Thre) +
(Tsre + Tsw). Because the data transmission between the

buffer cache and storage management layer is performed via
a high-speed system bus, the value of Tb is too small so that it
can be negligible. In our work, Tb is assumed to be 0. Hence,

(Tb + Tsre + Tsw) < (Thr + Thre)+ (Tsre + Tsw) (4)

B. EFFECT OF BUFFER-AWARE DATA MIGRATION
The buffer-aware data migration scheme leads to lower cost
than existing buffer-unaware data migration schemes since
the buffer-aware one fully exploits the content information of
a buffer cache to eliminate useless page migrations between
the HDD and SSD. To help analyze the performance effect
of our proposed buffer-aware data migration scheme on the
performance of the hybrid storage systems, the buffer-aware
data migration cost is first compared with the buffer-unaware
data migration cost.

In the buffer-unaware data migration scheme, all the data
that are placed within the hybrid storage device consisting of
the HDD and SSD are simply divided into live and dead data.
When the data migration operation is performed, all the live
data in the victim chunk are migrated between the HDD and
SSD. Therefore, it can be derived that the data migration cost
mainly depends on the number of pages that are transferred
between HDD and SSD.
Definition 1: Let IA (Ci) be a set of all live pages, which

are migrated fromHDD into SSDwhen a chunkCi is selected
for data migration and let |IA (Ci)| be the number of pages
in IA (Ci). If the time taken to migrate a single page from
the HDD into SSD is Th→s, then the buffer-unaware data
migration cost to migrate all the live pages in the chunk Ci,
which is denoted by T BUdm (Ci), is defined as follows:

T BUdm (Ci) = |IA (Ci)| ∗ Th→s (5)

For the example that is presented in Figure 1, IA (Ci) is
{p1, p2, p3, p4, p5, p6} and |IA (Ci)| equals 6. As analyzed in
Section III, Th→s is equal to (Thr + Thre)+ (Tsre + Tsw).
To eliminate useless page migrations, if the selected victim

chunk has duplicate and/or obsolete data, the buffer-aware
data migration scheme directly writes their newly updated
copies in the buffer cache into the SSD instead of duplicate
and/or obsolete pages in the HDD. It decreases unnecessary
page migrations and the number of read operations, which
are performed to read the target data from the HDD. Hence,
the buffer-aware data migration cost is define as follows:
Definition 2: Let IO (Ci) be a set of obsolete pages that

are in the chunk Ci, ID (Ci) be a set of duplicate pages, and
IL (Ci) be a set of live pages. Then |IO (Ci)|, |ID (Ci)|, and
|IL (Ci)| denote the number of pages in the corresponding
sets. If the time consumed to write a page from the buffer
cache to the SSD is denoted by Tb→s, then the buffer-aware
data migration cost for migrating the pages in the chunk Ci,
which is denoted by T BAdm (Ci), is defined as

T BAdm (Ci) = (|IO(Ci)| + |ID(Ci)|) ∗ Tb→s + |IL(Ci)| ∗ Th→s

(6)

VOLUME 6, 2018 47651

M. Lin et al.: Buffer-Aware Data Migration Scheme for Hybrid Storage Systems

Tb→s is also denoted as (Tb + Tsre + Tsw). For the exam-
ple of Figure 1, IO (Ci), ID (Ci), and IL (Ci) are {p3, p5},
{p1}, and {p2, p4, p6}. As discussed in Section IV, the live
state introduced in the traditional storage systems is fur-
ther classified into three states: live, duplicate, and obsolete,
so |IO (Ci)| + |ID (Ci)| + |IL (Ci)| = |IA (Ci)|.

Then, (5) could be transformed as

T BUdm (Ci) = (|IO(Ci)| + |ID(Ci)|) ∗ Th→s + |IL(Ci)| ∗ Th→s

(7)

Since Tb→s < Th→s has been proved in the first subsection
of Section V, T BAdm (Ci) < T BUdm (Ci). As depicted in Figure 1,
three read operations for reading the pages p1, p3, and p5
from HDD are eliminated in the buffer-aware data migration
scheme.

