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ABSTRACT This paper studies the high-performance tracking control of electro-hydraulic systems with
consideration of both mismatched and matched modeling uncertainties. A continuous integral robust control
strategy is proposed based on the backstepping design framework. By introducing a novel error transfor-
mation, the mismatched modeling uncertainty can be transmitted to the control input channel, and then,
the constructed integral robust structure in the proposed controller can handle it together with the matched
modeling uncertainty. The acceleration signal that usually suffers heavy noise contamination is not required
in the controller, and the final control input is continuously differentiable, which is benefit for tracking
performance improvement and practical controller implementation. The closed-loop system stability is
analyzed via the Lyapunov theory, and it reveals that the proposed controller achieves an asymptotic tracking
performance with zero steady-state error in the presence of various modeling uncertainties. Comparative
experiments are performed to demonstrate the effectiveness of the proposed control strategy.

INDEX TERMS Electro-hydraulic system, modeling uncertainty, integral robust control, asymptotic
tracking.

I. INTRODUCTION
Electro-hydraulic systems have been extensively employed
in modern industry since they have small size-to-power ratios
and large torque/force output capabilities [1]. However, high-
performance control design for electro-hydraulic systems
has always been a challenging issue since the dynamics of
hydraulic systems are highly nonlinear. Moreover, hydraulic
systems are typically subjected to various modeling uncer-
tainties which can be classified as parametric uncertainties
(e.g., uncertain viscous friction coefficient and effective oil
bulk modulus) and uncertain nonlinearities (e.g., unmodeled
nonlinear friction effects and external disturbances) [2], [3].
Therefore, developing high-performance control strategy for
electro-hydraulic systems with various modeling uncertain-
ties has attracted wide attention.

To deal with the parametric uncertainties in electro-
hydraulic systems, numerous of adaptive controllers have
been developed, such as [4]–[7]. However, performance
degradation may be caused in these adaptive controllers when

facing large unmodeled disturbances. Sliding mode control
methods have also been developed to attenuate various mod-
eling uncertainties for electro-hydraulic systems due to their
strong robustness [8], [9]. However, the chattering caused
by the control action of sliding mode control might excite
the neglected high-frequency dynamics and result in system
instability. Although some modifications can be made to the
traditional sliding mode control to avoid control chattering,
such as using saturation function to replace the discontinuous
signum function [10], the excellent asymptotic stability result
will be lost. In [3], an adaptive robust control (ARC) approach
was proposed by Yao for tracking control of an asymmetric
hydraulic cylinder, which aims to cope with the parametric
uncertainties and uncertain nonlinearities together. Unlike
the traditional adaptive control, a projection type adaptive
law was synthesized which can ensure the parameter esti-
mations are always bounded and then a deterministic nonlin-
ear robust control law was synthesized to ensure prescribed
transient and steady-state tracking performance. Adaptive
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robust control has also been widely applied to lots of other
practical plants, such as linear motors [11], [12], active sus-
pensions [13], [14], and industrial biaxial gantries [15], [16].
In addition, some other control approaches have been devel-
oped by using various disturbance observers to estimate
the modeling uncertainties and then to achieve performance
improvement, such as extended state observer based con-
trol [17], high-gain disturbance observer based control [18],
and time delay estimation based control [19], [20].

