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ABSTRACT Weak signal detection via stochastic resonance (SR) has attracted considerable attention in
a wide range of research fields, especially under heavy background noise circumstances. In this paper,
a second-order matched stochastic resonance (SMSR) method is proposed to further improve the signal-
to-noise ratio of weak period signal. By selecting a proper damping factor in the regime of second-
order parameter matched relationship, weak periodic signal, background noise, and nonlinear system can
be matched in generating an enhanced output. The matched relationship is deduced in combining noise
intensity optimization and signal frequency synchronization with duffing system in a mathematical way,
and a normalized scale transformation is further carried out to make it accessible in detecting arbitrary high
frequency signals. The numerical analysis and application verification are performed to confirm the validity
and effectiveness of theoretical results, which indicate the proposed SMSR method is superior to the first-
order parameter matched stochastic resonance in achieving a good band-pass filtering effect with a low-noise
output as the driving frequency of received signal is not too small (>0.1 Hz). Thus, the proposed method is
beneficial to practical engineering weak signal processing and anticipates to be a potential novel technique
for ship radiated line-spectrum detection.

INDEX TERMS Stochastic resonance (SR), parameter matched relationship, duffing oscillator, signal-to-
noise ratio improvement (SNRI), ship radiated line-spectrum detection.

I. INTRODUCTION
Stochastic resonance (SR) has been proven to be an effective
approach for weak signal detection, especially under low
signal-to-noise ratio (SNR) circumstances. Since proposed by
Benzi et al. [1] in 1981, it has attracted considerable atten-
tions in a wide range of research fields for its distinct merit
that the energy of weak continuous signal can be enhanced
by exploiting the noise energy, and therefore increase the
signal-to-noise ratio (SNR) [1]–[6]. As the SNR is often
directly linked to the performance of a detector as a tenet,
it is then studied as a potential new technique for weak signal
detection [7]–[15]. Early achievements are mainly focus on
the enhancement of weak signal detection by adding suitable
noise, while it might be a suitable option of adding appro-
priate noise with lower noise intensity, but restricted of how
to remove noise for a high level, especially under low SNR
region. Hence, rather than adjusting the input noise level,
tuning signal structure and (or) system parameters might be

more suitable for practical signal processing applications.
Xu et al. [16] extended the concept of ‘‘SR’’ and proposed
a parameter-induced stochastic resonance (PSR) by tuning
system parameters instead of noise, which greatly promotes
the development of stochastic resonance for practical appli-
cations as tuning system is more easier to be implemented in
most cases. Nevertheless, the tuning approach can not address
the problem in detection of high-frequency modulating sig-
nals subjected to high noise levels for the sake of adiabatic
approximation in theory, which is crucial for engineering
applications as the frequency of received signals generally
varies from tens to thousands of Hertz and the background
noise is generally unknown [17]–[22].

To ease the small parameter limitation of classical SR (both
signal frequency and signal amplitude should be far less than
one), several improvements have been achieved bymodifying
and optimizing strategies to address large parameter signals,
such as scale normalized SR [17], re-scaling frequency
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SR [18], adaptive step-changed SR [19], frequency-shift and
re-scaling SR [20], and multiscale noise tuning [21], etc.
These studies are realized by tuning signal structures and (or)
system parameters to form a small parameter circumstance,
while proper initial system parameters and tuning ranges are
generally selected empirically in many publications to avoid
the divergent of numerical method and high computational
costs. This is a considerable problem which seems that it
can be resolved by giving a certain mathematical guidance
of system design for the desired optimal output. Related
previous studies mainly focus on analyzing the influence of
signal structure, noise type or system parameters to opti-
mize the system output by tuning [22]–[30]. A parameter
matched relationship in mathematical form with first-order
damped bistable SR model (FMSR) has been given in our
previous work, while the enhancement performance is lim-
ited, especially under heavy background noise [31]. From the
perspective of achieving better performance, studies of SR
with second-order duffing equation are verified superior to
the first-order Langevin equation (LE) as it can be regarded
as a secondary filtering and hence produces a cleaner
filtered signal than first-order SR [25], [27], [32], [33].
Therefore, it would be a new attempt to consider a second-
order SRmodel with parameter matched stochastic resonance
in improving the SR based weak signal detection effect.