As depicted in (6), as a victim chunk that is selected for
the data migration has more duplicate pages and/or obsolete
pages, the buffer-aware data migration cost becomes lower
because more read operations, reading duplicate pages and/or
obsolete pages from HDD, can be eliminated.

C. POTENTIAL BENEFITS OF BUFFER-AWARE
DATA MIGRATION
As mentioned in Section II, the buffer-aware data migration
scheme owns two potential benefits, which can decrease the
future replacement cost for the buffer management layer in
the Linux operating system and the future data migration cost
for migrating the data from SDD to HDD. The decreasing of
future replacement cost results from the reduction of future
write operations into SSD and the reduction of future data
migration cost comes from the delay of future data migration
operations.

In order to help understand these two potential benefits,
the process of the buffer-unaware data migration scheme is
compared to that of the buffer-aware data migration scheme
by utilizing two examples demonstrated in Figures 6 and 7.
Initially, the buffer cache holds four pages, p6, p8, p2, and p3,
respectively. Each chunk or block can hold four pages.

As shown in Figure 6, the buffer-unaware data migration
scheme migrates two pages p2 and p3 from the HDD into

FIGURE 6. The process of buffer-unaware data migration scheme.

FIGURE 7. The process of buffer-aware data migration scheme.

SSD during the data migration process. However, these two
pages are out-of-date and their newly updated versions are in
the buffer cache. In this case, if the newly updated versions
are chosen for eviction by the buffer management layer, they
must be written into the SSD to achieve the data consistency.
Hence, the future replacement cost, denoted by T BURE (Ci), for
the buffer-unaware data migration scheme is |IO (Ci)|∗Tb→s.
During the buffer-aware data migration scheme, if there

are obsolete pages in the victim chunk to be migrated, their
newly updated versions in the buffer cache are written into
the target device instead of obsolete pages and then these
newly updated versions are marked as clean. Suppose that
there do not exist further modifications that are performed
on them before they are flushed from the buffer cache by the
buffer management layer of Linux operating system. Then,
they will be just discarded. Therefore, the future replace cost,
expressed by T BARE (Ci), of the buffer-aware data migration
scheme is 0. In this example, two write operations into SSD
are saved. This benefit, which results from the reduction of
future write operations, is referred to as a future replacement
benefit. The future replacement benefit can be calculated as
T BURE (Ci) − T

BA
RE (Ci), which is 2 ∗ Tb→s in Figures 6 and 7.

Therefore, the number of write operations eliminated during
the replacement process is

(
T BURE (Ci)− T

BA
RE (Ci)

)
/Tb→s.

SSD uses an out-of-place update scheme to write the new
data into the free space instead of updating the original one
directly, so write operations into SSD could use up its free
space gradually and then the data migration operation must
be performed to migrate a portion of data into the HDD
for making free space for the data migration from HDD to
SSD. As discussed above, the buffer-aware data migration
scheme consumes less free pages than the buffer-unaware one
since the buffer-aware one incurs less write operations into
SSD. For the example in Figure 6, six pages are consumed
during the buffer-unaware data migration scheme, while only
four pages are consumed during the buffer-aware data migra-
tion scheme. Then, two free pages can be saved during the
buffer-aware data migration scheme. Hence, the next data
migration operation from the SSD to HDD can be delayed.
This benefit that results from the decreasing of data migration
operations is named a future data migration benefit.

In order to estimate the future data migration benefit,
the cost for a data migration operation resulting from a single

47652 VOLUME 6, 2018

M. Lin et al.: Buffer-Aware Data Migration Scheme for Hybrid Storage Systems

write operation will be estimated first. A block in SSDmay be
selected for data migration when all its free pages have been
used up. If a block has Nb pages, then a data migration opera-
tion will be incurred every Nb write operations into a block in
the SSD. It means that if Nb write operations are reduced, one
data migration operation can be eliminated. Let T BAfdm be the
future data migration cost of the buffer-aware data migration
scheme. In our paper, T BAfdm can be predicted using an expo-
nentially weighted moving average (EWMA) method based
on recent known data migration costs. Then the future data
migration cost, which results from one write operation, could
be estimated as

(
T BAfdm/Nb

)
. As mentioned above, the number

of write operations decreased during the replacement pro-
cess is

(
T BURE (Ci)− T

BA
RE (Ci)

)
/Tb→s. Hence, the future data

migration benefit is
(
T BURE (Ci)− T

BA
RE (Ci)

)
∗ α, where the

term α is denoted by
(
T BAfdm/Nb

)
/Tb→s.