It can be noted that all abovementioned control schemes
can only ensure the trajectory tracking error to be bounded
when considering both parametric uncertainties and uncertain
nonlinearities. To obtain excellent asymptotic tracking per-
formance with a continuous control law, a nonlinear robust
control strategy called the robust integral of the sign of the
error (RISE) was proposed in [21]. It has been successfully
employed to cope with the tracking control problem of motor
servo systems [22], [23] quadrotor unmanned aerial vehicle
(UAV) [24], helicopter [25], as well as friction identifica-
tion issue of Euler-Lagrange system [26]. Some adaptive
version RISE control schemes have also been researched to
reduce the control effort and achieve tracking performance
improvement. For instance, desired-trajectory-based adap-
tive RISE controllers were designed for electromechanical
servo system [27] and hydraulic system [28] modeled in a
chain of integrators form. In [29], adaptive RISE control
based on immersion and invariance (I&I) concept was stud-
ied for tracking control of a quadrotor UAV. However, all
these RISE-based control methods were only applicable for
systems with matched modeling uncertainties, i.e., the uncer-
tainties appear in the control input channel. Generally, prac-
tical electro-hydraulic systems have both mismatched and
matched uncertainties. The so-called mismatched uncertain-
ties refer to those uncertainties entering the system through
different channels from that of the control input. In [30],
by using an experimental internal leakage model to precisely
describe the leakage characteristics, the modeling errors of
the pressure dynamics were neglected and a RISE-based
adaptive controller was proposed to achieve high-accuracy
tracking for hydraulic systems. The RISE feedback term
was utilized to accommodate for the smooth mismatched
modeling uncertainties and adaptive laws were synthesized to
handle the matched parametric uncertainties. It is worth not-
ing that the acceleration signal which usually suffers heavy
measurement noise was required in the controller in [30] and
the final control input is discontinuous due to the differentia-
tion operation of the RISE feedback law, which may lead to
degraded tracking performance. Though a modified signum
function was used to approximate the standard signum func-
tion in the experiment, the rigor of the theoretical proof
was destroyed and asymptotic tracking performance will no
longer be guaranteed.

In this paper, a high-performance-oriented continuous
integral robust controller is proposed for an electro-hydraulic
system with both mismatched and matched modeling uncer-
tainties. Based on the backstepping design framework,

FIGURE 1. The schematic diagram of electro-hydraulic system.

the mismatched uncertainties can be transmitted to the con-
trol input channel and handled together with the matched
uncertainties by a novel integral robust structure. Due to
the separation of the derivative of the virtual control law,
the heavy noise-contaminated acceleration signal is not used
in the designed controller. In addition, the final control input
is continuously differentiable, which indicates control chat-
tering can be avoided and improved tracking performance
will be obtained. The proposed continuous integral robust
controller theoretically guarantees an asymptotic tracking
performance with zero steady-state tracking error, which
is vital for high-performance tracking control of practical
electro-hydraulic systems. The high-performance nature of
the proposed control strategy is demonstrated by comparing
it with the other four existing control approaches in the exper-
iments.

The remaining of this paper is structured as follows.
Section II shows the nonlinear mathematical model of the
electro-hydraulic system. The detailed design of the proposed
continuous integral robust controller and its main theoretical
results are presented in Section III. Experimental validation
results are obtained in Section IV. Section V gives the con-
clusions of this paper.

II. NONLINEAR MODEL OF ELECTRO-HYDRAULIC
SYSTEM
The schematic diagram of the studied electro-hydraulic sys-
tem is shown in Fig. 1. The dynamics equation of the load can
be given by

mẍp = (P1 − P2)A− Ff (ẋp)+ Fd (t) (1)

where m is the total mass of the piston and the load; xp is
the displacement of the load; PL = P1 – P2 denotes the load
pressure, in which P1 and P2 are pressures of the forward
chamber and return chamber, respectively; A is the pressure
area of the piston; Ff represents the modeled nonlinear fric-
tions; and Fd denotes the mismatched modeling uncertainty
including unmodeled frictions, parameter deviations, etc.
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The flow continuity equations of the two chambers can be
given by [1], [30]

V1
βe
Ṗ1 = −Aẋp − CtPL + qe1(t)+ Q1

V2
βe
Ṗ2 = Aẋp + CtPL − qe2(t)− Q2 (2)

where V1 = V01Axp, V2 = V02−Axp are the control volumes
of the cylinder chambers, in which V01 and V02 are the initial
control volumes; βe is the effective oil bulk modulus; Ct is
the internal leakage coefficient of the cylinder; qe1(t) and
qe2(t) are modeling errors caused by leakage characteristics
and unmodeled valve effects such as valve dead-zone [33];
Q1 is the supplied flow rate to the forward chamber, andQ2 is
the return flow rate of the return chamber. The flow equation
of the valve for Q1 and Q2 can be given by [1], [30]:

