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ABSTRACT In remote cardiac care monitoring applications, electrocardiogram (ECG) signals are
contaminated by artifacts during data acquisition and transmission of signals. The removal of the artifacts is
an important task for proper diagnosis. In this paper, an attempt has been made to remove the artifacts,
especially baseline wander (BW), muscle artifacts (MA), power line interference (PLI), and electrode
motion (EM) using a least mean logarithmic squares (LMLS) algorithm. Further to improve the filtering
ability and speed up the convergence process, data normalization is applied. The above algorithm can be
normalizedwith reference tomaximum data normalizationwhich leads to reduced computational complexity
in the denominator. Based on the above algorithms, various adaptive signal enhancers (ASE’s) are developed.
To reduce the computational complexity of the signal enhancer, the proposed ASE’s are combined with sign-
based algorithms. The proposed ASE’s are tested on real ECG signals obtained from the MIT-BIH database
to compare the performance. The simulation results obtained illustrate that the block-based algorithms are
better than LMLS in terms of the signal to noise ratio (SNR), excess mean square error, and computational
complexity. Among the LMLS variants, the BB-SRNLMLS-based ASE’s have better filtering ability with a
reduced number of computations. The improvement of the SNR achieved in the process through the use of
BB-SRNLMLS-based ASE’s are calculated as 13.2945 dBs, 12.4589 dBs, 16.4289 dBs, and 13.6423 dBs,
respectively, for BW, MA, PLI, and EM artifacts.

INDEX TERMS Adaptive signal enhancer, artifacts, computational complexity, electrocardiogram, remote
health care.

I. INTRODUCTION
Based on World Health Organization (2016) report, it has
been found that, Cardiovascular Diseases (CVD) are the
major cause of death globally [1]. The number of victims
of CVD’s may be decreased if timely medical treatment is
administered. In this context, remote cardio care systems
play a vital role. However, in telecardiology applications,
it is necessary to facilitate high resolution ECG signals to
the doctors for proper diagnosis. In clinical scenario, during
data acquisition, the ECG signals have been found to be
contaminated with various artifacts like BW, PLI, EM and
MA. BW is caused due to a sinusoidal component which has
an approximate frequency of 0.5Hz, during the respiration
of the patient. PLI artifact is generated inside the signal
carrying cables. EM is due to impedance mismatch between

skin and electrodes. MA is due to muscle contraction move-
ment of the patient. As a result, artifact elimination process
becomes an important task in remote cardiac care monitoring
applications. In recent years, several researchers have pre-
sented innovative techniques to clean ECG signals to facil-
itate high-resolution cardiac activity at the time of diagnosis.
Identification of ECG Artifacts and its removal techniques
using artifacts filtering algorithms for continuous patient
monitoring system is proposed [2]. Efficient cardiac signal
Enhancement is done by variable step size algorithm [3].
Improved signal decomposition techniques are achieved by
Bayesian framework for denoising and feature extraction [4].
Adaptive Spectrum Noise Cancellation (ASNC) algorithm is
implemented for the removal of artifacts to obtain accurate
Heart Rate (HR) [5]. It has been shown as an intelligent
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artifact eliminator, which not only tracks but also eliminates
PLI without reference signal [6]. Li et al. [7] developed a
real time lossless ECG compression technique. The Discrete
Wavelet Transform (DWT) is used for the removal of noise
in cardiac signals [8]. Lahmiri [9] developed ECG denoising
architecture using Empirical Mode Decomposition (EMD)
and Variation Mode Decomposition (VMD). The Hybrid
denoising model is designed by combining EMD-DWT and
VMD-DWT. Santosh et al. illustrated an improved model for
denoising ECG signal using the non-local wavelet transform.
The estimates are generated by the process of shrinkage, and
the final estimate is calculated by averaging all the obtained
estimates [10]. For continuous patient monitoring applica-
tions, a wearable device is developed [11] which coordinates
with the smartphone. Jinseok et al. briefed about Motion
and Noise (MN) detection. EMD is used to isolate the high
frequency components, and then high pass filters are placed to
remove randomness of the signal [12]. ECG denoising based
on S-Transform (Stockwell transform) is proposed which
increases the SNR. Mask window is applied to matrix for
denoising ECG signal [13]. Removal of BW from the ECG
is demonstrated, which has adaptive noise cancellers [14].
ECG signals are filtered by wavelet Wiener filter, which
increases SNR [15]. Motion Artifact Beats (MAB) are iden-
tified automatically because of non-linear algorithm which
has: clustering ECG signals, fuzzy logic and multi-parameter
decision [16]. The Ensemble Empirical Mode Decomposi-
tion (EEMD) was used for the first time to improve the noise
filtering performance [17]. Vullings et al. [18] demonstrated a
method to enhance the ECG signal by dynamically increasing
the SNR. This is achieved by Bayesian framework which
constitutes of Kalman filter. PLI is removed by Notch filter
and Adaptive filter [19]. Notch filter reduces the PLI by sup-
pressing the predefined frequencies. An improved adaptive
noise canceller reduces the PLI and Harmonics in ECG up
to 4Hz. Efficient noise cancellers are proposed to enhance
the ECG [20].

