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ABSTRACT In the field of medical imaging, many medical image data can be rebuilt into 3-D medical
models for use in medical education and analysis. In fact, the 3-D medical models help ordinary people
(including patients and students) to more easily understand and learn medical knowledge. In addition, with
the rapid development of Web3D technology, the demand for 3-D visualization technology based on the
web browser increases. However, the limited bandwidth and low load capacity of the browser have seriously
restricted the development of technology. Therefore, this paper proposes a framework to better show 3-D
skeleton shapes. In particular, mesh compression is one of the most effective methods to achieve a fast
transmission data process. In addition, because of the poor rendering capabilities of the browsers, it is
notably difficult to render the entire model at once. Moreover, it often makes the browser crash; thus,
the transmitted model data are only rendered once. In addition, a mesh segmentation algorithm is proposed
to realize component-wise rendering and lightweight for shape. A voxel-based component repetition method
is used to detect the repetitive components; thus, we can perform matrix transformation to finish the
repetitive-component Web3D visualization, i.e., lightweight for shape. Finally, the related experiments are
performed to validate our proposed framework. The results show that the proposed framework is feasible

and superior.

INDEX TERMS Lightweight, mesh compression, medical images, segmentation, Web3D, visualization.

I. INTRODUCTION

With the arrival of the “Internet plus’ era, increasing focus
has been put on the Web3D technology. However, for the
mobile Internet, which is subject to restrictions on bandwidth
and other conditions, it is unrealistic to show a model on a
webpage similar to a picture in real time. This bottleneck
problem is one of three Web3D issues and has hampered
the development of the Web3D technology. Many research
scholars have presented their methods to solve this problem.
Zhao et al. [1] proposed the model-loading strategy according
to the adaptive bandwidth based on the level of detail (LoD).
Laixiang et al. [2] presented the lightweight loading mecha-
nism by computing the repeatable component of the model,
which was called the LPM method. Wang et al. [3] presented
a view-dependent simplification method by computing the
visible parts of the model in view frustum. Meanwhile, there
are large quantities of medical data in medical science, which
can be used for education and research such as medical
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data visualization. However, medical datasets are often large,
dense and difficult to display on web browsers. Although
the visualization of medical data, particularly medical skele-
ton data, receives little focus, there are great demands in
this research area. In particular, medical skeleton visualiza-
tion can be applied in clinical teaching and disease preven-
tion. Furthermore, 3D skeleton data provide good interactive
effects, e.g., in education, such data can help students better
understand the skeleton structure. Compared with dull 2D
image data, 3D skeletons can be interactive for students from
many viewpoints. Thus, the Web3D technology can enhance
these advantages. In general, the medical 3D models are large
and almost impossible to directly display on web browsers. In
fact, the disadvanges of existing works can be concluded as
following.

First, they only focus on the whole 3D models data, rather
than many components of models. Especially, there are many
repetitive components in many 3D skeleton data. We can
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greatly low down the scale of whole model by removal
of repetitive components. Whereas, they totally ignore this
point. Second,mesh compression can decrease the scale of
transmission of models data, in this way, we can low down the
load of web browsers. However, it still consumes many time
that a whole compression model is decompressed, above all,
for large dense skeleton models, but in this case, the users
are generally not patient to wait. In other word, exisiting
methods always focus on compression for the whole mesh,
rather than individual components.Last but not least, there are
many repetitive components in 3D skeleton medical models,
it is very suitable for conducting lightweight operation based
on removal of repetitive components.Nevertheless, in many
existing methods, little related researches consider this key
factor. Therefore, in this paper, we incorporate mesh com-
pression and segmentation into the 3D skeleton visualization
scheme. The motivation of this paper is to present a novel
solution for browser-based visualization of medical 3D data,
in fact, many different methods is utilized to improve the
visualization results for large dense skeleton models. in other
word, we achieve the task of components-based transmis-
sion and repetitive components removing, so as to complete
lightweight operation for large dense skeleton medical mod-
els. In this way, the large dense medical models data can eas-
ily show in poor web-browser.In particular, our contributions
are as follows:

1. We present a mesh compression method and compress
the 3D skeleton models by encoding the triangle of
mesh to perform the mesh transmission. This method
improves the transmission of skeleton data.