Q1 = kqxv[s(xv)
√
Ps − P1 + s(−xv)

√
P1 − Pr ]

Q2 = kqxv[s(xv)
√
P2 − Pr + s(−xv)

√
Ps − P2] (3)

where kq = Cdw
√
2/ρ is the flow gain of the valve; Ps is the

supply pressure and Pr is the return pressure of the fluid; and

s(xv) =

{
1, if xv ≥ 0
0, if xv < 0

(4)

Noting that the servo valve used in the studied hydraulic
system is of high-response, the valve dynamics can be ignored
which means it can be approximated as a proportional ele-
ment, i.e, xv = kiu, where xv is the spool position, u is the
control input voltage applied to the servo valve, and ki is a
positive electrical gain. Hence, the flow equation of the valve
can be rewritten as

Q1 = ktu[s(u)
√
Ps − P1 + s(−u)

√
P1 − Pr ]

Q2 = ktu[s(u)
√
P2 − Pr + s(−u)

√
Ps − P2] (5)

where kt = kqki is the total flow gain.

III. CONTINUOUS INTEGRAL ROBUST
CONTROLLER DESIGN
A. DESIGN MODEL AND ISSUES TO BE ADDRESSED
There are lots of friction models to describe the complex
nonlinear friction effects, such as modified LuGre model [4]
and continuously differentiable static friction model [31].
However, to reflect the strong robustness of the proposed
control strategy against modeling uncertainties, the modeled
friction termFf is simply considered as viscous friction in this
paper, i.e., Ff = Bẋp, in which B is the viscous friction coef-
ficient, other unmodeled frictions such as Coulomb friction
and Stribeck effect are lumped into the modeling uncertainty
term Fd . In addition, since the physical parameters of the
hydraulic system such as B, βe, Ct can be identified offline
in practical applications, their nominal values are utilized in
the control design and the deviations between the nominal
and true values are also treated as modeling uncertainties.

Define the state variables as x = [x1, x2, x3]T = [xp, ẋp,
APL /m]T, thus the electro-hydraulic system can be expressed
in a state space form as

ẋ1 = x2

ẋ2 = x3 − bx2 + D(t)

ẋ3 = g1(u, x3)u− g2(x2)− g3(x3)+ Q(t) (6)

where b = B/m, D(t) = Fd /m, g2(x2) = βeA2(1/V1 +
1/V2)x2/m, g3(x3) = βeCt (1/V1 + 1/V2)x3, Q(t) =
βeA(qe1/V1 + qe2/V2)/m, and g1(u, x3) = Aβekt (χ1/V1 +
χ2/V2)/m, in which

χ1 = s(u)
√
Ps − P1 + s(−u)

√
P1 − Pr

χ2 = s(u)
√
P2 − Pr + s(−u)

√
Ps − P2 (7)

The goal is to synthesize a continuous control input u such
that the position of the load x1 can track any motion trajectory
x1d (t) as closely as possible in the presence of both mis-
matched modeling uncertainty D(t) and matched modeling
uncertainty Q(t). Before the controller design, the following
assumptions are made.
Assumption 1: The desired motion trajectory x1d (t) is

bounded and continuously differentiable up to third order; the
studied hydraulic system is working under normal conditions
such that the following property is satisfied, i.e., 0 < Pr <
P1 < Ps, 0 < Pr < P2 < Ps [4], [5].
Assumption 2: The modeling uncertainties D(t) and Q(t)

are smooth enough and bounded such that the following
defined new disturbance 1(t) has bounded time derivatives
up to third order, i.e.,

|1̇(t)| ≤ δ1, |1̈(t)| ≤ δ2, |1(t)| ≤ δ3 (8)

where δ1, δ2 and δ3 are known positive constants, and

1(t) = Ḋ(t)+ (k3 −
∂α2

∂x2
)D(t)+ Q(t) (9)