Based on the above discussion, the total potential benefits
of the buffer-aware data migration can be defined as follows.
Definition 3: Let T BURE (Ci) be the future replacement cost

for the buffer-unaware data migration scheme and T BARE (Ci)
be the future replacement cost resulting from the buffer-aware
data migration scheme. Hence, T BURE (Ci)− T

BA
RE (Ci) denotes

the future replacement benefit and
(
T BURE (Ci)− T

BA
RE (Ci)

)
∗α

is the future data migration benefit. Then, the total potential
benefits for migrating a chunk Ci, expressed by BBAbenefit (Ci),
are defined as

BBAbenefit (Ci) =
(
T BURE (Ci)− T

BA
RE (Ci)

)
∗ (1+ α) (8)

Since T BURE (Ci) ≥ T
BA
RE (Ci), B

BA
benefit ≥ 0. At the same time,

T BAdm (Ci) < T BUdm (Ci), as mentioned in subsection B. Hence,
the buffer-aware data migration scheme performs better than
the buffer-unaware data migration scheme theoretically.

However, if the pages, which have been written from the
buffer cache into SSD during a data migration operation, are
modified again before being flushed from the buffer cache,
there will be no potential benefits since the newly updated
versions in the buffer cache must be flushed into the SSD to
keep the data consistency. Therefore, the potential benefits,
expressed by BBAbenefit (Ci), depend on the update probability
of each page within the IO (Ci) after the buffer-aware data
migration. For the example in Figure 7, if the pages p2 and
p3 are modified again before being flushed from the buffer
cache, then no write operations would be decreased, namely
T BURE (Ci) = T BARE (Ci) since the newly updated versions must
be written to SSD again to keep the data consistency. In this
case, BBAbenefit (Ci) becomes 0. Hence, if all the pages in the
IO (Ci) are updated one more time before they are evicted by
the buffer management layer, then the potential benefits of
the buffer-aware data migration scheme become zero.

VI. PERFORMANCE EVALUATION
A. EXPERIMENTAL SETUP
A prototype system for hybrid storage systems is designed
and implemented to assess the performance of the proposed
buffer-aware data migration scheme. It is equipped with one

HDD and one SSD, which are installed in the same level of
storage hierarchy. It contains one storage management layer
that utilizes the data structure B+-tree so as to manage and
operate the user data that are placed at the HDD and SSD,
and a buffer management layer that uses the LRU algorithm
to manage the temporary data that are placed in the buffer.
This prototype system is developed using C++ and deployed
on a commodity PC system, which is equipped with an Intel
Pentium Dual Core 3.2GHz CPU and 3GB of the physical
memory. The operating system used in the experiments is
Fedora 14 with the Linux kernel 2.6.35.6 and the Ext3 file
system is utilized in the experiment. The PC system has two
HDDs and one SSD. The prototype system and operating
system run on one of the HDDs. The other HDD and SSD
are utilized to hold the user data. The HDD is a 7200 RPM,
500GB TOSHIBA and the SSD belongs to Intel SSD DC
S3520 Series with 150GB. Both of them are linked and then
communicated with the host system using SATA3 interface.

To test the effectiveness and verify the superiority of the
proposed buffer-aware data migration scheme, this scheme is
integrated into the MDAM [36], which is the representative
HDD/SSD hybrid storage system.