2. We present a mesh segmentation method and conduct
the segmentation operation to split the entire skeleton
mesh into many individual components, so that we can
render through the component-wise method.

3. We detect repetitive components to make the 3D skele-
ton data more lightweight.

The remainder of the paper is organized as follows.
In Section 2, we briefly review the related work on
medical visualization, mesh compression and segmenta-
tion. In Section 3, we show our proposed framework.
Section 4 shows the related algorithms. Section 5 shows the
results of our experiments. Finally, in Section 6, we draw our
conclusions.

Il. RELATED WORKS

A. MEDICAL VISUALIZATION

Medical visualization has produced many implementations
of 3D medical model visualization in web browsers. John [26]
and John et al. [27] proposed visualization methods for edu-
cational purposes. These approximations require third-party
systems for the correct visualization. Poliakov et al. [29]
and Sun et al. [30] proposed the method of a rendering
server to realize the medical data visualization, but it limited
the scalability of the application. Jung et al. [31] proposed
a method based on standards such as VRML and texture
mapping, which achieve the visualization of volumes in the
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web browser. However, this method requires the users to
install 3rd-party plugins. Congote et al. [28] presented the
implementation of a volume rendering system for the web
based on the WebGL technology. However, this method only
aimed at medical data and did not consider how to solve the
problem of dense medical data loading and rendering over
web browser.

B. MESH COMPRESSION

Mesh compression is one of most challenging issues in com-
puter graphics. Many researchers attempted to improve the
compression ratio. Specially, Rossignac et al. [4] proposed
the Edgebreaker algorithm, which encoded the connectiv-
ity of triangular meshes by iteratively nibbling its faces.
Gumbhold [5] proposed optimizing a Markov model to design
an asymptotic optimal arithmetic coder for the Edgebreaker
encoder because each Edgebreaker symbol was a state. More-
over, Liu et al. [6] designed an algorithm to select the next
edge gate to proceed to minimize the number of “S”” symbols.
In addition, the valence-driven approach is the algorithm of
Touma and Gotsman [7]. Its principle is to consider the edge
boundary formed by an initial triangle and expand this bound-
ary formed by an initial triangle and expand this boundary by
iteratively adding adjacent vertices. Three notably important
reviews that summarize the work on mesh compressing were
published by Alliez and Gotsman [8], PENG et al. [9] and
Maglo and Dupont [33]. Generally, the information contained
in a mesh is often divided into three categories: geometry,
connectivity, and attribute information. The geometry infor-
mation is the position of each vertex of the mesh in the 3D
Cartesian space. Furthermore, the connectivity information
mainly describes the incidence relations among the mesh
elements. The information associated with scalar or dis-
crete properties is attributed to the useful mesh elements,
such as colors, normal, and texture coordinates. Therefore,
mesh geometry compression is notably important because
it is larger than the connectivity information. The com-
pression of the geometry begins with the quantization of
all coordinates. Lee and Park [11] proposed a new scalar
quantization approach, which can locate the vertices in four
different range sizes because notably few vertices are in the
largest range. Meng et al. [10] conducted vector quantization,
which has experimentally demonstrated its ability to achieve
better rate-distortion performance. However, the determina-
tion of the quantization can lead to intensive computations.
Lavoue et al. [12] presented a new framework based on the
subvision surface approximation for efficient compression
and coding of models; however, it is fit for the model, which
has large constant-curvature regions. Moreover, this method
is not suitable for natural objects.

C. MESH SEGMENTATION

Mesh segmentation remains notably difficult in com-
puter graphics. Several methodological frameworks have
been developed to present this underlying challenge.
Aleksey and Funkhouser [13] presented the graph-clustering
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FIGURE 1. Overview of the proposed framework.