Among the techniques presented, it is found that less effort
has been made to minimize the computational complexity
of the ECG signal. In order to overcome these limitations,
a hybrid realization is proposed by using sign-based algo-
rithms [21], [22]. Although there are numerous filtering tech-
niques, adaptive filtering is still considered an interesting
approach for artifact removal from physiological quantities.
It is because of the innate ability of filter coefficients which
change depending upon the noise level of the input signal.
One of the most significant adaptive algorithms called Least
Mean Logarithmic Squares (LMLS) has been found to be
better in such applications. The moderate approach of LMLS
algorithm increases the convergence speed of adaptive algo-
rithms by its relative cost function [23]. The performance of
an adaptive algorithm can be increased further by applying
data normalization [24].

Another major constraint in conventional adaptive noise
cancellers is generation of reference signal. In practical appli-
cations, adaptive noise cancellers require a reference signal.

But it is often not feasible to generate reference signal.
Therefore, in our implementation we propose a hybrid ver-
sion of ASE with DWT decomposition unit [25]. The DWT
decomposition unit generates the reference signal from the
obtained ECG signal. Hence, various ASE’s are developed
using LMLS variants with the DWT unit. These realizations
are tested with real cardiac signals which are taken from
the MIT-BIH arrhythmia database [26], and the performance
measures are tabulated in the simulation results section.

II. LMLS BASED ADAPTIVE SIGNAL ENHANCEMENT
OF ECG SIGNALS
The LMS is the most popular algorithm due to its simplicity.
Due to stable and robust performance against different signal
conditions it is very frequently used in real time health moni-
toring applications. In remote cardiac care scenario, artifacts
and channel noise are non-stationary in nature. Conventional
fixed coefficient filters cannot be used for filtering such
artifacts. But an adaptive filtering strategy can be applied.
A typical ASE structure is shown in Figure 1. The contami-
nated ECG is processed in the ASE unit. The main functional
units of the proposed ASE are DWT decomposition unit and
an adaptive algorithm to update FIR filter coefficients. The
ECG signals gathered from the acquisition electrodes have
an artifact component. Suppose c(n) is the recorded cardiac
signal, it can be written as

c(n) = s(n)+ a(n).

Here, s(n) is heart activity, a(n) is artifact. c(n) undergoes
DWT decomposition for generating a reference signal. This
reference signal is fed to the FIR filter of length ‘L’, which is
driven by an adaptive algorithm. The adaptive algorithm has
the ability to change the filter coefficients of FIR filter. Sup-
pose a1(n), correlates with the actual artifact component a(n).
Based on feedback signal f(n), the adaptive algorithm changes
the filter coefficients so that the convolution between the
a1(n) and filter impulse response h(n) is brought closer to
actual artifact component a(n) present in the cardiac sig-
nal c(n). Therefore, by using feedback signal, and changing
filter coefficients, the reference changes to a(n). After some
iterations, a(n) and a1(n) become approximately equal, thus
nullifying the maximum components. This in turn makes
the output of the ASE correlate s(n) with s1(n). However,
at the output of the ASE, some residual noise will remain
in the cardiac signal. The measurement of residual noise
illustrates the performance of various algorithms used in the
enhancement process.

