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ABSTRACT Comparing with hard decision decoding algorithms, soft decoding has a lower probability
of bit error but a higher computational complexity. As a maximum-likelihood soft decoding method,
the A∗ algorithm is the most basic and widely used to minimize bit error probability. However, its average
computational complexity strongly depends on a seed codeword and a heuristic function utilized during
the decoding process. To efficiently reduce the computational complexity while maintaining the decoding
accuracy theoretically and practically, this paper proposes an improved A∗ decoding algorithm consisting of
two phases. The first phase applies the greedy list decoding to the linear block code to obtain a seed codeword.
According to the seed, the second phase applies the improved A∗ algorithm to obtain the final decoding
output. The heuristic function used in the A∗ algorithm is modified in two aspects: 1) use more information
of partial decoded symbols to improve the accuracy of the function and 2) take advantage of Hamming
distance to reduce the search space. Simulations on the RM (5, 2) Reed–Muller codes and [128, 64] binary
extended BCH code show that this improved A∗ algorithm is more efficient in average decoding complexity
than many other algorithms while maintaining the decoding accuracy.

INDEX TERMS Error correcting coding, list decoding, A∗ algorithm, computational complexity.

I. INTRODUCTION
Error correcting coding is a key method to guarantee reliable
communication, which has been studied for a long time [1].
Compared with hard decision decoding algorithms [2], soft
decision decoding algorithms [3] have a lower probability of
bit error for block codes but higher computational complexity.
To obtain a lower bit error probability and a lower compu-
tational complexity, the maximum likelihood soft decision
decoding algorithms have been extensively studied in coding
theory [4]–[6].

List decoding is an alternative to unique decoding of
error-correcting codes for large coding rates with low error
probability. For example, Guruswami et al. [7] and [8] used
list decoding to solve problems about Reed-Muller codes and
Reed-Solomon codes. Furthermore, some researchers have
converted decoding schemes into a graph search problem
on a trellis of the code [9]–[11]. The A∗ algorithm is an
artificial intelligence tree search algorithm used to search
for a path in a graph. Nilsson [12] described the algorithm
as a heuristic graph search procedure and showed that the
algorithm always can obtain an optimal path. Han et al. [13]
extended it to decode the block codes and proved that it is

a maximum likelihood soft decision decoding algorithm.
Meanwhile, Ekroot [14] further studied the properties of
the A∗ decoding algorithm. By considering sums of parity
bits which can be decided by part of the message bits, A∗

algorithm can reduce the number of search tree edges [15].
In [16], A∗ algorithm has shown good performance for max-
imum likelihood decoding of tailbiting codes.

For a decoding algorithm, time and space complexity
are two measurements to judge whether the algorithm is
efficient [17]. The time complexity is always considered first
and this paper is no exception. To determine the computa-
tional complexity of the A∗ decoding. Han et al. [18] used an
average complexity. Unlike the worst complexity, the average
complexity is the average amount of computational resources
(typically time) used by the algorithm over all possible inputs.

To construct the heuristic function which was indispens-
able for implementing the A∗ algorithm to search the code-
word path, Han et al. [13] used the property of the Hamming
distance among codewords and defined the function by using
a seed codeword. It is shown that if the seed codeword is
closer to the correct codeword or the heuristic function is
more accurate, the computational complexity will be lower.
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FIGURE 1. List decoding with list size L = 2, where reserved paths contain green nodes and red dashed edges, while
deleted paths contain blue nodes and black solid edges. And part(a) to part(c) are the procedures of list decoding step
by step.

Therefore, the computational complexity of A∗ depends on
the seed codeword and the heuristic function. For the above
reasons, this paper proposes an improved A∗ decoding algo-
rithm with two phases. The first phase applies the list decod-
ing to the linear block code to obtain a more accurate seed
codeword rather than a stochastic one. The second phase
employs the A∗ algorithm by using a modified heuristic func-
tion. In particular, the heuristic function is modified in two
aspects: 1. use more information of partial decoded symbols
to improve the accuracy of the function; 2. take advantage of
Hamming distance to reduce the search space. Simulations
on the RM (5, 2) code and [128, 64] binary extended BCH
code show that the proposed algorithm is muchmore efficient
in computational complexity while maintaining the decoding
accuracy.