method to balance the intra-mesh and inter-mesh segmen-
tations. This method builds the connection by matching the
points between rigidly aligned meshes. However, it only han-
dles limited model types for the requirement of global rigid
alignment. Xu et al. [14] classified the meshes according
to their styles and established the part correspondences in
each style group. Kraevoy et al. [15] created a consistent
segmentation by matching the parts generated from an ini-
tial segmentation. Huang et al. [16] jointly considered the
segmentation of individual meshes by linear programming.
Nevertheless, the segmentations that are generated by these
two methods cannot guarantee the consistency across the
entire set even if they are mutually consistent. Sidi et al. [17]
analyzed the descriptor space via spectral clustering to seg-
ment a set of shapes with large variability. Meng et al. [18]
clustered the primitive patches to generate the initial guess
and improve the co-segmentation results by the multi-label
optimization. Hu et al. [19] generated the segmentation by
directly grouping the primitive patches of the meshes and
simultaneously obtain their correspondences. This method
achieved some success because the patches of the same part
were likely to be in one common subspace in the feature
space. Liu et al. [20] proposed the low-rank representation
in semantic mesh segmentation and labeling, but this method
has several limitations such as the model style.

Ill. PROPOSED FRAMEWORK

In this section, we present a framework that includes
compression-driven mesh encoding, mesh segmentation, and
lightweight for shape. Because it is notably difficult to
load the entire model in the browser at once, the model
must be split into many individual components. In the
paper, we propose a mesh segmentation algorithm to com-
plete the segmentation task. The mesh compression is also
notably important for the webpage-based application because
mesh compression can significantly improve the mesh trans-
mission efficiency. In this case, we use the Edgebreaker
algorithm [4], [5]. The compression task also includes the
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vertex connectivity information, vertex coordinate informa-
tion and attribute information. In this paper, the attribute
information only refers to the normal coordinate informa-
tion. Hence, the compression of coordinates mainly indi-
cates the quantization of the vertex coordinates. In addition,
the floating-point coordinates are broken into sign, exponent,
and mantissa components. The lightweight-for-shape method
is used to decrease the model scale. More specially, the repet-
itive components detection method can find the repetition
components in a shape; then, these repetition components are
represented by matrix transformation.

In this method, the mesh scale can be reduced, i.e., the
lightweight for shape is obtained. The overview of the pro-
posed framework is shown in Figure 1.

IV. FRAMEWORK DESCRIPTION

In this section, we explain the detail of our proposed frame-
work. In particular, our framework can be divided into
three parts: mesh compression method; mesh segmentation
approach; and lightweight for components of the shape.

A. MESH COMPRESSION

The mesh compression is used to encode the related com-
ponents, including the connectivity and coordinates. In the
connectivity patch, a spanning tree encoding method [4] is
used to encode the connectivity. In addition, it defines five
types of patch configuration of the Edgebreaker algorithm.
This method is shown in Figure 2.

The prediction method of three parallelograms is also used
to predict the position of the neighbor triangles according
to the encoding region. The prediction details are shown
in Figure 3. In particular, the prediction term is denoted as (1).

Pred + Porange + Pgreen
3

where the terms pjeq, Porange, and pgreen TEpresent the pre-

diction positions of three parallelograms. Nevertheless, in the

coordinate encoding patch, we use the delta decoding method

ey

Ppredicted =
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FIGURE 2. Five-patch configuration of the Edgebreaker algorithm. The
term v; is the patch center vertex, and T; is the current triangle. The
current edge is the red edge. In C, there is a complete triangle fan around
v;. In R, there is missing triangles at the right of the current edge. On the
left side, there are missing triangles at the left of the current edge. In S,
there are missing triangles at other places in addition to the left and right
sides of the current edge. In E, there are only the current edge adjacent to
current triangle 7;.

FIGURE 3. Three-parallelogram prediction process. The left patch is
actual triangles, and the middle patch illustrates how to predict the new
position. The encoded part is shown in light gray.

to compute the difference in position coordinate. Thus,
we convert the relative floating-point number into integers
based on the bit value; thus, we can finish encoding the
attribute positions and vertex positions. The compression
process is shown in Figure 4.

V2

Convert ~ Float-
vy (X1, Y1, Z:
ample| v1(¥1,¥1,21) |Delta AI( Ly Z) (Convert | type number into
= v2(x2, Y2, %) [Gecode”] LV2 (e ~ X Y2 ~ Y122 = 7) bit-based integer
Avs(x3 — X1,¥3 = Y1, 23 — Z1) type

v3(X3,¥3,23)

FIGURE 4. Process to compress the floating-point positions and delta
decoding.

The entire process to compress the mesh is shown
in Figure 5. Specially, we use the stack structure buffer to
storage the result. Moreover, the result is written into a com-
pression file.