in which k3 >0 and α2 are control gain and virtual control
law, respectively. The specific expression of α2 will be given
subsequently.
Remark 1: The assumption that P1 and P2 are bounded

by Pr and Ps is very common in hydraulic control area.
Based on this assumption, it is obviously that the state
x3 = APL /m is naturally bounded. Since 1/(s + b) is a
stable transfer function, it can be inferred from the sec-
ond equation of (6) that x2 is also bounded, and then the
boundedness of ẋ2 can also be concluded. This specific prop-
erty of electro-hydraulic system will be used in the stability
analysis.

B. CONTROLLER DESIGN
The proposed continuous integral robust controller design
parallels the backstepping design procedure [32] due to
the mismatched modeling uncertainty. The detailed control
design procedure is given as follows.
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Step 1: Let a set of error variables be defined as

z2 = ż1 + k1z1 = x2 − α1, α1 = ẋ1d − k1z1
z3 = x3 − α2 (10)

where z1 = x1−x1d(t) is the position tracking error; k1 > 0 is
a feedback gain to be tuned; α1 is the virtual control function
for x2; α2 is the virtual control function for x3 which will be
synthesized later.

Noting (6) and (10), the time derivative of z2 can be given
by

ż2 = ẋ2 − α̇1
= z3 + α2 − bx2 + D(t)− α̇1 (11)

Based on (11), the virtual control function α2 can be
designed as

α2 = bx2 + α̇1 − k2z2 (12)

where k2 > 0 is a feedback gain to be tuned.
Substituting (12) into (11) yields

ż2 = z3 − k2z2 + D(t) (13)

Step 2: Noting (6) and (10), the time derivative of z3 can be
shown as

ż3 = ẋ3 − α̇2
= g1(u, x3)u− g2(x2)− g3(x3)+ Q(t)− α̇2 (14)

Since α̇2 has unknown part due to themismatched uncertainty
D(t), it is grouped into the following two parts

α̇2(t, x1, x2) = α̇2c + α̇2u,

α̇2c =
∂α2

∂t
+
∂α2

∂x1
x2 +

∂α2

∂x2
(x3 − bx2),

α̇2u =
∂α2

∂x2
D(t). (15)

where α̇2c denotes the part of α̇2 with known information
and can be used for feedforward compensation, α̇2u is the
unknown part because of the mismatched modeling uncer-
tainty.

Hence, based on (14) and (15), the final continuous integral
robust control law is synthesized as

u = ua + us, us = us1 + us2,

ua =
1
g1

(g2 + g3 + α̇2c),

us1 = −
1
g1
k3z3 (16)

where k3 is a positive feedback control gain, ua is the
model-based feedforward compensation term to achieve
tracking performance improvement, and us is the robust con-
trol law in which us1 is a linear feedback term to stabilize the
nominal hydraulic system and us2 is a nonlinear robust term
to overcome the modeling uncertainty.

Applying the designed control input (16) to (14),
the dynamic of z3 can be given by

ż3 = −k3z3 + g1us2 −
∂α2

∂x2
D(t)+ Q(t) (17)

To handle the modeling uncertainty, the nonlinear robust
control law us2 is designed as the following integral robust
structure

us2 = −
1
g1
{krz2 − krz2(0)+

∫ t

0
[krk2z2 + βsign(z2)]dτ }

(18)

where kr and β are positive control gains, sign (z2) is the
standard signum function with respect to z2.
Remark 2: With the separation in (15), the final con-

trol input does not use the acceleration signal ẋ2 which
is accompanied by heavy measurement noise. In addition,
the proposed control law (16) is continuous. However,
the acceleration signal is needed in the RISE control design
in [30], and the final control input is discontinuous due to
the signum function. Hence, in comparison to the controller
in [30], the proposed continuous integral robust controller
is more suitable for practical implementation and improved
tracking performance can be expected.