The rest of this paper is organized as follows. Section II
gives the notions of the maximum likelihood decoding, list
decoding and A∗ algorithm. Section III presents an improved
A∗ algorithm. Section IV simulates the new algorithm on the
Reed-Muller code and [128, 64] binary extended BCH code
and provides a comparison with other decoding algorithms
on the computational complexity and the bit error probability.
Section V concludes this paper.

II. PRELIMINARIES AND NOTATIONS
This section gives the notion of maximum likelihood decod-
ing rule and then provides brief reviews of the list decod-
ing algorithm and the A∗ algorithm. Let C denote a binary
[n, k] linear block code with generator matrix G and parity
check matrix H , and let c = (c0, c1, . . . , cn−1) denote a
codeword.

A. MAXIMUM LIKELIHOOD DECODING
The popular maximum likelihood decoding rule over a
time-discrete memoryless channel can be formulated as
follows, where c is the transmitted codeword, and r =
(r0, r1, . . . rn−1) is the received vector. The maximum
likelihood estimation of c is determined to be cl =
(cl0, cl1, . . . , cl(n−1)) ∈ C if

n−1∏
j=0

Pr(rj|clj) ≥
n−1∏
j=0

Pr(rj|cij) (1)

for all ci = (ci0, ci1, . . . , ci(n−1)) ∈ C. For computation
convenience, the bit log-likelihood ratio of rj was introduced
as [19]

φj = ln
Pr(rj|0)
Pr(rj|1)

, (2)

where φ = (φ0, φ1, . . . , φn−1). Then, formula (1) can be
rewritten as [19]

n−1∑
j=0

(φj − (−1)clj )2 ≤
n−1∑
j=0

(φj − (−1)cij )2. (3)

This shows that the maximum likelihood decoding rule mini-
mizes the bit error probability when the input probabilities of
codewords in C are equal.
After introducing the maximum likelihood decoding rule,

the list decoding algorithm and theA∗ algorithm are presented
in the next subsections.

B. LIST DECODING ALGORITHM
The list decoding applied in our algorithm is a breadth-first
search algorithm on a code tree. As shown in Fig. 1, at each
level of the tree, we only reserve the L (the list size) most
promising nodes and delete others, which satisfies L ≤ 2k .
If the number of nodes are less than L, there is no need to
delete. Therefore, the list decoding in our algorithm is greedy.
The L nodes at each level are called reserved nodes (the green
nodes) and the paths from the root node to the reserved nodes
are called reserved paths (the red dashed path). A simple
example of our list decoding algorithm is illustrated in Fig. 1,
where L = 2 and 0, 1 are the labels of edges.

Part (a) of Fig. 1: Algorithm starts by visiting and reserving
nodes, which results in the two (≤ L) most promising paths
(the red dashed paths). Part (b): Visit all four children of the
reserved nodes in Part (a). Four paths are obtained by linking
with parent nodes, then prune the four paths into the L(= 2)
most promising paths. Part (c): Continue searching at the two
paths by visiting the children of the reserved nodes obtained
from Part (b), then prune four paths into the best L(= 2) paths
again. At the end of the algorithm, choose one path from the
L as the final decoding output. Actually, this chosen path may
not be optimal, but it can be used to reduce the computational
complexity of the second phase.
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C. A∗ DECODING ALGORITHM
As mentioned in Section I, the A∗ decoding algorithm is an
efficient maximum likelihood soft decision decoding algo-
rithm for linear block codes [13]. For a code tree of C, every
node at the last layer of this tree is denoted as a goal node. For
each visited nodem, the cost function g(m) is regarded as the
actual cost of the path from the start node to m, and heuristic
function h(m) estimates the cost of the minimum-cost path
fromm to a goal node. The algorithm stores the path Pm from
the start node to nodem according to the estimation function
f (m) = g(m)+ h(m).
In the storing procedure of a given code tree, the A∗

algorithm maintains and updates two lists of nodes, namely,
list CLOSED and list OPEN. List OPEN contains the set of
nodes that were visited but not expanded yet. List CLOSED
contains the set of nodes that were visited and also expanded.
These visiting and expanding conditions are two basic notions
in breadth-first search algorithm. In fact, the algorithm selects
node m from list OPEN according to the minimum f (m),
and then expands and moves this node into list CLOSED.
Finally add the immediate successors of node m into list
OPEN for the preparation of next step. When the algorithm
arrives at goal node, it obtains a path with the smallest cost,
the labels of which are regarded as the decoding result in
the end.