B. BENCHMARKS
The experiments were conducted with multiple well-known
benchmark programs. The first program is Postmark that is
an industry-standard file system benchmark. It is developed
to simulate I/O intensive and small-file-oriented workloads
such as I/O operations of a large e-mail server or USENET
news system. In our experiments, it is configured to cre-
ate 1,000,000 small random files with their sizes between
500 bytes and 10,000 bytes, then perform 10,000,000 trans-
actions to stress the file system, and finally delete these files.
The second one is IOzone, which is a file system program
that is designed to measure the streaming performance for
the large files. It generates a number of updates to metadata
and data. In our experiments, it is utilized to execute write/re-
write and read/re-read operations on a 8 GB file. The R/W
ratio of the workload that is created by IOzone is 3:1 and the
workload follows the Zipf distribution. The last one is TPC-C,
which is an on-line transaction processing benchmark. It is
utilized to simulate a whole computing environment that
a number of users perform online transactions against a
database. In the experiments, the BenchmarkSQL software
is used to run the TPC-C tests on the PostgreSQL.

For minimizing the effect on the performance of hybrid
storage systems, the proposed buffer-aware data migration
algorithm is designed to run background when running the
benchmarks.

Figures 8, 9, and 10 present the normalized runtimes
for various hybrid storage systems when running on three
traces. It can be seen that the buffer-aware data migration
scheme could reduce the runtime by at least 5%. Moreover,
as the buffer cache size increases, the performance of the
buffer-aware data migration scheme also becomes greater.
That is because the buffer-aware data migration scheme

VOLUME 6, 2018 47653

M. Lin et al.: Buffer-Aware Data Migration Scheme for Hybrid Storage Systems

FIGURE 8. Normalized runtime for different MADM versions on Postmark.

FIGURE 9. Normalized runtime for different MADM versions on IOzone.

FIGURE 10. Normalized runtime for different MADM versions on TPC-C.

writes the newly updated versions in a buffer cache instead of
the old data in the storage device to the other storage device.
It can not only eliminate the unnecessary page migrations
between HDD and SSD, but also decrease the time that is
consumed to move the data placed at the HDD and SSD.

The reduction of page migrations from HDD to SSD could
also delay the page migrations from SSD to HDD since the
SSD should migrate the LRU pages into the HDD to make
free spaces for the data, which will be moved from HDD.

Figures 11, 12, and 13 present the normalized write
count for different MADM versions when running on bench-
marks. It can be seen that the buffer-aware data migration
scheme can decrease the write count by up to 14% over the
buffer-unaware one. That is because it reduces the number
of write operations during the buffer replacement process.
It performs best under the IOzone benchmark because the

FIGURE 11. Normalized write count for different MADM versions on
Postmark.

FIGURE 12. Normalized write count for different MADM versions on
IOzone.

FIGURE 13. Normalized write count for different MADM versions on
TPC-C.

IOzone is a write-intensive benchmark and the buffer cache
owns many dirty pages.

C. REAL WORKLOAD
The proposed buffer-aware data migration scheme is further
verified using a real workload provided by the Benchmarking
Working Group. The real workload shows the feature that a
large proportion of data access is distributed over many small
files. At least 90% of data access is performed on the files the
sizes of which are 4MB or less and the files owning the size
of 2KB present the highest proportion. This real workload is
a kind of indicative I/O operations in large-scale data centers.

Figures 14 and 15 report experimental results for different
MADM versions when the real workload is replayed. Similar

47654 VOLUME 6, 2018

M. Lin et al.: Buffer-Aware Data Migration Scheme for Hybrid Storage Systems

FIGURE 14. Normalized runtime for different MADM versions on real
workload.

FIGURE 15. Normalized write count for different MADM versions on real
workload.

to the previous results under benchmarks, the buffer-aware
data migration scheme can reduce the runtime by up to 6.4%
and the write count by up to 8.7% when it is compared to the
buffer-unaware one.

VII. CONCLUSIONS
In this paper, a novel buffer-aware data migration scheme is
put forward to exploit the content information of the buffer
cache. We first show our target system architecture and then
model it. Then we introduce two new states to reclassify the
data stored in the hybrid storage systems, which consist of
the HDD and SSD. The buffer-aware data migration scheme
writes the newly updated data in the buffer instead of ones
in the storage device to another one, which can not only
reduce the number of page migration operations, but also
improve the reliability of hybrid storage systems. Based on
the new data states, a model is constructed to assess the
performance advancement of the buffer-aware data migration
scheme over the buffer-unaware data migration scheme. The
buffer-aware data migration scheme has been theoretically
proven by us to outperform the buffer-unaware data migration
scheme that is commonly used in existing hybrid storage
systems composed of the HDD and SSD. The experimental
results also validate this fact.