C. MAIN RESULTS
Similar to [34], we introduce a new error variable as

ς = z3 + D(t) (19)

where ς is an auxiliary signal to help the stability analysis,
and not utilized in control. From (13), it can be inferred that
if the controller (16) can make ς go to 0, then z2 and z1 will
go to 0.

Noting (17) and (18), we have

ς̇ = ż3 + Ḋ(t)

= −k3z3 − krz2 + krz2(0)−
∫ t

0
[krk2z2 + βsign(z2)]dτ

−
∂α2

∂x2
D(t)+ Q(t)+ Ḋ(t)

= −k3ς − krz2 + krz2(0)

−

∫ t

0
[krk2z2 + βsign(z2)]dτ +1(t) (20)

It can be known from (13) that

ż2 = −k2z2 + ς (21)

Using (21), (20) can be further written as

ς̇ = −k3ς −
∫ t

0
[krς + βsign(z2)]dτ +1(t) (22)

Define an auxiliary variable 9 as

9 = 1(t)−
∫ t

0
[krς + βsign(z2)]dτ (23)

then (22) can be rewritten as

ς̇ = −k3ς +9 (24)
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The following lemma is first introduced since it will be
invoked in the stability analysis.
Lemma 1: Let an auxiliary function L(t) be defined as

L(t) =
1

k3kr
9[1̇(t)− βsign(z2)] (25)

If the tuned gain β satisfying the following condition:

β ≥ δ1 +
δ3 + (k2 + k3)δ2

k2k3
(26)

then the following function R(t) is always positive,

R(t) = R(0)−
∫ t

0
L(τ )dτ (27)

where

R(0) =
2

k3kr
max{|ż2|(δ1 + β)

+ |z2|[δ2 + (k2 + k3)(δ1 + β)]} (28)

Proof: See Appendix A.
Theorem 1: If the gain β is selected to satisfy the condi-

tion (26) and the feedback gains k1, k2 and k3 are chosen
large enough such that the matrix3 defined below is positive
definite

3 =


k1 −

1
2

0

−
1
2

k2 −
1
2

0 −
1
2

k3

 (29)

then all the closed-loop system signals can be guaranteed
to be bounded by the proposed continuous integral robust
controller (16), and asymptotic output tracking can also be
achieved, i.e., z1→0 as t →∞.

Proof: See Appendix B.
Remark 3: The theoretical results in Theorem 1 indicate

that asymptotic output tracking performance can be obtained
for electro-hydraulic systems in the presence of both mis-
matched and matched modeling uncertainties with the pro-
posed continuous integral robust controller. It is of great sig-
nificance for achieving high-performance tracking control of
electro-hydraulic systems since various modeling uncertain-
ties seriously restricts the high-performance control design.

IV. EXPERIMENTAL VALIDATION
A. EXPERIMENTAL SETUP
To test the above controller design, an experimental platform
has been set up whose photograph is presented in Fig. 2.
It consists of a bench case with a guide rail, a symmetric
hydraulic cylinder, a linear encoder (Heidenhain LC483),
two pressure sensors (MEASUS175-C00002-200BG), a high
bandwidth servo valve (Moog G761-3003, rated flow is
19 L/min at 70 bar drop), a driving shaft, a mass load etc.,
a hydraulic supply and a measurement and control system.
The measurement and control system consists of monitoring
software and real time control software whose A/D card
is Advantech PCI-1716, D/A card is Advantech PCI-1723,

FIGURE 2. Experimental platform of electro-hydraulic system.

TABLE 1. Physical parameters of electro-hydraulic system.

and Counter card is Heidenhain IK-220, all these cards are
16-bits. The sampling frequency is 2 kHz. More details about
this platform can be found in [33]. The physical hydraulic
parameters used in the experiment are given in Table I.

B. COMPARATIVE EXPERIMENTAL RESULTS
In the experiment, the continuous integral robust controller
proposed in this paper is compared with other four controllers
to illustrate its effectiveness and superiority more clearly.
The compared controllers and their control gains are given
as follows.