III. NEW DECODING ALGORITHM
After reviewing some basic knowledge, this section will pro-
pose an improved A∗ algorithm. As introduced previously,
the new algorithm applies the list decoding in the first phase
to obtain a more accurate seed codeword, and employs the A∗

algorithm in the second to obtain the final decoding result.
This section has two theorems. Theorem 1 proves that the
improved A∗ algorithm is a maximum likelihood decoding
for all linear block codes. After obtaining the computational
complexity of the first phase, Theorem 2 gives the com-
putational complexity of the second phase. At the end of
this section, it is concluded that the new decoding algorithm
reduces the computational complexity without reducing the
decoding accuracy.

A. THE FIRST PHASE
According to the interpretation in Subsection II-B, the list
decoding applied in the first phase to obtain a more accu-
rate seed codeword is a breadth-first search algorithm. Let
cd denote this more accurate seed codeword. To apply the
list decoding algorithm, two questions should be considered:
(1) How to construct a code tree for the linear block code;
(2) How to decide the most promising path.

1) CODE TREE
For an [n, k] linear block code C with generator matrix G
and parity check matrix H , it is known that list decoding
is not a maximum likelihood decoding, i.e., the algorithm
can not ensure the minimization of the bit error probability.

For reducing the error probability, our code tree is derived
from a new generator matrix G∗ by using the originalH . The
steps are shown as follows.

1) H1 and φ1.
Linearly combine the rows and rearrange the columns
ofH to obtain a newmatrixH1, which can be expressed
asH1 = [Q, I], where I is an (n− k)× (n− k) identity
matrix. Then permute the corresponding entries of the
ratio vector φ according to above permutation to obtain
a new φ1.

2) G1.
Obtain a new generator matrixG1 fromH1. It is easy to
observe thatG1 can be selected as [I,−QT ], where I is
a k × k identity matrix and (·)T denotes the transpose.

3) G2 and φ2.
Rearrange the columns (i = 0 ∼ n−1) ofG1 according
to the descending order of the absolute values of the
components in φ1. Then a new G2 is obtained. Mean-
while, a new ratio vector φ2 is obtained from φ1 by the
same descending order.

4) G∗ and φ∗.
Select k independent columns of G2 from left to right
in order, and then append the remaining n− k columns
according to the column order of G2. Continue to
linearly combine the rows, and obtain a generator
matrix G∗, whose first k columns form an identity
matrix. Meanwhile, a new ratio vector φ∗ is obtained
from φ2 according to the column permutations of G2
in this step.

5) Binary Tree.
According to G∗, construct a binary tree with n + 1
levels, see Fig. 2. For 0 ≤ i < k , the number of nodes
at the i-th level is 2i. For k ≤ i ≤ n, the number of nodes
at the i-th level is 2k . Note that, the code C∗ generated
by G∗ and the code C generated by G are equivalent
because of the column permutations and the linear row
combinations.

FIGURE 2. The final code tree with labels (0 and 1) represented by dash
and solid edges here.

To illustrate clearly, an example is shown in Example 1.
Example 1: This example shows the procedures of con-

structing a code tree in Fig. 2 for a linear block code C with
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generator matrix G and parity check matrix H where

H =

1 1 0 1 0 0
0 1 1 0 0 1
1 0 0 0 1 0

.
Suppose φ = (−1.2,−1.0, 0.4, 0.8,−0.9, 0.7).
First, exchange the last two columns of H to obtain a

new parity check matrix H1 so that the last three columns
of H1 form an identity matrix. Then accordingly per-
mute the last two entries of φ to get a new φ1 =

(−1.2,−1.0, 0.4, 0.8, 0.7,−0.9). A new generator matrixG1
can be obtained directly from H1 , where