B. MESH SEGMENTATION

For the dense model, the compression mesh decodes on
the browser port, but the decoding result remains large in the
web browser, and it remains notably difficult to finish the
rendering task. Hence, one of the most efficient and reliable
solutions to obtain the lightweight for shape is to perform the
algorithms in components of the shape. Zhou et al. [34] pro-
posed a new mesh segmentation approach based on Dijkstra
algorithm. In this paper, we also use this method to achieve
mesh segmentation.

The detail of the proposed method is shown in Figure 6.
In addition, we define three new geodesic distances to mea-
sure the relation of many triangle: centroid distance (CD),
angular distance (AD), and global distance (GD). The GD

47630

distance metric is as follows (2).

GD(c1. ¢2) = CD(cy, ¢3) —l—l;P * AD(cy, ¢) @

where the term ¢ is an empirical value, which determines
the ratio of the angular distance to the global distance. The
experiment shows that a larger value of ¢ € [0, 500] cor-
responds to a greater ratio of the angular distance in Equa-
tion 2 and consequently a stronger model streamline. In this
paper, we obtain the value ¢ = 300. The term S denotes
the diagonal length of the bounding box. The process of our
proposed mesh segmentation can be deﬁfribed as follows:
step 1: The position of barycenter O of the entire model
M; is calculated, and the nearest triangle 81’; (k = 0) from the

barycenter _0) is obtained, which is the first diffusion source
position.

step 2: The centroids of all triangles are computed as the
nodes of networks, K = ki, ko, ..., k,(m € N), where m is
the number of triangles of the entire model M;.

step 3: The term Sli is the initial center of the region. Hence,
the neighbor triangle set K, p € [0, m] can be obtained.

step 4: The global distance between the triangle 8,’; and its
neighbor is computed. Moreover, the topological networks
can be built. In addition, based on the Dijkstra algorithm,
the shortest path Wy from the source point S,i is acquired.
If the triangle k;, j € [0, m] belongs to path Wy and triangle
k; belongs to this region, the term §; is particularly the center
position.

step 5: Update the region center, re-calculate the position
of the region center, and constantly update the position of the
term 8};, where the variable k can be represented as k <«—
k+1.

step 6. Iterate to perform the task of steps 4 and 5 until
the number of steps exceeds the maximal number of iter-
ations or the shgrtest paths have not existed. Then, new
diffusion source O can be built. Then, go to step I to continue
to conduct the related operation.

In Figure 7, two types of geodesic distance equations are
shown. Specially, the global distance consists of two types
of distance. Our proposed segmentation is based on Dijk-
stra algorithm region diffusion, the detail of which is shown
in Figure 8. The algorithm is shown in Algorithm 1.

C. LIGHTWEIGHT FOR SHAPE

In general, there are many repetitive components in a shape,
particularly a dense shape. Therefore, the components of
the shape must be used to operate the repetition detection.
Furthermore, the repetitive components can be represented by
a matrix transformation such as translation, scaling, or rota-
tion, so it can significantly decrease the scale of the model.
Laixiang et al. [2] proposed a pose normalized method to
obtain the matrix of component transformation. Specially,
this operation includes translation, scaling, and rotation. With
these operations, we can restore the repetitive components on
the web browser port.
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FIGURE 5. Overview of the mesh compression. The orange triangle is the current value, the gray solid zone is the actual value, and the green dotted-line
zone is the predicted value. The red line is the encoding path based on the spanning tree, and the orange line is the current edge.

FIGURE 6. Overview of the mesh segmentation based on the Dijkstra
algorithm

FIGURE 7. Overview of two types of geodesic distance. CD(c;, c;) is
presented, and the equation of AD(c;, c,) is shown on the right side.