1) CIRC: The continuous integral robust controller pro-
posed in this paper. The control gains are: k1 = 1800,
k2 = 600, k3 = 100, kr = 1000, β = 80000.

2) FLC: The feedback linearization controller. The FLC
does not have the nonlinear robust term in CIRC, it just
has pure linear feedback term. The control gains of FLC are
chosen as the same with those of CIRC.

3) RFC: The linear robust feedback controller without
any model compensation. The effectiveness of model-based
control design can be verified by comparing this controller
with the others. Its control gains are also the same with CIRC.

4) PI: The widely used proportional-integral controller in
industry. The P-gain and I-gain are tuned as kp = 8000,
ki = 2000.

5) VFPI: The proportional-integral controller with velocity
feedforward action which is also extensively used in industry.
The VFPI controller can be expressed as

uVFPI = kpz1 + ki

∫
z1dt + kf ẋ1d (30)
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FIGURE 3. Position tracking of CIRC for 20mm-0.5Hz sinusoidal motion.

where kp, ki, kf are P-gain, I-gain and velocity feed-
forward gain, respectively. The velocity feedforward gain
kf = 28V·s/m is determined via the open loop identi-
fication. kp and ki are selected to be the same with PI
controller.

Additionally, three performance indices, i.e., the maxi-
mum, average, and standard deviation of the tracking errors,
are utilized to assess the tracking performance of the above
five controllers. The specific definitions of the performance
indices are as follows [33].

1) Maximal absolute value of the tracking errors is defined
as

ME = max
i=1,...,N

{|z1(i)|} (31)

where N is the number of the recorded digital signals, and is
used as an index of measure of tracking accuracy.

2) Average tracking error is defined as

µ =
1
N

N∑
i=1

|z1(i)| (32)

and is used as an objective numerical measure of average
tracking performance.

3) Standard deviation performance index is defined as

σ =

√√√√ 1
N

N∑
i=1

[|z1(i)| − µ]2 (33)

to measure the deviation level of tracking errors.
The compared five controllers are first applied to a normal-

level sinusoidal trajectory x1d = 20actan(sinπ t)[1-exp(-
t)]/0.7854 mm. The experimental results are obtained as
shown in Fig. 3 ∼ Fig. 5. The steady-state performance
indices are also presented in Table II. As shown in Fig. 3,
the position of the load can well track the desired motion
trajectory with the proposed CIRC controller. The perfor-
mance indices in Table II and the comparative tracking errors
in Fig. 4 reveal that the proposed CIRC achieves the best
tracking performance. Specifically, since CIRC controller

FIGURE 4. Comparative tracking errors for 20mm-0.5Hz sinusoidal
motion. (a) Tracking errors of the five controllers during the whole time
history. (b) Tracking errors of the five controllers during the last two
cycles.

has nonlinear robust law to deal with the modeling uncer-
tainties (mainly the unmodeled frictions), it obtains much
better performance than FLC. It can be found that VFPI also
obtains better tracking performance than FLC, the reason can
be found by comparing RFC and PI. Since both RFC and
PI are pure robust feedback controllers, the worse tracking
performance of RFC in comparison to PI indicates that the
robust gains of RFC are weaker than those of PI in some
sense. Therefore, it can be understood that VFPI outperforms
FLC, because it uses larger feedback gains and also has
some model compensation as done in FLC. However, the
tracking performance of VFPI is still worse than the proposed
CIRC which uses the same feedback gains with RFC. The
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FIGURE 5. Control input of CIRC for 20mm-0.5Hz sinusoidal
motion.

TABLE 2. Performance indices during the last two cycles for 20mm-0.5Hz
sinusoidal motion.

TABLE 3. Performance indices during the last two cycles for 20mm-1Hz
sinusoidal motion.

maximum tracking error of VFPI is nearly twice that of
CIRC. By comparing the tracking errors of RFC and FLC,
the advantages of model-based compensation design can be
verified. The control input of CIRC is given in Fig. 5. As seen,
it is continuous and bounded.