G1 =

1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 0

.
Second, order the components of φ1 and columns of G1

similarly to obtain φ2 = (−1.2,−1.0,−0.9, 0.8, 0.7, 0.4)
and a new G2 respectively. Then according to the related
steps of this subsection, the corresponding ratio vector φ∗ =
(−1.2,−1.0, 0.7,−0.9, 0.8, 0.4) and C∗ can be obtained
respectively when the new generator matrixG∗ is determined.
In fact,

G∗ =

1 0 0 1 1 0
0 1 0 0 1 0
0 0 1 0 0 1

.
Finally, the code tree is generated in Fig. 2. Since the first

three components of all codewords in C∗ are message bits,
the corresponding layers of code tree should include the fol-
lowing blue nodes in the structure. Meanwhile, the rest layers
obtained fromG∗ lead to the structure including the following
red nodes. Note that the dash edge and the solid edge of Fig. 2
represent the bit 0 and bit 1, respectively. In particular, for a
message vector u = (0, 0, 1), the corresponding codeword
c = (0, 0, 1, 0, 0, 1) = u · G∗ ∈ C∗ is illustrated in the
following graph.

2) METRIC
To decide which paths are the L (list size) most promising
paths in the code tree, a proper metric should be defined.
Assume that the root node of the code tree is at level 0. Let
ml,i denote the i-th reserved node at level l in the code tree,
whereml,i.left andml,i.right are the left and right child nodes
ofml,i, respectively. Let t denote the number of reserved paths
when the list decoding algorithm reaches the l-th level, such
that t ≤ L ≤ 2k .
Case 1:When 0 ≤ l < k and 1 ≤ i ≤ t , visit the children

of each ml,i at the l-th level and define the cost function
iteratively

g(ml,i.left) =
l−1∑
j=0

(φ∗j − (−1)vj,i )2 + (φ∗l − (−1)0)2,

g(ml,i.right) =
l−1∑
j=0

(φ∗j − (−1)vj,i )2 + (φ∗l − (−1)1)2, (4)

where v0,i, v1,i, . . . , vl−1,i are the labels of edges in the
i-th reserved path selected by the list decoding algorithm so
far. On the right side of (4), the superscripts 0, 1 in the second
term are the labels of the edges between nodeml,i and its chil-
dren. Note that, in above iterative procedure, the t reserved
paths of last step branch into 2t paths. If 2t ≤ L, the list
decoding algorithm reserves the 2t paths directly. However,
if 2t > L, the list decoding algorithm prefers the L smallest
costs and the corresponding paths.
Case 2: When k ≤ l ≤ n, t should satisfy t = L because

of the inequality L ≤ 2k in the list decoding. Currently, it is
obvious that 1 ≤ i ≤ L. Since each parent node at level l
has only one child, the algorithm only needs to follow the L
reserved paths in Case 1.

At the end of the first phase, only L paths are reserved.
Select the one with the smallest cost g(·) among the L paths
and output the corresponding label sequence cd . Actually, cd
may not be the optimal codeword, but it can be used to reduce
the computational complexity of the second phase.

B. THE SECOND PHASE
After finishing the first phase, the algorithm goes on to
the second phase by revisiting the code tree where the A∗

algorithm is applied and improved. For the Metric, this sub-
section modifies two aspects of the heuristic function used
in [13], which will be introduced in the heuristic function
part.

In our improved A∗ algorithm, let m denote a node at
level l in the code tree, and the estimation function f (m) is
composed of actual cost function g(m) and heuristic function
h(m). Similar to A∗ algorithm, it will overview the list OPEN
to find a node in each step with minimum estimation function
f (·) for expansion.

1) COST FUNCTION
Let v0, v1, . . . , vl−1 denote the labels of edges in the path Pm
from the start to node m found by the algorithm. The cost
function g(m) is constructed as

g(m) =
l−1∑
j=0

(φ∗j − (−1)vj )2. (5)

After constructing the cost function, a heuristic function,
which decides the computational complexity of the algorithm
directly, should be considered more carefully.

2) HEURISTIC FUNCTION
To construct a more accurate heuristic function h, two prop-
erties of linear block codes should be considered.

