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ABSTRACT This paper presents a high-efficiency CMOS rectifier based on an improved dynamic threshold
reduction technique (DTR). The proposed DTR consists of a clamper circuit that biases the gates of pMOS
diode switches through a capacitor and diode-connected pMOS transistor. The clamper is used to insert a
negative dc level to the input RF signal; therefore, more negative RF signal can be obtained to bias the gates
of the main rectifying pMOS devices during its conduction phase. This mechanism reduces the threshold
voltage of the main pMOS transistors and increases their sensitivity to the RF input signal. The proposed
rectifier is implemented in a 0.18-µm CMOS technology and tested. The measurement shows a peak power
conversion efficiency of 86% and an output voltage of 0.52 V at an input power of −16.5 dBm and an input
frequency of 402 MHz. The core area of chip excluding measurement pads is 0.024 mm2.

INDEX TERMS Clamper, CMOS technology, dynamic threshold reduction, power conversion efficiency,
rectifier.

I. INTRODUCTION
The applications of wireless power transfer as RFIDs,
biomedical devices, and wireless sensor networks have
greatly attracted the attention from academia and industry [1].
There are two common types of wireless power techniques,
radiated (far-field technique) [2], [3] and non-radiated (near-
field technique) [4], [5]. In far-field wireless power transfer,
the power is transferred in longer distances through electro-
magnetic radiation like a laser beam or microwaves, such
as wireless powered drone aircraft and solar power satellite.
Near-field wireless power transfer (WPT) systems become
popular as they are safe and provide high efficiency for short
and mid-range applications. Near-field WPT systems work
through transferring power either by employing inductive
coupling coils, or capacitive coupling electrodes through
a magnetic field, or electric field, respectively, for short

distance. The near-field type applications are widely found in
our daily life, such as wireless toothbrush charger, wirelessly
charged cars, implantable medical devices like implanted
hearing-aid, heart pacemakers, and blood flow monitor, and
radio frequency identification (RFID) tags. RF energy har-
vesting is one of the conventional methods of wireless power
extraction. A rectifier is the main block in the RF energy
harvesting system that converts a received RF energy into
DC power. Therefore, various types of rectifier topologies in
Complementary Metal-Oxide Semiconductor (CMOS) tech-
nology have been proposed [1], [6]–[24].

The rectifier’s power conversion efficiency (PCE) at low
input power is a dominant factor of the RF energy harvesting
systems [7]. As the RF energy available in the environment
is very weak, designing a rectifier of high PCE at very
low input power is a major challenge in CMOS technology
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due to the power dissipated because of the threshold volt-
age [6], [7]. Different schemes were proposed to reduce the
effect of threshold voltage required to turn on the rectify-
ing transistors [6]–[18]. Some of these techniques control
the threshold voltage using the body effect [8], [10]. Other
techniques compensate the threshold voltage by applying an
external driving circuit to the gate of the switching transis-
tors [6], [7], [12]–[17].

The objective of this research is to improve the sensitivity,
and the PCE of the CMOS rectifier to be suitable for ultra-low
power requirements needed for applications such as biomed-
ical electronic devices [19], and RFIDs. This goal is achieved
by applying a dynamic threshold reduction (DTR) technique
by gate biasing of the PMOS switches with an external clam-
per circuit. This clamper circuit is biased from the RF signal,
then generates the RF signal shifted by a negative DC voltage
that used to turn-on the main rectifying PMOS switches. This
technique mitigates the threshold voltage effect of the PMOS
rectifying devices. Hence, the dynamic power dissipated by
the rectifying devices during their on-state is decreased. Con-
sequently, the rectifier can operate at lower input power with
improved PCE and higher voltage conversion ratio (VCR).

Another approach using bootstrapping circuit technique to
reduce the threshold voltage of rectifying PMOS transistors
was proposed [12]. In this technique, the output DC voltage
is used to reduce the threshold voltage effect of rectify-
ing PMOS transistors where the bootstrapping capacitor is
charged up from the DC output voltage via another diode-
connected transistor. The charges stored on this bootstrapping
capacitor are then simultaneously applied to the gate of the
main rectifying PMOS transistor. In contrast to the proposed
DTR rectifier; the bootstrapping capacitor is charged up
directly from the RF input power which decreased to more
negative value by a clamper circuit and used to bias the
rectifying PMOS switches. This technique [12] requires high
voltage, and much higher RF input power than the proposed
rectifier. Besides, the bootstrapping technique is restricted to
low operating frequencies up to 60 MHz, and requires a large
die area about 25 times of this work.