In the future, we intend to exploit the proposed buffer-
aware data migration scheme to boost the performance of
hybrid disk arrays such as HPDA [41] and LDM [42].

REFERENCES
[1] J. Niu, J. Xu, and L. Xie, ‘‘Hybrid storage systems: A survey of architec-

tures and algorithms,’’ IEEE Access, vol. 6, pp. 13385–13406, 2018.
[2] J. Ryu, D. Lee, C. Han, H. Shin, and K. Kang, ‘‘File-system-level storage

tiering for faster application launches on logical hybrid disks,’’ IEEE
Access, vol. 4, pp. 3688–3696, 2016.

[3] M. Lin, R. Chen, J. Xiong, X. Li, and Z. Yao, ‘‘Efficient sequential data
migration scheme considering dying data for HDD/SSD hybrid storage
systems,’’ IEEE Access, vol. 5, pp. 23366–23373, 2017.

[4] L. Wu, Q. Zhuge, E. H.-M. Sha, X. Chen, and L. Cheng, ‘‘BOSS: An effi-
cient data distribution strategy for object storage systems with hybrid
devices,’’ IEEE Access, vol. 5, pp. 23979–23993, 2017.

[5] B. Welch and G. Noer, ‘‘Optimizing a hybrid SSD/HDD HPC storage
system based on file size distributions,’’ in Proc. IEEE 29th Symp. Mass
Storage Syst. Technol., May 2013, pp. 1–12.

[6] J. Shen, H. Tan, J. Wang, J. Wang, and S. Lee, ‘‘A novel routing protocol
providing good transmission reliability in underwater sensor networks,’’
J. Internet Technol., vol. 16, no. 1, pp. 171–178, 2015.

[7] J. Hu, H. Jiang, L. Tian, and L. Xu, ‘‘PUD-LRU: An erase-efficient write
buffer management algorithm for flash memory SSD,’’ in Proc. 18th Annu.
IEEE/ACM Int. Symp. Modeling, Anal. Simulation Comput. Telecommun.
Syst., Aug. 2010, pp. 69–78.

[8] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim, ‘‘A case for flash
memory SSD in enterprise database applications,’’ in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2008, pp. 1075–1086.

[9] S.-H. Kang, D.-H. Koo, W.-H. Kang, and S.-W. Lee, ‘‘A case for flash
memory SSD in Hadoop applications,’’ Int. J. Control Automat., vol. 6,
no. 1, pp. 201–210, 2013.

[10] C.-H.Wu,D.-Y.Wu,H.-M. Chou, andC.-A. Cheng, ‘‘Rethink the design of
flash translation layers in a component-based view,’’ IEEE Access, vol. 5,
pp. 12895–12912, 2017.

[11] X. Xie, L. Xiao, X. Ge, and Q. Li, ‘‘SMRC: An endurable SSD cache
for host-aware shingled magnetic recording drives,’’ IEEE Access, vol. 6,
pp. 20916–20928, 2018.

[12] M. Song, ‘‘Minimizing power consumption in video servers by the com-
bined use of solid-state disks and multi-speed disks,’’ IEEE Access, vol. 6,
pp. 25737–25746, 2018.

[13] G. Xu, F. Lin, and Y. Xiao, ‘‘CLRU: A new page replacement algo-
rithm for NANDflash-based consumer electronics,’’ IEEE Trans. Consum.
Electron., vol. 60, no. 1, pp. 38–44, Feb. 2014.

[14] J. Liu, S. Chen, T. Wu, and H. Zhang, ‘‘A novel hot data identification
mechanism for NAND flash memory,’’ IEEE Trans. Consum. Electron.,
vol. 61, no. 4, pp. 463–469, Nov. 2015.

[15] J. Liu, S. Chen, G. Wang, and T. Wu, ‘‘Page replacement algorithm based
on counting Bloom filter for NAND flash memory,’’ IEEE Trans. Consum.
Electron., vol. 60, no. 4, pp. 636–643, Nov. 2014.