First, consider the property of code C∗. Since the first k
symbols of the transmitted codewords in C∗ are information
symbols, all the entries of v, whose orders are larger than k
can be obtained if all the first k entries are known. In particu-
lar, some latter entries of v can be obtained if parts of the first
k entries are known, as shown in Example 2.
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Example 2: Let G∗ denote the generator matrix of a
code C∗, which can be expressed as

G∗ =

1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 0

.
Let u and c denote a message vector and a transmitted code-
word respectively, and they satisfy the function: c = u×G∗.
For an estimation codeword v(v ∈ C∗) for c, it satisfies
v = u′ × G∗. In this example, assume u′ = (u′0, u′1, u′2),
then

v = u′ × G∗ =
[
u′0 u′1 u′2

]
×

1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 0


=
[
u′0 u′1 u′2 u′0 + u′1 u′1 + u′2 u′0

]
(6)

Assume the estimation codeword v = (v0, v1, v2, v3, v4, v5),
which means v0 = u′0,v1 = u′1,v2 = u′2,v3 = u′0 + u′1 =
v0+v1,v4 = v1+v2,v5 = v0. Thus, if v0 and v1 are known, v3
can be decided by using v0, v1 andG∗. And v4 is only decided
by v1, v2 and G∗, while v5 is only decided by v0 and G∗

By using these properties, the heuristic function h can be
constructed as follows:

1) For nodes at level l, 0 ≤ l < k:
Let m denote a node at level l and v0, v1, . . . , vl−1 be

the labels of edges in the path Pm from the start node to
m selected by the algorithm so far. Furthermore, let HWC∗

and dH (x, y) denote the set of all distinct Hamming weights
that codewords of C∗ may have and the Hamming distance
between x and y, respectively. Then we construct a set S(m)
for all binary n-tuples v taking advantage of four properties.
Actually, by using the set S(m) in heuristic function, our
improved A∗ algorithm can use more information of partial
decoded symbols to improve the accuracy of the function and
take advantage of Hamming weight and Hamming distance to
reduce search space. The first two properties are about partial
decoded symbols, and the third and fourth properties are
about Hamming weight and Hamming distance, see follows.
• Known entries: the first l entries are the labels of Pm;
• Using partial decoded symbols: the p-th entry v̆p is
decided by the first l entries and the generator matrixG∗,
and Example 2 explains the details of this property;

• Inclusion relationship of Hamming weight: consider-
ing v ∈ C∗, it’s easy to conclude that the Hamming
weight of v is included in the set of Hamming weight
of C∗, that is, HW (v) ∈ HWC∗ ;

• Inclusion relationship of Hamming distance: consid-
ering v, cd ∈ C∗, it’s easy to conclude that the Hamming
distance of v and cd is included in the set of Hamming
weight of C∗, that is, dH (v, cd ) ∈ HWC∗ .

All these properties can be realized by using

S(m)

= {v|v = (v0, . . . , vl−1, vl, . . . , vp−1, v̆p,

vp+1, . . . , vn−1),HW (v) ∈ HWC∗ , dH (v, cd ) ∈ HWC∗}.

The heuristic function is

h(m) = min
v∈S(m)

n−1∑
j=l

(φ∗j − (−1)vj )2. (7)

Actually, when the second phase algorithm obtains the
minimum value in (7), it will calculate f (m) = g(m) +
h(m) for the next step of the (improved) A∗ algorithm,
i.e., it will overview the list OPEN to find a node with
minimum estimation function f (·) for expansion.
It should be pointed out that, (1) the vectors in S(m) are

selected from the vector space, rather than the code space C∗.
The code space may not be used since the computational
complexity of h is exponential if the vectors are selected
from it, while it is O(n) if the vectors are selected from the
vector space, which is presented in [13]; (2) the number of the
entries which are decided by the first l entries and the gener-
ator matrix G∗ may be more than one. Since the positions of
these entries may not be interpreted clearly, we just use one
symbol v̆p to represent.
2) For nodes at level l, k ≤ l ≤ n:
Because the first k columns ofG∗ are linearly independent,

there is only one path from any node at level l to the goal node.
Furthermore, it is easy to determine v∗l , v

∗

l+1, . . . , v
∗

n−1 of this
path by using G∗. The function h is defined as

h(m) =
n−1∑
j=l

(φ∗j − (−1)v
∗
j )2, (8)

where v∗l , v
∗

l+1, . . . , v
∗

n−1 are the labels of edges in the only
path Pm from node m to the goal node.
To guarantee that when a node is selected for expansion,

our A∗ algorithm can find a minimum cost path from the start
node to a goal node, the heuristic function h should satisfy the
following condition:

3) Condition
For all nodes mi and their immediate successors mj,

h(mi) ≤ h(mj)+ c(mi,mj), (9)

where c(mi,mj) is the cost of the path between node mi and
node mj. And c(mi,mj) can be expressed as (φ∗j − (−1)vj )2

where vj is the label of edges in the path between mi and mj,
and φ∗j is the corresponding entry of ratio vector φ∗.
Lemma 1: Our improved A∗ algorithm used in the second

phase satisfies the Condition.
Proof: Let mi denote the node at level l and mj be an

immediate successor of mi. The proof should consider three
cases.
Case 1 (l < k−1):Let v = (v0, v1, . . . , vl−1, vl, vl+1, . . . ,

vn−1) belong to S(mj). The vector v satisfies dH (v, cd ) ∈
HWC∗ and HW (v) ∈ HWC∗ ,which means that the vec-
tor v also belongs to S(mi). It is easy to obtain the
inequality min

v∈S(mj)

∑n−1
p=l+1(φ

∗
p − (−1)vp )2 + c(mi,mj) ≥

min
v∈S(mi)

∑n−1
p=l (φ

∗
p−(−1)

vp )2 by observing the definition of the

function h, i.e., h(mi) ≤ h(mj)+ c(mi,mj).
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Case 2 (l = k−1): The level ofmi is k−1 and the level of
mj is k . Then h(mj) is calculated by using (8), while h(mi) is
calculated by using (7). Since v also belongs to S(mi), h(mi) ≤
h(mj)+ c(mi,mj) holds.
Case 3 (l ≥ k): Since the levels of mi and mj are both

larger than or equal to k , h(mi) and h(mj) are both calculated
by using (8), which means h(mi) = h(mj)+ c(mi,mj). �
The above discussion shows that the A∗ algorithm used

in our algorithm can output a maximum likelihood decoding
result.
Theorem 1: The improved A∗ algorithm is a maximum

likelihood decoding for all linear block codes.
Proof: The improved A∗ algorithm has two phases,

where the list decoding algorithm is applied in the first phase
to obtain amore accurate seed codeword and theA∗ algorithm
is employed in the second phase to obtain the final decoding
result by using a modified heuristic function. It means that
the first phase only reduces the computational complexity of
the algorithm rather than decides whether the algorithm is a
maximum likelihood decoding algorithm. Only the second
phase decides it, i.e., the improved A∗ algorithm is a maxi-
mum likelihood decoding algorithm if the algorithm used in
the second phase can output a maximum likelihood decoding
result. Since it is right for the A∗ algorithm used in our
algorithm, the theorem is proved. �
After learning that the improved A∗ algorithm is a maxi-

mum likelihood decoding for all linear block codes, the next
step is to determine an upper bound on the computational
complexity of the improved A∗ algorithm in the first and sec-
ond phases.

In this paper, the computational complexity is defined as
the number of nodes visited by the algorithm. Let T1 and T2
denote the number of nodes visited by the list decoding
algorithm and the average number of nodes visited by the
improved A∗ algorithm, respectively. And T is the total com-
putational complexity of these two phases.

Due to the list decoding algorithm, it is easy to obtain that
the computational complexity in the first phase satisfies

T1 ≤ 2Lk + L(n− k) = Lk + Ln, (10)

where L is the number of reserved paths during the list
decoding process. And the number of visited nodes from the
start node to layer k is less than 2Lk . Then, from layer k to a
goal node, since there is only one path, the number of visited
nodes is L(n− k).