To further test the fast tracking performance of the
compared controllers, the motion trajectory x1d =

20actan(sin2π t)[1-exp(-t)]/0.7854 mm is utilized. The
steady-state performance indices are presented in Table III.
Position tracking of CIRC and comparative tracking errors
are shown in Fig. 6 and Fig. 7, respectively. It can be seen
that the proposed CIRC also outperforms the other four
controllers in terms of all performance indices in this fast

FIGURE 6. Position tracking of CIRC for 20mm-1Hz sinusoidal motion.

FIGURE 7. Comparative tracking errors for 20mm-1Hz sinusoidal motion.
(a) Tracking errors of the five controllers during the whole time history.
(b) Tracking errors of the five controllers during the last two cycles.

motion case. It can be found from Fig. 4 and Fig. 7 that
the tracking error bias phenomenon happens to FLC due
to the lack of nonlinear robust control law to overcome
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FIGURE 8. Position tracking of CIRC for 10mm-0.1Hz sinusoidal motion.

TABLE 4. Performance indices during the last cycle for 10mm-0.1Hz
sinusoidal motion.

the effects of modeling uncertainties. This is more apparent
in the subsequent slow motion case. The control input of
CIRC is also regular and bounded, hence it is omitted
here.

At last, a slow motion trajectory x1d = 10actan
(sin0.2π t)×[1-exp(-t)]/0.7854 mm is utilized to further test
the robustness of the proposed CIRC control strategy, since
the nonlinear friction characteristics are mainly Stribeck
effect in the low-velocity region which will cause degraded
tracking performance in this case. Similarly, the experimen-
tal results are obtained and presented in Table IV, Fig. 8,
and Fig. 9. As seen from the position tracking of CIRC
in Fig. 8 and its tracking error in Fig. 9, it also achieves
high-accuracy tracking in such slow motion case, which veri-
fies its strong robustness against various modeling uncertain-
ties. In comparison to the other four controllers, the proposed
CIRC obtains both better transient and steady-state tracking
performance. Though the maximum tracking error of CIRC is
only a bit smaller than that of VFPI, its other two performance
indices µ and σ are much smaller than those of VFPI, which
reveals the high-performance nature of CIRC. Due to the
effect of the Stribeck effect in this slow motion case and FLC
only uses linear feedback law, its tracking error has more
apparent bias than those of the former two cases. This further
demonstrates the strong robustness of the proposed CIRC
controller.

FIGURE 9. Comparative tracking errors for 10mm-0.1Hz sinusoidal
motion. (a) Tracking errors of the five controllers during the whole time
history. (b) Tracking errors of the five controllers during the last two
cycles.

V. CONCLUSION
In this paper, a continuous integral robust controller is
proposed for high-performance tracking control of an electro-
hydraulic system via backstepping method. A significant
outcome of the proposed controller is that mismatched and
matched modeling uncertainties can be handled together
in one controller and asymptotic output tracking perfor-
mance is guaranteed with a continuous control input. Due
to the separation of the differential of the virtual control
function in the backstepping design procedure, the heavy
noise-contaminated acceleration signal is not required in
the proposed controller. Therefore, tracking performance
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improvement will be obtained by the proposed control strat-
egy and it is easier to be implemented in practice. It is
theoretically proved by Lyapunov-based stability analysis
that globally asymptotic tracking performance with zero
steady-state tracking error can be achieved by the proposed
controller. The proposed continuous integral robust con-
troller was implemented on a valve-controlled double-rod
hydraulic cylinder servo system and compared with four
other controllers. Experimental results have verified its high
performance nature.