This paper is organized as follows: Section II describes
the proposed full-wave rectifier design. Section III shows the
proposed device’s measurement setup and results. Finally,
conclusions are presented in Section IV.

II. PROPOSED RECTIFIER DESIGN
In this work, we utilize a threshold reduction technique that
alleviates the impact of turning on the PMOS transistors of
the conventional differential drive rectifier (DDR) [20] with
low input power to achieve high efficiency and sensitivity.
The basic concept of the proposed PMOS rectifier depends
on using a bootstrapping clamper circuit to bias the gates
of PMOS rectifying devices. This clamper circuit consists of
a capacitor and diode-connected PMOS transistor as shown
in Fig. 1. The clamper circuit givesmore negative gate voltage
for each PMOS switch during the on-state, and a positive
gate voltage during the off-state. In consequence, the rectifier

FIGURE 1. Schematic of the proposed rectifier based on PMOS transistors.

turns-on at lower input power than the conventional one.
The operation principle of the proposed rectifier was devel-
oped in [21]. In this paper, the design challenges of the
proposed bootstrapping circuit in [21] are treated. The pulled
current from the RF generator passing through the clamper
circuit should be minimum to enable the rectifier working
almost at the total input power. Hence, the equivalent on-
state resistance Ron of the MOS device used in the clamper
circuit should be large. This is possible by utilizing diode-
connected PMOS type transistor, which has larger on-state
resistance than that of the NMOS type. The rectifier operation
description during one period of the input voltage is shown
in Fig. 2.

FIGURE 2. Basic operation of the proposed rectifier: (a) During the
positive half cycle and (b) During the negative half cycle.

The coupling capacitor Cc1 will charge during the negative
half cycle of the input voltage to VCc1 as given in (1).

VCc1 = Vp − VDS(Mn1) (1)

The bootstrapping capacitor Cp2 will charge in the on-state
of the diode transistor M2, at the positive half cycle of the
input voltage to VCp2 as indicated in (2).

VCp2 = 2Vp − VDS(Mn1) − VSD(M2) (2)
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where, Vp is the differential input voltage, VDS(Mn1) and
VSD(M2) are the drain to source voltage of the rectifying
transistor Mn1, and the source to drain voltage of the auxiliary
transistor M2 respectively. The gate bias voltages (VGp2,
VGn2) of PMOS transistor Mp2 and NMOS transistor Mn2
of the conventional rectifier [20], and the proposed rectifier
are compared over one period of the input signal voltage.
The gate bias voltages of PMOS transistor Mp2 and NMOS
transistor Mn2 of the conventional rectifier [20], are equal as
shown by (3) for the positive half cycle, and by (4) for the
negative half cycle of the input voltage respectively.

When, Vp > 0, Mp2 is off, and Mn2 is on:

VGn2 = VGp2 = 2Vp − VDS(Mn1) (3)

When, Vp < 0, Mp2 is on, and Mn2 is off:

VGn2 = VGp2 = −VDS(Mn1) (4)

The gate voltages of the transistors Mp2 and Mn2 of the
proposed rectifier are illustrated in (5), and in (6) respec-
tively in the positive half cycle. It is notable that the NMOS
transistor Mn2 conducts with gate bias voltage higher than its
threshold value. At the same time, the PMOS transistor Mp2
is off because of its positive gate voltage.

When, Vp > 0, Mp2 is off, and Mn2 is on:

VGp2 = Vp + VCc1 − VCp2
VGp2 = VSD(M2) (5)

VGn2 = Vp + VCc1
VGn2 = 2Vp − VDS(Mn1) (6)

The gate bias voltages of the same transistors Mp2 andMn2
are analyzed in the negative half cycle of the input voltage as
indicated in (7) and (8) respectively.