[16] J. Handy, ‘‘Will the HDD market be swept by hybrid hard drives?’’ Solid
State Technol., vol. 50, no. 9, pp. S16–S17, 2007.

[17] Y. Liu, J. Huang, C. Xie, and Q. Cao, ‘‘RAF: A random access first cache
management to improve SSD-based disk cache,’’ in Proc. IEEE Int. Conf.
Netw., Archit. Storage, 2010, pp. 492–500.

[18] P. Sehgal, K. Voruganti, and R. Sundaram, ‘‘SLO-aware hybrid store,’’ in
Proc. IEEE 28th Symp. Mass Storage Syst. Technol., Apr. 2012, pp. 1–6.

[19] L. Lin, Y. Zhu, J. Yue, Z. Cai, and B. Segee, ‘‘Hot random off-loading:
A hybrid storage systemwith dynamic datamigration,’’ inProc. 19th Annu.
IEEE/ACM Int. Symp. Modeling, Anal., Simulation Comput. Telecommun.
Syst., Jul. 2011, pp. 318–325.

[20] S. He, X.-H. Sun, and B. Feng, ‘‘S4D-Cache: Smart selective SSD cache
for parallel I/O systems,’’ in Proc. Int. Conf. Distrib. Comput. Syst.,
Jun. 2014, pp. 514–523.

[21] C. Han, J. Ryu, D. Lee, J. Lee, K. Kang, and H. Shin, ‘‘File-system-
level flash caching for improving application launch time on logical
hybrid disks,’’ in Proc. IEEE 33rd Int. Perform. Comput. Commun. Conf.,
Dec. 2014, pp. 1–2.

[22] P. Yang, P. Jin, S. Wan, and L. Yue, ‘‘HB-Storage: Optimizing SSDs with
a HDD write buffer,’’ in Proc. 14th Int. Conf. Web-Age Inf. Manage.,
Beidaihe, China: Springer-Verlag, 2013, pp. 28–39.

[23] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wobber,
‘‘Extending SSD lifetimes with disk-based write caches,’’ in Proc. 8th
USENIX Conf. File Storage Technol., 2010, p. 8.

[24] J. L. Jacobi, ‘‘Flash memory to speed up hard drives,’’ PC World, vol. 23,
no. 9, p. 20, 2005.

VOLUME 6, 2018 47655

M. Lin et al.: Buffer-Aware Data Migration Scheme for Hybrid Storage Systems

[25] J. Suk and J. No, ‘‘Performance analysis of NAND flash-based ssd for
designing a hybrid filesystem,’’ in Proc. 11th IEEE Int. Conf. High Per-
form. Comput. Commun., Jun. 2009, pp. 539–544.

[26] J. Suk and J. No, ‘‘Hybrid file system,’’ in Proc. Int. Conf. Converg. Hybrid
Inf. Technol., 2009, pp. 308–313.

[27] H. Jo, Y. Kwon, H. Kim, E. Seo, J. Lee, and S. Maeng, ‘‘SSD-HDD-
hybrid virtual disk in consolidated environments,’’ in Euro-Par 2009 Par-
allel Processing Workshops. Delft, Netherlands: Springer-Verlag, 2010,
pp. 375–384.

[28] H.-T. Hsu and Y.-W. Bai, ‘‘Using NAND flash memory to improve the
performance of HDDS,’’ in Proc. 23rd Can. Conf. Elect. Comput. Eng.,
May 2010, pp. 1–6.

[29] J. No, ‘‘Hybrid file system using NAND-flash SSD,’’ in Proc. Int.
Conf. Cyber-Enabled Distrib. Comput. Knowl. Discovery, Oct. 2011,
pp. 380–385.

[30] Y. Kim, A. Gupta, B. Urgaonkar, P. Berman, and A. Sivasubramaniam,
‘‘HybridStore: A cost-efficient, high-performance storage system combin-
ing SSDs and HDDs,’’ in Proc. 19th Annu. IEEE/ACM Int. Symp. Model-
ing, Anal., Simulation Comput. Telecommun. Syst., Jul. 2011, pp. 227–236.