Motivated by the above analysis, this paper focuses on
realizing the parameter matched stochastic resonance with
second-order duffing system (SMSR), aiming to achieve bet-
ter performance for weak signal detection. The matching
framework of second-order stochastic resonance is given in
a mathematical way, and a normalized scale transformation
is utilized to make it available in detecting arbitrary high
frequency signals. The main contributions of this paper are
summarized as follows: 1) a parameter matched relation-
ship for system potential parameters with duffing oscillator
is given in mathematical form, which can be used directly
for matched system initialization; 2) the tuning range of
damping factor is given and verified as it is proportional
to driving frequency for desired matched output, which can
be used efficiently in determining the searching range and
interval with low computational costs for different frequency
band signals; 3) the proposed SMSR method could achieve
a superior denoising performance that is quite beneficial to
extract the periodic signal from the heavy background noise,
which is expected to be extensively utilized in weak signal
detection.

The rest of this paper is organized as follows. Section II
provides relevant theoretical framework of the proposed
SMSR method and introduces the weak signal processing
strategy via SMSR. In Section III, the simulation analysis to
evaluate the SMSR method is performed in comparison with
the FMSR method. Application verification is conducted in
section IV to validate the effectiveness and efficiency of the
proposed method by analyzing a set of hydrophone received
ship radiated acoustic data. Finally, concluding remarks are
drawn in Section V.

II. SECOND-ORDER PARAMETER MATCHED
STOCHASTIC RESONANCE WITH
DUFFING OSCILLATOR
A. BASIC MODEL
To describe the phenomenon of SR, second-order Duffing-
Holmes nonlinear differential equation is adopted as below,

d2x
dt2
+ γ

dx
dt
= −

dV (x)
dx
+ s(t)+ n(t) (1)

where γ is damping factor. s(t) = Acos(2π f0 t+ϕ) represents
the input periodic signal, in which A, f0 and ϕ are amplitude,
driving frequency, and initial phase of the periodic signal,
respectively. n(t) = Dξ (t) with 〈n(t), n(t + τ )〉 = 2Dδ(t)
stands for the noise, where D is the noise intensity and ξ (t)
represents additive Gaussian white noise (AGWN) with zero
mean and unit variance.V (x) is a quartic doublewell potential
as written below,

V (x) = −
a
2
x2 +

b
4
x4, a, b > 0 (2)

in which a and b are barrier parameters of bistable potential.
Without external forcing, the system exhibits two stable sta-
tionary attraction at ±xm = ±

√
a/b separated by a potential

barrier with amplitude1V = a2/(4b) and an unstable one at
x0 = 0 as shown in Fig.1 (choose a = b = 1 for illustration).

FIGURE 1. Bistable SR system potential V (x) with periodical force
modulation.

For a thorough understanding of the system behavior when
forced by a stochastic signal, damping relaxation γ−1 and the
characterization of particle oscillating inside the two potential
wells must be taken into consideration. For this purpose, stud-
ies of Lyapunov’s stability analysis have shown the nontrivial
fixed points at ±xm behave as desired stable focuses if the
damping factor γ is restricted to the interval 0 < γ ≤ 2

√
2a,

which gives us a constraint condition for parameter tun-
ing [34]. Meanwhile, from the two-states theory, it is known
in the presence of a periodic signal with suitable noise, if the
mean passage time of particle between the two wells is equal
to the half period of the driving periodic forcing applied to the
particle, a statistical synchronization between noise induced

46506 VOLUME 6, 2018



H. Dong et al.: Effects of SMSR for Weak Signal Detection

transition and the weak periodic forcing occurs, and as a
consequence, the SR phenomenon occurs [3]. The transition
probabilities of particle coincide with Kramers rate rK can be
calculated as follows [3],

rK =
ωbω0

2πγ
exp(−

1V
D

) (3)

where ωb = [V ′′(±xm)]
1
2 = (2a)

1
2 and ω0 = [V ′′(x0)]

1
2 =

(a)
1
2 are the characteristic frequencies of system.
For the purpose of achieving the parameter matched rela-

tionship, it is initially considered that the Kramers rate rK
is the most important feature as the connection of sig-
nal, noise and system nonlinearity. Since signal-to-noise
ratio improvemnet (SNRI) is mostly analyzed in SR theory,
the principle of matched framework in this paper is on the
basis of Kramers rate with SNRI maximization for desired
enhancement performance.