In order to ensure a low computational complexity of
the second phase, the following definition is given to restrict
an upper bound on the complexity of the improved A∗

algorithm.
For a binary [n, k] linear block code, let N denote a set

of codewords and any codeword in N , namely c, satisfies
dE (c, r) ≤ dE (cd , r), where cd is the seed codeword obtained
from the first phase and r is the received vector. And dE (x, y)
is the Euclidean distance between x and y.
Now, an upper bound on the computational complexity of

the second phase can be obtained as follows. The proof of the

following theorem is omitted since it is similar to [18]. For a
binary [n, k] linear block code, n is the length of a codeword.
Since the result of Theorem 2 is derived by using the central
limit theorem, it only holds when n is large.
Theorem 2: Let N denote the cardinality of N . Further-

more, denote Q(·) as the standard normal distribution and
k = dlogNe. Then, for a large n

T2 ≤ Ñ , (11)

where

Ñ = 2

k + k−1∑
l=0

l∑
d=1

(
l
d

)
Q

(
−
µ(l, d)

σ (l, d)

) ,
µ(l, d) =

√
N0

{
2d
√
Rγb + (n− l)

·

[
2
√
RγbQ(−

√
2Rγb)−

1
√
π
e−Rγb

]}
, (12)

and

σ 2(l, d)

= N0

{
2d + (n− l)

[
(4Rγb + 2)Q(−

√
2Rγb)

− 2

√
Rγb
π

e−Rγb

−

(
2
√
RγbQ(−

√
2Rγb)−

1
√
π
e−Rγb

)2
]}
. (13)

N0 is noise power per hertz. The signal to noise ratio (SNR)
for the channel is γ = E/N0. The SNR per transmitted
information bit is γb = γ n/k . R = k/n is the code rate and d
is Hamming distance.Q(−µ(l, d)/σ (l, d)) is an upper bound
on the probability of a node being expanded, where the node
is at level l and the sequence of the labels of the path from
the start node to this node have Hamming distance d to the
transmitted codeword.

Obviously, the total computational complexity of our
improved A∗ algorithm is T = T1 + T2.
Finally, the computational complexity and decoding accu-

racy of the improvedA∗ decoding algorithm can be concluded
as follows. In the first phase, the list decoding algorithm is
used to obtain a more accurate seed codeword, which can
reduce the computational complexity of the first phase to
T1(≤ Lk +Ln). In the second phase, it is easy to find out that
the improvedA∗ decoding algorithm is amaximum likelihood
decoding algorithm since A∗ algorithm is used in this phase,
which means the output of this phase is a maximum likeli-
hood decoding result. Also, the computational complexity of
the second phase is T2 (≤ Ñ ).

IV. SIMULATION RESULTS FOR THE AWGN CHANNEL
This section presents simulation results over the additive
white Gaussian noise (AWGN) channel. Assuming that
antipodal signaling is used in the transmission so that the
j-th components of the transmitted codeword c and received
vector r are

cj = (−1)cj
√
ε and rj = (−1)cj

√
ε + ej, (14)
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TABLE 1. The average number of nodes visited by various decoding algorithms for RM(2,5).

TABLE 2. The average number of nodes visited by decoding algorithms for [128,64] binary extended BCH code.

where ε is the signal energy per channel bit and ej is a noise
sample of a Gaussian process with single side noise power
per hertz. The variance of ej is N0/2.
The Reed-Muller code is a classical error correcting code.

Owing to the low complexity of coding and decoding algo-
rithms, the Reed-Muller code can be easily implemented by
hardware. In addition, by modifying parameters, the Reed-
Muller code can form many different subclasses, which can
be adapted to the transmission over different channels. Since
the Reed-Muller code was introduced by Muller and Reed
in 1954, it has been used in many communication systems,
such as deep space communication systems, cellular commu-
nication systems and so on.

Consider the r-th order binary Reed-Muller code,
RM (r,m), which is an [n, k] linear block code with n = 2m

and k = 1 +
∑r

i=1
(n
m

)
. In our simulation, C is RM (2, 5)

where n = 32, k = 16.
Besides, for long block code such as the [128, 64] binary

extended BCH code, there is another simulation to compare
the performance of different algorithms for it.

A. COMPUTATIONAL COMPLEXITY
For the comparison, the A∗ algorithm can use the information
contained in the parity bits to reduce the number of search
tree edges [15]. TABLE 1 gives the computational complex-
ity of the A∗ algorithm for RM (2, 5). The Viterbi algorithm
to a minimal trellis and a syndrome trellis of the code are
considered. The computational complexity of Viterbi decod-
ing in the minimum trellis was measured in [20]. However,
different permutations of a code can have different minimal
trellises with different computational complexities. This sub-
section considers the computational complexities of the best
code permutation and the worst code permutation. Due to
the difficulty of finding the minimum trellis, [9] applied the
Viterbi algorithm to the syndrome trellis of a code. Since the
main idea of syndrome trellis algorithm is exhaustive search,
it has the same computational complexity with Exhaustive
search(ES) algorithm. And ES algorithm can obtain a decod-
ing result by traversing the whole codeword space, which

means ES algorithm has the highest computational complex-
ity in all decoding algorithms.