The algorithm widely used in adaptive noise cancellation
applications is the Least Mean Square (LMS). The technique
of weights updation is mathematically written as,

m (n+ 1) = m (n)+ µc(n)f (n) (1)

Where, m is the weight vector of the filter, n is the number of
samples, µ is the step size of the adaptive algorithm.

Let us consider the length of FIR filter of LMLS as ‘L’.
The LMLS algorithm intrinsically combines the LMS and
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FIGURE 1. Structure of adaptive signal enhancer (ASE).

Least Mean Fourth (LMF) algorithms based on the error
amount [23]. Themathematical recursion of LMLS algorithm
is written as,

m (n+ 1) = m (n)+ µc (n) f (n)
αf 2 (n)

1+ αf 2 (n)
(2)

= m(n)+ µ
αc (n) f 3 (n)
1+ αf 2 (n)

(3)

Where, c(n) is the cardiac signal, f(n) is the error quantity,
α is the design parameter and is step size parameter.
In the proposed implementation, we aremainly focusing on

two important features: the first is the generation of reference
signal and the second is removal of artifacts from cardiac
signal. DWT is generally used to decompose non-stationary
biomedical signals. The blend of DWT and noise cancellers is
discussed in order to remove the artifacts from the obtained
EEG [25]. In the similar manner, we have integrated DWT
and ASE to enhance ECG. Mallam et al. [21] discussed the
L-level decomposition of an ECG signal using DWT.

There has been an extensive research done on the usage
of DWT to eliminate artifacts from ECG. Researchers have
found that, DWT systems can help in optimizing the refining
of ECG. Therefore, we realize a hybrid model of DWT and
LMLS based noise removal in the proposed ASE, as shown
in Figure 1.

Figure 2, illustrates the decomposition of the cardiac sig-
nal c(n) into LowFrequencyComponent (LFC) andHigh Fre-
quency Component (HFC). The approximation component is
represented by ‘‘A’’, which is a LFC. The detailed component
is represented by ‘‘D’’, which is a HFC [21]. Based on the
nature of noise, ‘‘A’’ or ‘‘D’’ will be decomposed to generate
reference signal. This reference signal is fed to FIR filter to
perform multiplication operation with the filter coefficients.
The output of FIR filter is connected to the adder. At the
output of adder, the cardiac signal and artifacts are obtained.
As the iterations continue, the adaptive algorithm adjusts the

FIGURE 2. Decomposition of ECG signal using DWT.

filter coefficients so that a1(n) is multiplied by filter coeffi-
cients and it changes to a(n). Since the statistical nature of the
a1(n) and a(n) are equal, it results in ‘‘a1(n) - a(n)’’. Finally,
the cardiac signal will be obtained at the output of the ASE
with some residual noise.

A. HYBRID REALIZATION OF NORMALIZED
LMLS (NLMLS) AND SIGN ALGORITHMS
Normalized LMS (NLMS) is another class of adaptive algo-
rithm which updates the coefficients of the FIR filter. The
mechanism of NLMS algorithm and LMS algorithm are sim-
ilar, but step size is varied in accordance to the input data
vector. Based on step size, the enhancement process reaches
steady state.
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TABLE 1. Computational complexity required for the generation of reference signal (where ‘L’ is filter length).

The weight updated equation for the NLMS algorithm is:

m (n+ 1) = m (n)+
[

µ

p+ ct (n) c (n)

]
c (n) f (n) (4)

Similarly, the normalized version of LMLS (NLMLS) can
be realized to achieve better filtering, minimum steady state
error and good convergence. Mathematically, NLMLS is
written as,

m (n+ 1) = m (n)+ µ
αc (n) f 3(n)∥∥c(n)∥∥2 (∥∥c(n)∥∥2 + αf 2(n)) (5)

The sign algorithms are the key factors of hybrid realization
to minimize the computational complexity in adaptive algo-
rithm. The three types of sign algorithms are Sign Regres-
sor Algorithm (SRA), Sign error Algorithm (SA) and Sign
Sign Algorithm (SSA) [25]. The computational complexity
of SRA is least among the sign algorithms. The number of
multiplications required is only one and the multiplications
are independent of filter length, as shown in Table 2.