APPENDIX A
Proof of Lemma 1: Noting (21) and (24), the auxiliary
variable 9 can also be expressed by

9 = ς̇ + k3ς

= z̈2 + (k2 + k3)ż2 + k2k3z2 (A1)

Substituting (A1) into (25), and then integrating in time,
we obtain∫ t

0
L(τ )dτ

=
1

k3kr

∫ t

0
[z̈2 + (k2 + k3)ż2 + k2k3z2][1̇− βsign(z2)]dτ

=
1

k3kr

∫ t

0
z̈21̇dτ +

1
k3kr

∫ t

0
(k2 + k3)ż21̇dτ

−
β

k3kr

∫ t

0
z̈2sign(z2)dτ−

β

k3kr

∫ t

0
(k2 + k3)ż2sign(z2)dτ

+

∫ t

0

k2
kr
z2[1̇− βsign(z2)]dτ (A2)

Integrating the integrals on the right-hand side of (A2) by
parts yields∫ t

0
L(τ )dτ

=
1

k3kr
( ż21̇

∣∣t
0 − z21̈

∣∣t
0 +

∫ t

0
z21dτ )+

k2 + k3
k3kr

(z21̇
∣∣t
0

−

∫ t

0
z21̈dτ )−

β

k3kr
ż2sign(z2)|t0 −

(k2 + k3)β
k3kr

|z2||t0

+

∫ t

0

k2
kr
z2[1̇− βsign(z2)]dτ

=
1

k3kr
[ż21̇− ż2(0)1̇(0)− z21̈+ z2(0)1̈(0)]

+
k2 + k3
k3kr

[z21̇− z2(0)1̇(0)]−
β

k3kr
[ż2sign(z2)

− ż2(0)sign(z2(0))]−
(k2 + k3)β

k3kr
[|z2| − |z2(0)|]

+

∫ t

0

k2
kr
z2[1̇+

1− (k2+k3)1̈
k2k3

− βsign(z2)]dτ (A3)

The above equation can be upper bounded as∫ t

0
L(τ )dτ

≤ |ż2|
1

k3kr
(|1̇| + β)+ |z2|[

1
k3kr
|1̈| +

k2 + k3
k3kr

(|1̇| + β)]

+ |ż2(0)|
1

k3kr
(|1̇(0)| + β)+ |z2(0)|[

1
k3kr
|1̈(0)|

+
k2 + k3
k3kr

(|1̇(0)| + β)]

+

∫ t

0

k2
kr
|z2|[|1̇| +

|1| + (k2 + k3)|1̈|
k2k3

− β]dτ (A4)

Using assumption 2 and the sufficient condition in (26), it can
be inferred from (A4) that the function R(t) defined in (27) is
always positive.

APPENDIX B
Proof of Theorem 1: Defining a Lyapunov function as

V (t) =
1
2
z21 +

1
2
z22 +

1
2k3

ς2 +
1

2k3kr
92
+ R (B1)

Noting (10), (13), (24) and (27), the time derivative of V (t)
can be given by

V̇ = z1ż1 + z2ż2 +
1
k3
ςς̇ +

1
k3kr

99̇ + Ṙ

= z1(z2 − k1z1)+ z2(ς − k2z2)+
1
k3
ς (−k3ς +9)

+
1

k3kr
9[1̇− krς − βsign(z2)]

−
1

k3kr
9[1̇− βsign(z2)]

= −k1z21 + z1z2 − k2z
2
2 + z2ς − k3ς

2
= −zT3z (B2)

where z = [z1, z2, ς ]T. Since the matrix 3 can be ensured
to be positive definite by tuning the control gains, the above
equation can be further written as

V̇ ≤ −λmin(3)(z21 + z
2
2 + ς

2) , −4 (B3)

where λmin(3) is the minimal eigenvalue of matrix3. Hence,
V ∈ L∞ and 4 ∈ L2, the signal z1, z2, ς are bounded. Then,
the system states x1, x2, and x3 can be inferred to be bounded
based on assumption 1. Hence, the control input u is also
bounded. Noting the expressions of the dynamics of z1, z2
and ς , the boundedness of the time derivative of the function
4 can also be concluded, which indicates 4 is a uniformly
continuous function. According to Barbalat’s lemma [32],
it can be inferred that 4 → 0 as t → ∞. This further leads
to the results in Theorem 1.
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