B. MATCHED FRAMEWORK OF DUFFING OSCILLATOR
From the above analysis, we have a basic parameter con-
dition for a matched SR system as rK = 2f0 within the
regime of small parameter limitation. To the convenience of
analysis, we could further define a discrimination function
F(a, b, γ,D, f0) as below [26],

F(a, b,D, γ, f0) =
a

2
√
2πγ f0

exp(−
a2

4bD
) (4)

Obviously, the SR phenomenon occurs as F = 1, which is
considered in connection with both driving signal frequency
and noise intensity.

To achieve the desired optimal matched output, SNRI opti-
mization is conducted. For sinusoidal signals with additive
noise, the input SNR and the output SNR corresponding to
equation (1) can be given as,

SNRinput =
A2

4D
(5)

and

SNRoutput ≈
aA2
√
2a

4bD2 exp(−
a2

4bD
) (6)

where the details of output SNR deduction for second-order
system can be seen in [25]. Then we could have SNRI of
duffing system as,

SNRI =
SNRoutput
SNRinput

≈
a
√
2a

bD
exp(−

a2

4bD
) (7)

Intuitively, the SNRI is influenced by potential parameters
and noise intensity. Hence, to achieve the desired output
performance corresponding to noise intensity, optimization
method can be utilized as,

Dopt = argmax
D

SNRI

By solving the first-order partial differential of equation (7)
with respect to D, we have the optimal relationship between

system parameters and noise intensity as,

Dopt =
a2

4b
= 1V (8)

Consider the detection problem with known frequency
and initial phase in additive stationary noise, the signal fre-
quency f0 can be known as prior knowledge, and the noise
intensity D would be thought of fixed in a certain period of
time under high sampling frequency, which can be estimated
by classical stochastic signal estimation methods. The param-
eter conditions for matched relationship then can be obtained
in the satisfaction of, {

F = 1
D = a2/4b

(9)

C. LARGE PARAMETER MATCHING WITH NORMALIZED
SCALE TRANSFORMATION
The matched framework of duffing oscillator in last subsec-
tion is given in the regime of small parameter limitation, while
limited to be used for practical engineering fields. In order
to match arbitrary high frequencies (� 1Hz), a normalized
scale transformation is taken to form a small parameter cir-
cumstance.

Mathematically, let z = x
√
b/a and τ = at . Then

equation (1) could be re-written as,

d2z
dτ 2
+
γ

a
dz
dτ
=

1
a
z−

1
a
z3 +

√
b
a5
Acos(

2π f0τ
a
+ ϕ)

+

√
2bD
a5

ξ (
τ

a
) (10)

In order to facilitate the expression, we introduce the variables
substitution,

d2z
dτ 2
+ γ ′

dz
dτ
= a′z− b′z3 + A′cos(2π f ′0τ + ϕ)+ D

′ξ (
τ

a
)

(11)

in which γ ′ = γ /a, a′ = b′ = 1/a, f ′0 = f0/a A′ =
√
b/a5A,

D′ = b/a5D. By comparing equation (11) to equation (1), it is
easy to find that the signal frequency is converted into 1/a
times of the original signal frequency.

To the satisfaction of the SR matching principle required
in the last subsection, substituting a′, b′, f ′0 and D′ into
equation (9), we could have,F(a

′, b′,D′, f ′0) =
a′

2
√
2πγ ′f ′0

exp(−
a′2/4b′

D′
) = 1

D′ = a′2/4b′
(12)

With variables substitution, the matched parameter relation-
ship of signal frequency, noise intensity and system parame-
ters corresponding to equation (1) can be obtained as below,{

a = 2
√
2π f0γ e

b = a4/4D
(13)

Intuitively, the damping parameter γ can be used for tuning
the optimal matched output in the constraint condition of
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stable focuses as mentioned before. For desired stable focus
of the nontrivial two stable stationary points, the damping
factor γ ′ should be restricted to the interval of (0, 2

√
2a′],

and as a result,

0 < γ ≤ 16
√
2π f0e (14)

It can be seen that the stability interval of γ is proportional to
driving frequency f0, which means the optimal damping fac-
tor corresponding to the matched output for a higher driving
frequency signal should be searched in a wider range and the
stability of system output with higher driving frequency can
be guaranteed more easily.