In order to minimize the computational complexity,
we combine NLMLS algorithm with Sign algorithms.
The result is, Sign Regressor NLMLS (SRNLMLS), Sign
NLMLS (SNLMLS) and Sign Sign NLMLS (SSNLMLS).
These hybrid realizations achieve good filtering ability, fast
convergence, less residual noise and low computational com-
plexity. The weight update equations for these algorithms are
mathematically written as,

m (n+ 1) = m (n)+ µsgn (c (n))

×
αf 3(n)

‖c (n)‖2
(
‖c (n)‖2 + αf 2(n)

) (6)

m (n+ 1) = m (n)+ µsgn
(
f 3(n)

)
×

αc (n)

‖c (n)‖2
(
‖c (n)‖2 + αf 2(n)

) (7)

m (n+ 1) = m (n)+ µsgn
(
f 3(n)

)
sgn (c (n))

×
α

‖c (n)‖2
(
‖c (n)‖2 + αf 2(n)

) (8)

Where sgn is the signum function. The above equations
are the updated versions of SRNLMLS, SNLMLS and
SSNLMLS.

The computational complexity can be further diminished
in equations (6)-(8) by using Block Based Normalization.

In this approach, the step size is normalized by consider-
ing the maximum value of the input data sequence instead
of entire data sequence. This reduces the number of mul-
tiplications by an amount ‘‘L-1’’ in the weight update
mechanism and requires only one multiplication in the
denominator. This version of NLMLS algorithm is called
as a Block Based NLMLS (BBNLMLS) algorithm. The
sign versions of the above algorithm result in: Block Based
Sign Regressor NLMLS (BBSRNLMLS), Block Based Sign
NLMLS (BBSNLMLS) and Block Based Sign Sign NLMLS
(BBSSNLMLS). The mathematical expressions for these
algorithms are expressed as,

m (n+ 1) = m (n)+
µ

c2L
sgn (c (n))

αf 3 (n)(
‖c (n)‖2 + αf 2 (n)

)
(9)

m (n+ 1) = m (n)+
µ

c2L
sgn

(
f 3 (n)

) αc (n)(
‖c (n)‖2 + αf 2 (n)

)
(10)

m (n+ 1) = m (n)+
µ

c2L
sgn

(
f 3(n)

)
sgn

(
c(n)

)
×

α(
‖c (n)‖2 + αf 2(n)

) (11)

In view of the above algorithms, theDWT technique is used to
build few ASE’s and to extract artifacts from cardiac signals.
The simulation results and its analysis are displayed in the
segments that take after.

B. COMPUTATIONAL COMPLEXITY
The computational complexity of any signal conditioning
technique is an important parameter in biomedical signal
processing applications. In real-time operation of the medical
telemetry, if the computational complexity is less, then lesser
time will be required to carry out the computation. The data
samples are delayed by an amount equal to the processing
time due to large computational complexity. As a result,
a large number of data samples are gathered at the input port.
This leads to aliasing of the data samples. In remote cardiac
care monitoring applications, computational complexity has
to be minimized [24]. Hence, in the proposed ASE, hybrid
versions of signum based algorithms are used to minimize
the computational complexity.

The basic computational complexity mentioned in Table 1,
indicates number of multiplications and additions required
to compute DWT at various levels of decomposition.
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TABLE 2. Computational complexity of various algorithms for the removal of artifacts (where ‘L’ is filter length).

Thus, from the Table 1, it can be stated that ‘L’multiplications
and ‘L-1’ additions are required to compute DWT [28]. The
computational complexities of the LMLS variants are shown
in Table 2. The overall computational complexity for the
proposed algorithms is tabulated in Table 3. For example,
in the PLI, there are two octaves, the total computational
complexity will be the sum of the computational complex-
ity of proposed LMLS variants plus the DWT complexity.
Similarly, the computational complexity for a higher level of
decomposition is dependent on the filter length ‘L’.