[31] J. Hui, X. Ge, X. Huang, Y. Liu, and Q. Ran, ‘‘E-HASH: An energy-
efficient hybrid storage system composed of one SSD and multi-
ple HDDs,’’ in Proc. 3rd Int. Conf. Swarm Intell. Shenzhen, China:
Springer-Verlag, 2012, pp. 527–534.

[32] N. Fisher, Z. He, and M. McCarthy, ‘‘A hybrid filesystem for hard disk
drives in tandemwith flashmemory,’’Computing, vol. 94, no. 1, pp. 21–68,
2012.

[33] W. Xiao, X. Lei, R. Li, N. Park, and D. J. Lilja, ‘‘PASS: A hybrid
storage system for performance-synchronization tradeoffs using SSDs,’’
in Proc. 10th IEEE Int. Symp. Parallel Distrib. Process. Appl., Jul. 2012,
pp. 403–410.

[34] Y. Kim, A. Gupta, B. Urgaonkar, P. Berman, and A. Sivasubrama-
niam, ‘‘HybridPlan: A capacity planning technique for projecting storage
requirements in hybrid storage systems,’’ J. Supercomput., vol. 67, no. 1,
pp. 277–303, 2014.

[35] C. Xu, W. Wang, D. Zhou, and T. Xie, ‘‘An SSD-HDD integrated storage
architecture for write-once-read-once applications on clusters,’’ in Proc.
IEEE Int. Conf. Cluster Comput., Sep. 2015, pp. 74–77.

[36] X. Wu and A. L. N. Reddy, ‘‘Managing storage space in a flash and
disk hybrid storage system,’’ in Proc. IEEE Int. Symp. Modeling, Anal.,
Simulation Comput. Telecommun. Syst., Sep. 2009, pp. 1–4.

[37] T. Xie and D. Madathil, ‘‘SAIL: Self-adaptive file reallocation on
hybrid disk arrays,’’ in Proc. Int. Conf. High-Perform. Comput., 2008,
pp. 529–540.

[38] T. Xie andY. Sun, ‘‘Dynamic data reallocation in hybrid disk arrays,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 21, no. 9, pp. 1330–1341, Dec. 2010.

[39] J. He, G. Jia, G. Han, H. Wang, and X. Yang, ‘‘Locality-aware replacement
algorithm in flash memory to optimize cloud computing for smart factory
of industry 4.0,’’ IEEE Access, vol. 5, pp. 16252–16262, 2017.

[40] Y. Yuan, Y. Shen, W. Li, D. Yu, L. Yan, and Y. Wang, ‘‘PR-LRU: A novel
buffer replacement algorithm based on the probability of reference for flash
memory,’’ IEEE Access, vol. 5, pp. 12626–12634, 2017.

[41] B. Mao et al., ‘‘HPDA: A hybrid parity-based disk array for enhanced
performance and reliability,’’ ACM Trans. Storage, vol. 8, no. 1, 2012,
Art. no. 4.

[42] S. Wu, B. Mao, X. Chen, and H. Jiang, ‘‘LDM: Log disk mirroring with
improved performance and reliability for SSD-based disk arrays,’’ ACM
Trans. Storage, vol. 12, no. 4, 2016, Art. no. 22.

[43] S. He, Y. Wang, and X.-H. Sun, ‘‘Improving performance of parallel I/O
systems through selective and layout-aware SSD cache,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 10, pp. 2940–2952, Oct. 2016.

[44] S. He, X.-H. Sun, and A. Haider, ‘‘HAS: Heterogeneity-aware selective
data layout scheme for parallel file systems on hybrid servers,’’ in Proc.
IEEE Int. Parallel Distrib. Process. Symp., May 2015, pp. 613–622.

[45] S. He, Y.Wang, andX.-H. Sun, ‘‘Boosting parallel file system performance
via heterogeneity-aware selective data layout,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 27, no. 9, pp. 2492–2505, Sep. 2016.