However, the repetitive component detection is a key step
to obtain the lightweight for shape. We present a voxel-based
repetitive-component approach for shape M and its compo-
nent set C = {x|c,}, x € [0, T — 1].The component set C can
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Algorithm 1 Dijkstra-Based Mesh Segmentation

Input: Shape S;

Output: Component Set C' = ¢, ¢}, ..., ¢,

Initial: Read Shape,S; = Ko, K1, ..., Kﬂ)m eM

step 1. Compute the barycenter vertex F of Shape S;

step 2. From Shape S;, obtain the nearest triangle T,ﬁ from
—

vertex F'
step 3. Obtain all triangle sets K}, that are connected with
triangle T}
step 4. While(K), is not NULL)
step 5. Region diffusion, obtain triangle ®
step6. K, «<— K, — 0O
step 7. if (®is NULL)
step 8. Update region center T}, obtain new triangles
set d,
anddNK, =¢
step 9. Ky «— K, +68,k <—k+1
step 10. if (6 is NULL)

step 11. Si<—Si—Kp,c;,<—K,p<—p+1
step 12. Build new region K, k <— 0
step 13.. Go to step 3

step 14. end if
step 15. end if

step 16.end While
step 17. c;, ~— K,

step 18. Output components set C' = {c}, ..., c}}

be acquired as shown Section 2. The repetitive-component
detection includes two main steps.

step 1: Veicj(i,j € [0, T — 1],i # j) the axis-aligned

bounding box (AABBs) of component c;, ¢; are calculated.
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FIGURE 8. Details of Dijkstra-based region diffusion.

If the AABBs of components are same, then two components
are possibly similar. Then, the operation will go to step 2.
Otherwise, the components are not totally the same or similar.

step 2: Voxelization operation is performed for the compo-
nents ¢;, ¢;. In this paper, we assume that the number of voxels
is 4096. Moreover, we assign a number to each voxel of the
component. The components can be denoted as followed.
For each voxelization object Vi = {mlvfn} of component c¢;,
the volume of each voxel box v/, can be represented as W/ .
Hence, the similarity relationship between the components
¢, ¢j can be computed as follows in (3):
20 MV V) 3)

N

where h(-) is a discrimination function and can be defined

as follows in (4)

D(ci, ¢) =

h(x,y>={0 voxr 4)
1 otherwise

where the variable N is a constant value that represents
the size of the voxels. In this paper, we set it equal 4096.
By experiments, we find that when the term & > 0.9, the two
components can be believed as the repetitive components.

step 3: Matrix transformation: this step includes the trans-
lation, scaling, and symmetry operations. The processing of
these operations on related repetition components can obtain
a transform matrix, by which we can restore the related
repetition components in Web3D. The alignment operation
can unify the components in the unit space and improve the
efficient of transformation. For component c;, the processing
of pose alignment includes translation alignment, scaling
alignment, and symmetry alignment.

The translation alignment equation is as follows in (5).

1 Xi+yi+ 2z
m=z ) ET—o— )
t;ieCi

where m is the reference value, and parameter E is the
area of the component C;. Moreover, the term ¢; is the i
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triangle of the component C;. The terms x;,y;, z; denote
the X-coordinates, Y-coordinates, and Z-coordinates, respec-
tively. In addition, the term E; is the area of triangle ;.

Next, the scaling alignment equation is as follows in (6).

1
§= ——— (6)
/S2 + 82+ S2
1
Sp = D Inl )
|V| veV

where S is a scaling matrix, and S, represents the scaling
value in X-axis.

In (7), the term |V| is the vertex number in the compo-
nent C;. Surely, the variable v, is the x coordinate of the
vertex v. Likewise, we can compute the scaling matrix in the
Y-axis and Z-axis.

Finally, the symmetry alignment equation is as follows
in (8).

F = diag(sign(Fy), sign(Fy), sign(F,)) ®)
F, = Zsign(vx)v)% )
veV

where F is the diagonal matrix, but a function diag generates
100

a symmetric tridiagonal matrix, i.e., diag(1,0,1) = [0 0 0|
001

In addition, the function sign(e) = 1 if @ > 0; otherwise,

sign(a) = 0.

With (9), we can obtain the symmetry value F, on the
X-axis. Likewise, the symmetry value Fy, F; can be com-
puted.

V. EXPERIMENTS

A. ENVIRONMENT

The framework presented in this paper has been implemented
with C++ and the executed program on PC under Windows
7 OS, Intel core I5-M580 processor, 4 G memory increase.
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In this section, all results are obtained in this machine.
Html5/WebGL technology has been used to implement visu-
alization on a webpage port.