From the Tables 3, it is found that, BBSRNLMLS requires
less number of multiplications. ASE based algorithm is
more useful in remote cardiac care monitoring systems. Fur-
ther, due to clipping, a simple LMS combined with SRA
needs only one multiplication. BBSRNLMLS requires seven
multiplications to process the algorithm. In the case of
BBSSNLMLS only two multiplications are sufficient. But,
due to clipping of data vector and error, the signal quality
will be degraded. So, BBSSNLMLS is not suitable for noise
cancellation applications. Based on the above considerations
it is confirmed that BBSRNLMLS can be a better algorithm
in noise cancellation applications in cardiac care monitoring
systems.

C. CONVERGENCE CURVES
The convergence characteristics of LMLS and NLMLS algo-
rithms are shown in Figure 3 and Figure 4 respectively. From
these characteristics, it is clear that normalization increases
the convergence speed. However, by applying the signum
function the convergence becomes slow. Also, from the illus-
trations, it is clear that the hybrid version of the Sign Regres-
sor Algorithm (SRA) is inferior to the non-signum based
algorithms. The convergence value should be optimal other-
wise the system becomes unstable. So, from the convergence
analysis, it is clear that SRA based normalized LMLS can be
used in practical realizations due to good convergence and
less computational complexity.

III. SIMULATION RESULTS
The implemented models are tested using the cardiac sig-
nals acquired from the MIT-BIH arrhythmia database [26].

FIGURE 3. Convergence characteristics of various variants of LMLS
algorithms.

FIGURE 4. Convergence characteristics of various variants of NLMLS
algorithms.

The MIT−BIH Arrhythmia Database contains records of
normal ECG signals. This provides an opportunity to test
the robustness of QRS, P and T wave detection methods.
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TABLE 3. Computational complexity of various adaptive signal enhancers (where ‘L’ is filter length).

But in real time monitoring there are various sources to
acquire the real ECG signal, depending on the application.
For instance, if continuous patient monitoring is consid-
ered than the ECG signals are directly acquired from the
patient to measure the performance and further to process it.
Apart from the performance measures like convergence and
computational complexity, the Signal to Noise Ratio (SNR)
and Excess Mean Square Error (EMSE) are also consid-
ered as evaluation parameters in the filtering process. The
results are tabulated in Tables 4, 5, 6 and the simulation
results are shown in Figure 5 to Figure 12 respectively.

For the experimentation purpose, first 4000 samples of the
records were considered. We collected a set of five records
from the MIT-BIH arrhythmia database with record num-
bers 101, 102, 103, 104 and 105. However, due to space
constraints, the experimental results corresponding to data
105 are shown. In the implementation of ASE, we have used
a FIR filter, of length 10. The adaptive algorithms have been
tuned and converged to a step size of 0.01. A random noise
with an intensity of 0.001 has been added to the artifact
components to see its effect on free space in a practical
telemetry system. The process of noise elimination is carried
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TABLE 4. SNR computations of LMLS based ASE’s obtained during artifact elimination process (all values in DB’s).

TABLE 5. SNR computations of block based ASE’s obtained during artifact elimination process (all values in DB’s).

using various ASE’s based on LMLS variants. LMS, LMLS,
NLMLS, SRNLMLS, SNLMLS, SSNLMLS, BBNLMLS,
BBSRNLMLS, BBSNLMLS and BBSSNLMLS algorithms
have been used for noise elimination respectively.

The original wavelet function is called as mother wavelet
function which decomposes the signal into low frequency and
high frequency coefficients. The main challenge in using dis-
crete wavelet transform is to select the most optimum mother
wavelet for the given tasks, as different mother wavelet
applied on to the same signal may produces different results.
The selection of mother wavelet is based on the accuracy
of wavelet results. In this paper, we have used Daubechies
4 (db4) as mother wavelet. In biomedical signal analysis,

db4 wavelet can be used since this function closely resembles
the QRS complex of an ECG signal. In practical applications,
Daubechies wavelets are usually adopted because they have
no orthonormality. However, they have a finite time support
(that eases the handling of border effects), and form a basis
where the number of vanishing moments can be naturally
increased.