When, Vp < 0, Mp2 is on, and Mn2 is off:

VGp2 = −Vp + VCc1 − VCp2
VGp2 = −2Vp + VDS(M2) (7)

VGn2 = −Vp + VCc1
VGn2 = −VDS(Mn1) (8)

Fig. 3 presents the simulation results of the proposed rectifier
performed in the settling time, which show the variation of
gate voltages of the two rectifying transistors Mn2 and Mp2
with time.

It is clear that the gate bias voltage of the PMOS transistor
Mp2 of the proposed rectifier becomes more negative than its
corresponding value of the conventional rectifier [20], and
hence conducts with a lower input voltage. Consequently,
a higher PCE at low RF input power can be obtained by the
proposed rectifier.

The DC output voltage (Vout) achieved by the proposed
rectifier is given by (9).

Vout = Vp + VCc1 − VSD(Mp1)

Vout = 2Vp − VDS(Mn1) − VSD(Mp1) (9)

FIGURE 3. Gate voltages of Mn2 and Mp2 of the proposed PMOS rectifier.

The other half circuit (consisting of Cc2, Cp1, M1, Mn1,
and Mp1) will operate in the same manner and gives the
same value of the output voltage. The body terminals of all
transistors are connected to the source terminals in order to
avoid the bulk effect.

III. MEASUREMENT AND DISCUSSION
A. CHIP IMPLEMENTATION AND MEASUREMENT SETUP
The proposed rectifier is implemented and fabricated in
0.18 µm CMOS technology. Fig. 4 shows the microphoto-
graph of the fabricated chip and enlarged view of the same
chip excluding the pads on the right side. The rectifier occu-
pies a core area of 327 µm× 74 µm including the bootstrap-
ping capacitors. The design area with the input and output
pads is 420 µm × 460 µm. Transistor sizes W/L (µm/µm)
are 60/0.18 for (Mn1, Mn2), 160/0.18 for (Mp1, Mp2), and
1.5/0.45 for (M1, M2). Capacitors Cp1, Cp2, CL are used with
2 pF respectively.

FIGURE 4. Microphotograph of the fabricated chip and enlarged view
without test pads on the right side.

The RF measurements are carried out using Agilent’s
vector network analyzer (N5222A) with a single tone
of 402 MHz frequency as one of medical implantable com-
munication service band (MICS) at sweeping input power
levels and a digital voltmeter to record the output DC volt-
age. Cable calibration has been done to measure the input
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reflection coefficient |S11| under test. The net input power
levels have been calculated after subtracting the reflection
and transmission losses.

An off-chip parallel resistor and capacitor load is con-
nected to the DC output terminal to emulate the DC output
voltage. The measurement setup is shown in Fig. 5. A Mini-
Circuits’ coaxial RF power splitter/combiner (2 Way-180◦

50�, 50 to 1000 MHz) is utilized to convert the RF single-
ended signal into a differential signal. The coupling capac-
itors (Cc1, Cc2) are placed off chip, and each has a value
of 21 pF.

FIGURE 5. (a) Photograph of the RF-measurement setup, and
(b) Diagram of the measurement test bench.

B. MEASUREMENT RESULTS
The performance of the proposed rectifier is taken in terms of
the PCE and the output DC voltage versus the RF input power
in dBm. The rectifier was driven by a 402 MHz single tone,
while loaded with a 10 k� load resistor which is an optimal
load for this design. The PCE of the rectifier is measured
after excluding the reflection and transmission losses using
the following equations (10) to (13) [7], [22], [23].

PCE =
Pout
PRect

× 100 (10)

Pout =
V 2
out

RL
(11)

PSplitter(watt) = PS(watt) × (1− |S11|2) (12)

PRect(dBm) = PSplitter(dBm) − ILdB (13)

Where Pout is the DC output power of the rectifier. Vout is
the measured DC output voltage. PRect is actual input power
delivered to the rectifier. PS is the single-ended RF power
output from the VNA port. Psplitter is the actual input power
of the splitter. IL is the insertion loss due to the connections
from the signal source to the rectifier. The difference of
performance between the proposed rectifier and the NMOS
rectifier [21] is illustrated in Fig. 6. The PMOS rectifier
achieved a measured peak PCE of 86%; while, the maximum
PCE of NMOS rectifier [21] was 83%.

FIGURE 6. Measurement results of the two proposed rectifiers at
402 MHz. (a) The PCE, and (b) The DC output voltage.