B. EVALUATION OF COMPRESSION

To evaluate the result of the mesh compression, we use the
criteria of Hausdorff distance. Specially, the Hausdorff dis-
tance consists of the max Hausdorff distance dyssx, the mean
Hausdorff distance dyran, and the RMS Hausdorff distance
drys - Furthermore, we use (10) (11) (12) to perform the error
criteria between the original mesh and the processed mesh.
In other words, the integrity of mesh is not almost changed.

| duax (X, Y) — dyax (X, X) |

Fuax = dyax (X, X) (10
| d X,Y)—d X, X) |
Eypay = —2AY . (XM?;N (1D
| drms (X, Y) — drus(X, X) |
Erys = (12)
RMS drus(X, X)

where X and Y represent the original mesh and processed
mesh, respectively. We also compare the error relation
between ours and that of Wang ef al. [3] to demonstrate that
our method better preserves the integrity of the mesh. The
result is shown in Figure 9.

FIGURE 9. Compared results on Hausdorff distance criterion between our
method and WANG's method [3].

To verify the performance of the compression method over
the large skeleton models, we test some skeleton models,
finding that the result is superior and that the compressed
rate of approach 3%; the decompressed time is notably
short in the web browser port. These results totally sat-
isfy our requirements. The detailed information is shown in
Table 1.

C. EVALUATION OF SEGMENTATION
In this section, we will evaluate our proposed mesh segmen-
tation based on the Dijkstra approach.

A benchmark for 3D mesh segmentation was proposed by
Chen et al. [21], which described a benchmark for the eval-
uation of 3D mesh segmentation algorithms. The benchmark
comprises a dataset with 4300 manually generated segmenta-
tions for 380 surface meshes of 19 different object categories.
Five different indicators were proposed by Chen et al.[21],
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TABLE 1. Table 1. Performance of the compression method in a Web3D
environment.

Skeleton| original After Compressed | rate Decompressed
size size time

Vertebra| ¢7 1M 221M 3.2% 2559ms

Buttocks 19 4M | 0.704M 3.6% | 1335ms

Sternum| 55 7 0.9M 35% | 909ms

which were cut discrepancy (CD), Hamming distance (HD),
Rand index (RI), global consistency error (GCE), and
local consistency error (LCE). The other state-of-the art
approaches include K-means (Shlafman et al. [22]), graph
cuts (Katz and Tal [23]), random walks (Lai et al. [24]),
and core extraction (Katz et al. [25]). The comparison
result in the above indicators will be shown in Figure 10.
Hence, it is not difficult to find that our proposed
method is more approaching the benchmark than the others
methods.

FIGURE 10. Comparison results in five different indicators.

D. RESULTS OF LIGHTWEIGHT FOR SHAPE

We perform the related lightweight operation for shape.
As mentioned, the lightweight for shape includes two parts:
repetitive component detection of the shape and repetitive
component transformation. In fact, the repetitive component
detection is a key step. Therefore, the results processed by
repetitive component detection of some models are shown
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FIGURE 11. An example of lightweight for shape.

in Figure 11. The size of the model will decrease for the
lightweight for shape.

E. RESULTS OF THE FRAMEWORK

In this section, our framework is compared with the method
of directly loading mesh and Cai ef al.’s method [32] in
terms of the time consumption on the browser. The result is
shown in Figure 12, where the time consumption of directly
loading mesh is large, and our method is superior. In addition,
an example is shown how the mesh displays on web browser
using our framework, which is shown in Figure 13.

FIGURE 12. Comparison results between our framework and others.

VI. CONCLUSIONS

We propose a framework to finish the task of medical skeleton
models visualization on web browsers. The framework is
based on mesh segmentation and is lightweight for shape
and compression. Above all, in the data transmission stage,
a component of the mesh is compressed binary bit data,
which can realize better transmission on the web browser.
In addition, to improve the efficiency of rendering mesh
data, we must split the entire dense mesh into many indi-
vidual components. Then, the repetitive-component detection
operation and repetitive-component transformation are con-
ducted to realize the lightweight for shape. In summary,
the experiment result shows that our framework is feasible
and superior.

FIGURE 13. Processed result with our proposed framework on the skeleton model. From top to bottom, from left to right, the skeleton model is
progressively displayed on the web browser. In the upper left, the 1st components of the skeleton model are first rendered. In the bottom left, the matrix

transformation is conducted to render the task symmetry components.
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