The octave band tree is a special irregular tree structure
which splits the signal into two equal bands. The num-
ber of levels of decomposition (Octaves) depends on the
sampling frequency of the cardiac signal. In our work,
we used a sampling frequency of 256Hz. The BW has a fre-
quency approximately 0.5Hz, it has to undergo seven levels
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TABLE 6. EMSE computations of various ASE’s obtained during artifact elimination process (all value S in DB’s).

of decomposition. At the seventh level of decomposition the
approximate coefficient function falls in the range of 0Hz
to 1Hz. In the ECG signal, the frequency of MA is approx-
imately ranged between 15-30Hz. For the said frequen-
cies second level or third level decompositions are sufficient.
Since, MA and ECG are having partially overlapping spectra,
the MA activity can be reduced by allowing the patient to
relax. This is suitable for short timemonitoring. For long time
monitoring, under an ambulatory condition, high frequency
MA noise must be filtered using detailed components. The
EM artifact has same type of pattern as that of BW. So,
the same level of decomposition as that of BW is sufficient.
The Power Line Interference (PLI) of 50/60Hz is the source
of interference. Thus, for PLI, the second level decomposition
is needed. In this paper we are considering the artifacts which
are more recurring like BW, PLI, MA and EM. But there
are artifacts which may occur occasionally like, loose lead
artifact, Arterial pulse tapping artifact, Echo distortion arti-
fact, Neuro modulation artifact, CPR compression artifact,
Electromagnetic interference (EMI), Muscle tremor artifact.

A. ADAPTIVE ELIMINATION OF BW USING
LMLS VARIANTS
The enhanced ECG after the removal of BW using various
algorithms is shown in Figure 5. The residual noise after
the noise elimination process is shown in Figure 6. The
residual noise is less in the case of Figure 6 (c,d). The
figure shows the residual noise is approaching a straight
line, to indicate that much of the artifact is eliminated in the
filtering action due to NLMLS and SRNLMLS algorithms.
From the Figure 5 (a,j) we can observe the major reduction of
noise in the ECG signals. In Figure 5(j), the ECG is clear and

so is the computational complexity which is less and promises
a great benefit in remote cardiac care applications. In this
experiment, the performance of the DWT based ASE is mea-
sured using the SNR and EMSE, and the numerical values
are noted in Table 4, Table 5 and Table 6 respectively. During
the filtering process, Signal to Noise Ratio Improvement
(SNRI) achieved by various techniques are, LMS achieves
4.6124dB, LMLS achieves 7.2893dB, NLMLS achieves
15.9225dB, SRNLMLS achieves 14.3057dB, SNLMLS
achieves 12.4357dB, SSNLMLS achieves 10.2594dB,
BBNLMLS achieves 14.5821dB BBSRNLMLS achieves
13.2945dB, BBSNLMLS achieves 11.9238dB and
BBSSNLMLS achieves 9.8294dB. But, of all the algorithms
BBSRNLMLS is found to be better in terms of filtering
and computational complexity. The numerical values for
EMSE are as follows, −12.6204dB for LMS, −15.3476dB
for LMLS, −29.4432dB for NLMLS, −27.9865dB for
SRNLMLS, −25.2345dB for SNLMLS, −23.6704dB for
SSNLMLS, −28.1569dB for BBNLMLS, −26.3434dB
for BBSRNLMLS, −24.2335dB for BBSNLMLS, and
−22.2345dB for BBSSNLMLS. Among all the algorithms
BBSRNLMLS are found to be the better considering the
smaller number of multiplications with inferior filtering
ability.

B. ADAPTIVE ELIMINATION OF PLI USING LMLS VARIANTS
In this section, removal of PLI is demonstrated. The received
ECG is fed to DWT, which generates the reference signal.
Using the feedback path, the algorithm trains the filter coef-
ficients to relate closely to the artifact in the ECG. In this
experiment the performance of the DWT based ASE were
measured by SNR and EMSE which can be seen in Table 4,
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FIGURE 5. Enhanced ECG after BW elimination (a). ECG with BW (b). BW noise (c). Enhanced ECG after
LMS (d). Enhanced ECG after LMLS (e). Enhanced ECG after NLMLS (f). Enhanced ECG after SRNLMLS (g). Enhanced
ECG after SNLMLS (h). Enhanced ECG after SSNLMLS (I). Enhanced ECG after BBNLMLS (j). Enhanced ECG after
BBSRNLMLS (k). Enhanced ECG after BBSNLMLS (l). Enhanced ECG after BBSSNLMLS (number of samples are taken
on x-axis and amplitude on y-axis).