D. SIGNAL PROCESSING ALGORITHM VIA MATCHED
OUTPUT TUNING
As indicated in the above subsection, the desired matched
output with maximal SNRI can be obtained by tuning damp-
ing parameter γ in the framework of deduced matched rela-
tionship for a deterministic noisy signal. The corresponding
flowchart is shown in Fig.2 and the detailed steps are summa-
rized as follows:

FIGURE 2. The algorithm flowchart of matched output tuning.

(1) Signal pretreatment. Common methods such as filter-
ing or envelope extraction would be executed to better reveal
the signal periodicity of actual received signals.

(2) Noise variance estimation. In this paper, the noise
intensity can be estimated follow the principle of maximum
likehood estimation (MLE) [35].

(3) Damping factor initialization. Initialize tuning range
[γstart , γend ] and tuning step γstep of damping factor in accor-
dance with the restriction of equation(14).

(4) MSR computation. The matched potential parameters
amatch and bmatch corresponding to the damping factor can
be obtained via equation (13). Compute equation (1) to get
output x(t) by the Runge-Kutta algorithm, then estimate and
store the SNRI.

(5) Tuning approach. Step varying the damping factor γ
according to the initialized γstep within the searching interval
[γstart , γend ] and repeat the process from step(4).
(6) Parameter Optimization. Calculate the optimal γopt

corresponding to maximum SNRI according to the following
objective function:

γopt = argmax
γ

SNRI

(7) Signal post-treatment. Output the waveform corre-
sponding to highest SNRI value as the detected signal.

III. EFFECTS OF SMSR WITH COMPUTER SIMULATIONS
A. PERFORMANCE MEASURE WITH
NUMERICAL METHOD
The above section provides the framework and implemen-
tation of second-order matched stochastic resonance. Alter-
natively, the fourth-order Runge-Kutta (RK4) method is
employed to obtain the output sequence of SMSR [25],

y1 = y[n] y2 = y[n]+ x1h/2
y3 = y[n]+ x2h/2 y4 = y[n]+ x3h/2
x1 = −V ′(x[n])− γ y1 + S[n]+ N [n]
x2 = −V ′(x[n]+ y1h/2)− γ y2 + S[n]+ N [n]
x3 = −V ′(x[n]+ y2h/2)− γ y3 + S[n]+ N [n]
x4 = −V ′(x[n]+ y3h/2)− γ y4 + S[n]+ N [n]
xn+1 = xn + (y1 + 2y2 + 2y3 + y4)h/6
yn+1 = yn + (x1 + 2x2 + 2x3 + x4)h/6

(15)

where h is the calculation step that is generally equal to 1/fs.
Here, typical measurement index of SNRI is adopted to

discuss the effect of SR phenomenon for enhancing the
energy of weak period signal by exploiting the noise compo-
nent. Generally, the discrete time series of input and output
power spectrum can be calculated via discrete Fourier trans-
form (DFT) for engineering digital signal processing as,

SNR = 10log10
Af∑N/2

i=1 Ai − Af
(16)

in which N is the length of the time series, Af represents the
power of driving frequency f0, and the item

∑N/2
i=1 Ai − Af is

the total power of noise [25].
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FIGURE 3. A comparison of SMSR and FMSR with (fixed f = 100Hz, A = 0.1, D. = 1.2) (a) The input waveform; (b) SMSR output
waveform and its frequency spectrum with γ = 5. (c) SMSR optimal output waveform and its frequency spectrum with
γopt = 8.8. (d) SMSR output waveform and its frequency spectrum with γ = 15.

B. DAMPING FACTOR ANALYSIS
Intuitively, the damping factor γ plays a critical role in
determining the matched system parameters for desired
optimal output. Therefore, the optimal damping factor γopt
corresponding to the matched output with different driving
frequencies and noise intensities are firstly analyzed in the
framework of the proposed SMSRmethod. The tested signals
are sinusoids with random AWGN, of which the signal
amplitude and the data length are fixed with A = 0.1 and
N = 1000, respectively. The tuning range and tuning step of
damping factor are loaded with [γstart , γend ] = [0.1, 300] and
γstep = 0.1, respectively. As shown in Fig.3, a simulation of
SMSR with different damping factors is illustrated to verify
the effectiveness of tuning. The selected input is a noisy
signal (−23.86 dB) as show in Fig.3(a), of which the periodic
signal waveform is totally immersed in background noise and
the spectral spike at f0 = 100Hz can be hardly found in
frequency domain, either. Fig.3(b)-(d) have shown the SMSR
output waveform and its corresponding frequency spectrum
for different damping factors, it is clear to see the noise
interference ofmatched output with γopt = 8.8 (in Fig.3(c)) is

almost wiped out in achieving a 20dB enhancement of SNR.
Nevertheless, the unmatched output with γ = 5 (in Fig.3(b))
and γ = 15 (in Fig.3(d)) exhibit a Lorentzian property that
the energy of output is more tended to be transferred to the
low-frequency regions.