TABLE 2 compares the performance of the improved A∗

algorithm, suboptimal A∗ algorithm (threshold = 0.25) [18],
A∗ algorithm and exhaustive search(ES) algorithm for the
[128, 64] binary extended BCH code. Suboptimal A∗ algo-
rithm uses priority-first search strategy, which reduces the
decoding search space and results in an efficient optimal
soft-decision decoding algorithm for linear block codes.
As shown in the following part, we also compare the bit error
probability of improved A∗ algorithm with that of adaptive
belief propagation (ABP) algorithm. ABP algorithm has been
proposed in [21] wherein the graph of the code is adaptively
modified at each iteration so that the bit reliabilities can
converge in the direction of the correct codeword. Actually,
ABP algorithm has much lower complexity than the maxi-
mum likelihood soft decoding algorithms. However, since it
is an iterative decoding algorithm with different complex-
ity metric, we do not show its computational complexity
in TABLE 2. In contrast, its bit error probability is shown
in Fig. 4.

TABLE 1 and TABLE 2 show the computational complex-
ity for RM (2, 5) and [128, 64] binary extended BCH code
respectively, which is defined as the number of nodes visited
by each decoding algorithm. From TABLE 1 and TABLE 2,
it is easy to conclude that the improved A∗ algorithm has
lower computational complexity than other algorithms for the
Reed-Muller code and the extended BCH code.

B. BIT ERROR PROBABILITY
As shown in Subsection IV-A, the computational complex-
ity of the improved A∗ algorithm is lower than others in
TABLE 1 and TABLE 2. Furthermore, it has been proved
that the algorithm follows the maximum likelihood decod-
ing rule. The bit error probability of RM (2, 5) is shown
in Fig. 3. For comparison, this subsection uses the ES algo-
rithm to decode the received vector r by searching the code-
word with the minimum Euclidean distance to the received
vector r.
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FIGURE 3. The bit error probabilities of various decoding algorithms
when the signal-to-noise ratio per information bit of RM(2,5) is
between 3 and 5 dB.

FIGURE 4. The bit error probabilities of various decoding algorithms
when the signal-to-noise ratio per information bit of [128,64] binary
extended BCH code is between 1 and 2 dB.

Maximum likelihood decoding algorithm can obtain a
decoding result which satisfies the maximum likelihood prin-
ciple. And ES algorithm can obtain a decoding result by
traversing the whole codeword space where the result can
minimize the bit error probability. However, in all decod-
ing algorithms, ES algorithm has the highest computational
complexity. In particular, the computational complexity of it
increases exponentially with the increasing length of a code.

Fig. 3 shows the bit error probabilities of the improved A∗

algorithm, A∗ algorithm and the ES algorithm for RM (2, 5).
In this figure, the error probabilities of the improved A∗

algorithm and the ES algorithm are almost the same, which
is less than A∗ algorithm.
And Fig. 4 shows the bit error probabilities of five decoding

algorithms for extended BCH code. In addition to the algo-
rithms based on A∗ and ES algorithm, there is an iterative

algorithm, namely ABP algorithm, which is shown in Fig. 4.
And in this figure, the bit error probability of the improved
A∗ algorithm is also the closest to the ES algorithm. The
comparison results of Fig. 3 and Fig. 4 confirm that the new
decoding algorithm reduces the computational complexity
without reducing the decoding accuracy.

V. CONCLUSION
This paper proposes an improved A∗ decoding scheme for
linear block codes. The novel decoding algorithm has two
phases, where the list decoding algorithm is applied in the
first phase and the A∗ algorithm is improved and applied
in the second phase. The theoretical and simulation works
show that the computational complexity of the proposed algo-
rithm is much lower than other decoding algorithms while
maintaining decoding accuracy. Future work will be on the
decoding of more linear block codes.
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