FIGURE 6. Residual noise in ECG signal after BW elimination, (a). after filtering with LMS (b). after filtering
with LMLS (c). after filtering with NLMLS (d). after filtering with SRNLMLS (e). after filtering with
SNLMLS (f). after filtering with SSNLMLS (g). after filtering with BBNLMLS (h). after filtering with
BBSRNLMLS (i). after filtering with BBSNLMLS (j). after filtering with BBSSNLMLS (number of samples are
taken on x-axis and amplitude on y-axis).

Table 5 and Table 6 respectively. The enhanced results of
ECG after the removal of PLI using various algorithms are
shown in the Figure 7. By comparing the Figure 7 (a) and

Figure 7 (j), we can observe that the ECG is enhanced
in Figure 7 (j) than the others. The residual noise after
the noise elimination is shown in Figure 8, which is
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FIGURE 7. Enhanced ECG after PLI elimination (a). ECG with PLI (b). PLI noise (c). Enhanced ECG after
LMS (d). Enhanced ECG after LMLS (e). Enhanced ECG after NLMLS (f). Enhanced ECG after SRNLMLS (g). Enhanced
ECG after SNLMLS (h). Enhanced ECG after SSNLMLS (i). Enhanced ECG after BBNLMLS (j). Enhanced ECG after
BBSRNLMLS (k). Enhanced ECG after BBSNLMLS (l). Enhanced ECG after BBSSNLMLS (number of samples are taken
on x-axis and amplitude on y-axis).

FIGURE 8. Residual noise in ECG signal after PLI elimination, (a). after filtering with LMS (b). after
filtering with LMLS (c). after filtering with NLMLS (d). after filtering with SRNLMLS (e). after filtering with
SNLMLS (f). after filtering with SSNLMLS (g). after filtering with BBNLMLS (h). after filtering with
BBSRNLMLS (i). after filtering with BBSNLMLS (j). after filtering with BBSSNLMLS (number of samples are
taken on x-axis and amplitude on y-axis).

even more reduced in Figure 8 (c, d). The SNR is
also higher when compared with the other algorithms
as shown in the Table 4, Table 5 and Table 6. Dur-
ing the filtering process the SNRI achieved by various

techniques are, LMS achieves 8.0063dB, LMLS achieves
9.880dB, NLMLS achieves 18.2356dB, SRNLMLS achieves
17.6145dB, SNLMLS achieves 14.9285dB, SSNLMLS
achieves 12.5067dB, BBNLMLS achieves 17.8247dB,
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FIGURE 9. Enhanced ECG after MA elimination (a). ECG with MA (b). MA noise (c). Enhanced ECG after LMS (d).
Enhanced ECG after LMLS (e). Enhanced ECG after NLMLS (f). Enhanced ECG after SRNLMLS (g). Enhanced ECG after
SNLMLS (h). Enhanced ECG after SSNLMLS (i). Enhanced ECG after BBNLMLS (j). Enhanced ECG after BBSRNLMLS (k).
Enhanced ECG after BBSNLMLS (l). Enhanced ECG after BBSSNLMLS (number of samples are taken on x-axis and
amplitude on y-axis).

BBSRNLMLS achieves 16.4289dB, BBSNLMLS achieves
13.2568, and BBSSNLMLS achieves 11.2532. Similarly
the numerical values for EMSE are, −21.5227dB for
LMS, −25.3468dB for LMLS, −36.7343dB for NLMLS,
−34.5676dB for SRNLMLS, −32.5436dB for SNLMLS,
−30.5689dB for SSNLMLS, −34.3214dB for BBNLMLS,
−32.8909dB for BBSRNLMLS, −30.0754dB for
BBSNLMLS, and −29.3479dB for BBSSNLMLS. By con-
sidering less number of multiplications, BBSRNLMLS is
found to be better, even though it is inferior to NLMLS,
SRNLMLS, and BBNLMLS algorithms in terms of filtering
ability.