To further evaluate the statistical characteristic of optimal
damping factors, 2000 independent realizations are con-
ducted with varied driving frequencies and noise intensities,
respectively. Fig.4 shows the frequency response of optimal
damping factors with varied f0 from 1Hz to 10kHz in fixing
noise intensity D = 0.8. It can be seen that the values
of optimal damping factors present an increasing tendency
with driving frequencies, of which the distribution range of
damping factors can be verified that is proportional to the
driving frequency f0. These results are in accordance with the
deduced restriction interval of equation (14) by Lyapunov’s
stability analysis, and can be a principle for initializing the
tuning range for different applications. The noise response
of optimal damping factors is illustrated in Fig.5 with
f0 = 100Hz, of which the values of optimal damping factors
are generally distributed in a certain range between 5 to 40.
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FIGURE 4. Frequency response of optimal damping factors with
2000 independent realizations (fixed A = 0.1, D = 0.8).

FIGURE 5. Noise response of optimal damping factors with
2000 independent realizations (fixed A = 0.1, f0 = 100Hz).

The fluctuations are mainly caused by the random property
of additive noise, for which the mean values of SNRI with
varying noise intensity almost form a line. This indicates that
the restriction interval for SMSRmethod is irrelevant to noise
intensity as illustrated in equation (14), and the tuning interval
can be initialized according to the being detected driving
frequency.

C. DENOISING PERFORMANCE EVALUATION
As mentioned before, SR can be regarded as a specific
kind of filter. In this subsection, the denoising perfor-
mance of the proposed second-order matched stochastic
resonance (SMSR) is evaluated in comparison with first-
order matched stochastic (FMSR) [31]. The tested signal is a
sinusoid with A = 0.1 and f0 = 100Hz as shown in Fig.6(a),
in which the sampling frequency is set as fs = 200 f0 with
the data length N = 1000. The bistable potential parame-
ters a and b are determined by equation(13) with amatch and
bmatch, and the tuning range and tuning step of damping factor

FIGURE 6. Filtering performance comparison: (a) pure signal; (b) input
noisy signal; (c) FMSR output signal; (d) SMSR output signal at
γopt = 23.2.

are loaded to [γstart , γend ] = [5, 40] and γstep = 0.1, respec-
tively. To illustrate the basic properties of the proposed SMSR
method, an AWGNwith noise intensityD = 0.2 is injected to
the pure signal as illustrated in Fig.6(b). Fig.6(c) displays the
matched output of the FMSR method, for which the sinusoid
is almost recovered from the noisy signal, while some noise
interference can still be noticed. By employing the proposed
SMSR method in this paper, the recovered signal is almost
noise-free with a phase deviation1 of π as demonstrated
in Fig.6(d). In addition, phase portraits corresponding to
Fig.6 are plotted in Fig.7 for a deeper observation of particle
motion. The pure signal produces a deterministic elliptic
trajectory as shown in Fig.7(a), while totally destroyed to

1Note in our simulation the phenomenon of phase deviation is steady that
makes no difference to the utilization.

FIGURE 7. Phase portraits of particle trajectories corresponding to the
signals illustrated in Fig.6.
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FIGURE 8. A simulation of SMSR with different damping factors (fixed f = 100Hz, A = 0.1, D = 1.2) (a) waveform of input
noisy signal, (b) spectrum of input signal, (c) FMSR output waveform with γopt = 1.41, (d)spectrum of FMSR output,
(e) SMSR output waveform with γopt = 10.8, (f) spectrum of SMSR output.

a state of chaotic with additive white Gaussian noise that
illustrated in Fig.7(b). Fig.7(c) reflects a form of particle tran-
sition between two potential wells corresponding to FMSR,
while the noise interference is still significant. By utilizing the
proposed SMSRmethod, the particle trajectory behaves well-
ordered that quickly evolve into an approximately elliptic tra-
jectory as demonstrated in Fig.7(d). From the above analyses,
it can be seen the proposed SMSR could achieve a better
denoising performance in which more noise interference is
wiped out.