The PCE of the NMOS rectifier is decreased and moved
to the left at lower input power than the PMOS rectifier.
This is because the carrier mobility difference between the
NMOS and PMOS diode-connected transistors. Therefore,
the equivalent on resistance of the external tansistors (M1,
M2) of the PMOS rectifier is higher than that of the NMOS
rectifier. Therefore, the bootstrapped circuit built by PMOS
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transistors will draw small current and low power which
makes the input power losses smaller and the PCE higher.

The performance of the proposed PMOS rectifier
is also measured at 953 MHz input signal where
ultra-high frequency (UHF) RFIDs utilize the UHF band
(860–960) MHz [20], with 10 k� load as shown in Fig. 7.
The measured PCE is computed 70% at RF input power of
−16.8 dBm.

FIGURE 7. Measurement results of the proposed rectifier at 953 MHz
(a) PCE, and (b) DC output voltage.

All rectifiers are non-linear system. The input impedance
of a rectifier circuit is a function of input power and input
signal frequency. On the other hand, the output impedance
of input signal source (at a measurement system) is almost
a constant. Thus, the peak PEC of a rectifier depends on
the input power and input signal frequency. As the input
frequency increases, the parasitic resistance caused by all the
metal paths will also increase due to the skin effect. This leads
the phenomenon that the peak PEC of the proposed rectifier
decreased with increasing the input signal frequency.

The basic circuit of the proposed PMOS rectifier with-
out DTR is similar to the previously proposed CMOS

rectifier [20], hence the PCE of the proposed rectifier with
DTR technique is compared to the conventional rectifier [20]
without DTR technique at 402 MHz and 953 MHz as shown
in Fig. 8. As we did not fabricate the proposed rectifier
without DTR, the comparison is made with simulation results
only. The proposed DTR rectifier achieves 88% at −15 dBm
and 73% at −14.8 dBm at 402 MHz and 953 MHz respec-
tively. While the rectifier [20] without DTR results 72%
at −12.55 dBm and 68% at −12.5 dBm at 402 MHz and
953 MHz respectively. However, the measured PCE of pro-
posed rectifier is 70% at 953 MHz which is 16% lesser than
that of the same circuit at 402 MHz but still demonstrates the
superiority of the proposed DTR even at 953 MHz compared
to the rectifier without DTR [20].

FIGURE 8. PCE comparison between the proposed rectifier (with DTR)
and the conventional rectifier (without the DTR).

To discuss the performance of the fabricated rectifier com-
pared to other published designs, a figure of merit (FoM) is
proposed as given by (14). It can exactly evaluate various
rectifiers’ performance in different frequency bands by fre-
quency normalization to a normalized value (f0), for instance,
f0 = 5MHz. Higher FoM implies better rectifier performance
at lower RF input power and minimum number of stages (N).

FoM =
PCE × VCR

N
log10

(
f
f0

)
(14)

VCR is the voltage conversion ratio, which defined as the
ratio of the average output voltage to the peak AC input
voltage [24].

Performance summary and comparison with other designs
are shown in Table 1. It is noted that the proposed rectifier
achieved higher FoM compared to other published state-of-
the-art works.

The design presented in [18] has good PCE because it
relys on two techniques to improve the rectifier performance,
one is ‘‘Threshold voltage compensation’’, and the other is
‘‘Leakage current reduction’’. Even though, it doesn’t provide
any experimental proof and it has also large numbers of MOS
transistors so that the die area is almost three times of our
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TABLE 1. Performance summary and comparison.

proposed circuit. Furthermore, it also requires very high RF
input power to operate satisfactory.

IV. CONCLUSIONS
An improved dynamic threshold reduction technique to
improve the PCE of a full-wave rectifier topology at very
low input RF power using PMOS transistors is proposed. The
proposed rectifier has been fabricated using 0.18 µm CMOS
technology. The measurement results shows a significant
enhancement in PCE at 402 MHz and 953 MHz input fre-
quency, it achieved PCE 86% and 70% at 402 MHz and 953
MHz input frequency respectively. Moreover, the core area
of chip excluding pads is 0.024 mm2, which is almost 50%
smaller than that of the previously proposed rectifier [17].
The FoM of the proposed rectifier is 1.327 which is the high-
est among the rectifiers so far proposed in CMOS technology.
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