[46] S. He, X.-H. Sun, Y. Wang, A. Kougkas, and A. Haider, ‘‘A heterogeneity-
aware region-level data layout for hybrid parallel file systems,’’ in Proc.
44th Int. Conf. Parallel Process., Sep. 2015, pp. 340–349.

[47] S. He, X.-H. Sun, Y. Wang, and C. Xu, ‘‘A migratory heterogeneity-aware
data layout scheme for parallel file systems,’’ in Proc. IEEE Int. Parallel
Distrib. Process. Symp., May 2018, pp. 1133–1142.

MINGWEI LIN received the B.S. degree in soft-
ware engineering and the Ph.D. degree in com-
puter science and technology from Chongqing
University, Chongqing, China, in 2009 and 2014,
respectively.

From 2015 to 2016, he was a Lecturer with
the Faculty of Software, Fujian Normal University,
Fuzhou, China, where he is currently an Associate
Professor. He has published more than 20 research
papers as first author in international journals

and conference proceedings. His research interests include storage system
and embedded system. He got the CSC-IBM Chinese Excellent Student
Scholarship in 2012.

RIQING CHEN received the B.Eng. degree in
communication engineering from Tongji Univer-
sity, Shanghai, China, in 2001, the M.Sc. degree in
communications and signal processing from Impe-
rial College London, U.K., in 2004, and the Ph.D.
degree in engineering science from the University
of Oxford, U.K., in 2010.

Since 2014, he has been a Full Professor with
the Faculty of Computer and Information Sci-
ences, Fujian Agriculture and Forestry University,

Fuzhou, China. His research interests include big data and visualization,
cloud computing, consumer electronics, flash memory, and wireless sensor
networking.

LI LIN received the B.S. degree in computer
science and technology and the M.S. degree in
computer application from Sichuan University,
Chengdu, China, in 2005 and 2008, respectively.
He is currently pursuing the Ph.D. degree in com-
puter system architecture at the Huazhong Univer-
sity of Science and Technology, Wuhan, China.

Since 2008, he has beenwith the Faculty of Soft-
ware, Fujian Normal University, Fuzhou, China,
where he is currently a Lecturer. His research inter-

est is mobile computing.

XUAN LI received the B.S. degree in mathe-
matics and applied mathematics and the Ph.D.
degree in computer science and technology from
the South China University of Technology, China,
in 2007 and 2012, respectively.

From 2012 to 2014, she was a Lecturer with
the Information Science School, Guangdong Uni-
versity of Finance and Economics, Guangzhou,
China. Since 2015, she has been an Associate
Professor with Fujian Normal University. Her

research interests include consumer electronics and computer security.

JINGCHANG HUANG was born in Sanming,
Fujian, China. He received the Ph.D. degree
in electrical engineering from the University of
Chinese Academic and Sciences, China, in 2015.

He mainly focus on the cognitive signal pro-
cessing, including but not limited to acoustic,
image, air quality data, all of which comes from
the Internet-of-Things (IOT)-related applications.
His current research interests also include pat-
terns recognition, big data, and wireless sensor
networks.

47656 VOLUME 6, 2018

	INTRODUCTION
	RELATED WORK AND MOTIVATION
	EXISTING WORKS ON HYBRID STORAGE SYSTEMS
	SSD AS A BUFFER FOR HDD
	HDD AS A BUFFER FOR SSD
	HDD AND SSD AS THE SAME LEVEL OF STORAGE HIERARCHY

	OUR MOTIVATION

	TARGET SYSTEM ARCHITECTURE
	DATA STATES
	BUFFER-AWARE DATA MIGRATION SCHEME
	BUFFER-AWARE DATA MIGRATION ALGORITHM
	EFFECT OF BUFFER-AWARE DATA MIGRATION
	POTENTIAL BENEFITS OF BUFFER-AWARE DATA MIGRATION

	PERFORMANCE EVALUATION
	EXPERIMENTAL SETUP
	BENCHMARKS
	REAL WORKLOAD

	CONCLUSIONS
	REFERENCES
	Biographies
	MINGWEI LIN
	RIQING CHEN
	LI LIN
	XUAN LI
	JINGCHANG HUANG