To further evaluate the denoising performance of SMSR
in comparison with FMSR under heavy noise background,
an AWGN with noise intensity D = 1.2 is added. From
Fig.8(a) and Fig.8(b), we can note that the periodic signal
is completely submerged in background noise both in time
and frequency domain. By utilizing the FMSR method as
illustrated in Fig.8(c) and Fig.8(d), the periodic component of
FMSR output is still immersed in noise in time domain, while
the spectral spike at f0 = 100Hz can be found. From a view of
the frequency spectrum, the FMSR method can be regarded
as a conventional bandpass filter. The output waveform and
corresponding frequency spectrum of the proposed SMSR
method are demonstrated in Fig.8(e) and Fig.8(f). In compar-
ing in the time domain, it performs apparently periodic that
the noise interference is almost filtered. The spectral spike
at f0 = 100Hz in frequency domain is very sharp that can
be thought as processed by an extremely narrow bandpass
filter. These results imply that the second-order SR model is
quite beneficial to extract the periodic signal from the heavy
background noise.

The frequency response and noise response of the proposed
SMSR in comparison with FMSR are further analyzed to
evaluate the performance in handling with different driving
frequencies and noise levels. To evaluate the performance for
arbitrary periodic inputs, the averaging SNRI (SNRImean) of
FMSR and proposed SMSR method with varied driving fre-
quencies f0 from 1Hz to 10kHz are analyzed, and every data
point is obtained by averaging 2000 independent realizations.
The results are plotted in Fig.9, in which the SNRImean curve
of the SMSR method shows a distinct superior performance

FIGURE 9. SNRI comparison between FMSR method and the proposed
SMSR method with varying driving frequencies with 2000 independent
realizations (fixed D = 0.8).
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FIGURE 10. SNRI comparison between FMSR method and the proposed
SMSR method with varied noise intensities with 2000 independent
realizations (fixed f0 = 1kHz).

in comparison with FMSR method. For the proposed SMSR
method, the curve shows a gradually increasing tendency
to the driving frequency f0, while for FMSR it seems more
consistent. This is because the normalized scale transforma-
tion of FMSR is totally equivalent to a system with potential
parameters of a = 1 and b = 1, and as a result, the restricted

interval of γ is determinate that can not be over 2
√
2.

Nevertheless, the restricted interval of γ for SMSRmethod is
proportional to driving frequency f0 as deduced and verified
before. This means for SMSR method, a smaller frequency
signal corresponds to a smaller tuning range, thus the output
performance for a low frequency (smaller than 1Hz) input
signal would tend to FMSR method or worse. The noise
response of the proposed SMSR in comparison with FMSR
is plotted in Fig.10 to evaluate the anti-noise performance
in handling different levels of noisy signals. The tested sig-
nals are sinusoids with fixed amplitude and frequency as
A = 0.1, f0 = 1kHz, and the noise intensity D is altered
from 0.1 to 2 with a 0.1 varying step. Obviously, the proposed
SMSR method shows distinct superiority in comparison with
FMSR as its SNRImean curve is highly above that of the
FMSR method. The noise response curve exhibits a gradual
upward trend with the increasing noise intensity, which is for
the sake of limited enhancement performance for higher SNR
input signal. These results imply that the proposed SMSR
is quite beneficial to extract the periodic signal from the
heavy background noise. Fig.11 demonstrates a comparison
of FMSR and SMSR output waveform and the corresponding
frequency spectrum with different driving frequencies. For
input driving frequency f0 = 0.1Hz, the output waveform
and the corresponding frequency spectrum of FMSR and

FIGURE 11. A comparison of SMSR and FMSR output waveform and corresponding frequency spectrum with different driving frequencies
(a) 0.1Hz, (b) 1Hz, (c) 100Hz, (d) 10kHz (fixed A = 0.1, D = 0.8).

46512 VOLUME 6, 2018



H. Dong et al.: Effects of SMSR for Weak Signal Detection

FIGURE 12. Analyzed result for ship auxiliary engine line-spectrum signature (a) waveform of received original ship radiated
acoustic signal, (b) spectrum of original ship radiated acoustic signal, (c) FMSR output waveform with γopt = 1.21, (d) spectrum
of FMSR output, (e) SMSR output waveform with γopt = 45.3, (f) spectrum of SMSR output.

SMSR method are close with just 2.3 dB enhancement as
is shown in Fig.11(a). After gradually increasing the driving
frequencies, the output performance of SMSR method indi-
cates superiority to FMSR method. This means the proposed
SMSR method is more suitable for detecting high-frequency
signals, which can meet the need of practical engineering
applications for the majority of research fields.

IV. APPLICATION VERIFICATION
To validate the effectiveness and efficiency of the proposed
SMSR method in practical passive sonar detection applica-
tion, a set of acoustic data by a moving ship is adopted to
analyze. The radiated noise was received by a hydrophone
with sampling frequency fs = 100kHz.
Here, the auxiliary engine discrete spectral signature is

being detected with original received ship radiated acous-
tic signal, which is a narrow band periodic signal with its
frequency f0 = 356.2Hz. To verify the performance of
SMSR, a 20 milliseconds fragment of data is utilized with
sampling points N = 2000. The waveform and its low
frequency zone frequency spectrum of original signal is
shown in Fig.(12)(a) and Fig.(12)(b), of which the spectral
signature can be pointed out in the frequency spectrum with
two strong interference frequencies. By applying the FMSR
method, the output and its corresponding low frequency
zone spectrum is provided in Fig.(12)(c) and Fig.(12)(d).
An indistinct periodic in the time domain can be seen, and
the spectral spike at f0 in the frequency spectrum can be
detected easily with the noise component being suppressed.
Finally, results of the proposed SMSR method are provided
in Fig.(12)(e) and Fig.(12)(f), where the waveform is well

arranged with good periodicity and the spectral spike at f0 in
power spectrum is more clear with little noise components.
Although the noise can still be found in the power spectrum,
such a result is excellent in comparing with FMSR method
and beneficial to ship radiated line-spectrum detection.

Beside the performance comparison, the time consuming
is recorded in Matlab R2017a on the platform configured
with the following parameters: Intel i5, 3.2-GHz Quad Core
processor, 8-GB memory, 64-bit-win10 operating system.
The tuning range and tuning step of damping factor for
SMSR are loaded with [γstart , γend ] = [10, 70] (reference
Fig.4 with f0 = 356.2Hz) and γstep = 0.1, which totally
searching 600 steps. For FMSRmethod, the tuning range and
tuning step are initialized with [γstart , γend ] = [0.8, 3] and
γstep = 0.01, which totally searching 220 steps. The com-
putational time for FMSR and SMSR is 0.389s and 2.705s,
respectively. It can be seen that the computational cost of
SMSR method is about 7 times that of FMSR method which
caused by the different searching steps of damping factor
and the computation complexity of second order system is
approximate 2.5 times that of first order system by applying
the corresponding RK4methods. Note that the computational
cost of SMSRmethod is proportional to driving frequency f0,
which can be utilized efficiently in determining the searching
ranges and intervals with low computational costs for differ-
ent frequency band signals.

V. CONCLUSION AND DISCUSSION
This paper proposes an SMSR method for improving the
performance of weak period signal detection. In combining
noise optimization and frequency synchronization of duffing
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system with normalized scale transformation, a second-order
parameter matched relationship is deduced and the corre-
sponding signal processing strategy is given that could detect
arbitrary high frequency signals subjected to heavy noise
interference. Numerical analysis and application verification
are conducted in comparisonwith FMSRmethod, which indi-
cates that the proposed SMSR method surpasses the FMSR
method in achieving a superior performance.

Although the results of SMSR are inspired in weak signal
detection area, the utilization in practical is still limited as of
input-output SNRI measurement index with matched output
tuning generally need prior knowledge of signal frequency
(e.g. passive sonar detection, the frequency information of
line-spectrum feature is generally prior unknown with time-
varied operating condition of vessels). It is still an open
problem,which can be solved by applying othermeasurement
index such as: mutual information between input and output
signals, highest spectral peak location, kurtosis index, root
mean square error, synthetic index with the fusion of multi-
measurement indexes, and etc. For the future, we anticipate
the proposed method can be used as a potential technique for
a variety of research fields.
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