C. ADAPTIVE ELIMINATION OF MA USING
LMLS VARIANTS
The filtering results of various algorithms of MA are
shown in the Figure 9. The MA is generated from the
DWT, which is given as reference signal and the cor-
rupted cardiac signal is given as the desired signal. In this
experiment the performance of the DWT based ASE
is measured using SNR and EMSE which are shown
in Table 4, Table 5 and Table 6 respectively. The resid-
ual noise component after the noise elimination process
is shown in Figure 10. The residual noise is less in the
case of Figure 10 (c, d). During the filtering process the
SNRI achieved by various techniques are, LMS achieves
3.0008dB, LMLS achieves 6.8472dB, NLMLS achieves

14.9245dB, SRNLMLS achieves 13.0982dB, SNLMLS
achieves 11.4576dB, SSNLMLS achieves 9.8247dB,
BBNLMLS achieves 13.2573dB, BB-SRNLMLS achieves
12.4589dB, BB-SNLMLS achieves 10.9250dB, and
BBSSNLMLS achieves 8.2347dB. Similarly the numer-
ical values of EMSE are as follows, −13.8287dB for
LMS, −16.9098dB for LMLS, −30.7087dB for NLMLS,
−28.9008dB for SRNLMLS, −26.1254dB for SNLMLS,
−24.5476dB for SSNLMLS, −29.6777dB for BB-NLMLS,
−27.3233dB for BBSRNLMLS, −25.6679dB for BB-
SNLMLS and −23.4555dB for BBSSNLMLS. By consid-
ering less number of multiplications BBSRNLMLS is found
to be better, even though it is inferior to NLMLS, SRNLMLS,
and BBNLMLS algorithms in terms of filtering ability.

D. ADAPTIVE ELIMINATION OF EM USING
LMLS VARIANTS
The filtering results of EM are shown in the Figure 11.
In this experiment the performance of the DWT based
ASE is measured using SNR and EMSE which are
shown in Table 4, Table 5 and Table 6 respectively.
The residual noise after the noise elimination process is
shown in Figure 12. The residual noise is less in the
case of Figure 12 (c, d). During the filtering process the
SNRI achieved by various techniques are, LMS achieves
4.7782dB, LMLS achieves 7.9247dB, NLMLS achieves
15.2345dB, SRNLMLS achieves 14.2897dB, SNLMLS
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FIGURE 10. Residual noise in ECG signal after MA elimination, (a). after filtering with LMS (b). after filtering
with LMLS (c). after filtering with NLMLS (d). after filtering with SRNLMLS (e). after filtering with
SNLMLS (f). after filtering with SSNLMLS (g). after filtering with BBNLMLS (h). after filtering with
BBSRNLMLS (i). after filtering with BBSNLMLS (j). after filtering with BBSSNLMLS (number of samples are
taken on x-axis and amplitude on y-axis).

FIGURE 11. Enhanced ECG after EM elimination (a). ECG with EM (b). EM noise (c). Enhanced ECG after
LMS (d). Enhanced ECG after LMLS (e). Enhanced ECG after NLMLS (f). Enhanced ECG after SRNLMLS (g). Enhanced
ECG after SNLMLS (h). Enhanced ECG after SSNLMLS (i). Enhanced ECG after BBNLMLS (j). Enhanced ECG after
BBSRNLMLS (k). Enhanced ECG after BBSNLMLS (l). Enhanced ECG after the BBSSNLMLS (number of samples are
taken on x-axis and amplitude on y-axis).

achieves 12.9245dB, SSNLMLS achieves 10.9343dB,
BBNLMLS achieves 14.9245dB, BBSRNLMLS achi-
eves 13.6423dB, BBSNLMLS achieves 11.5243dB and

BBSSNLMLS achieves 9.2849dB. Similarly the numer-
ical values of EMSE are as follows, −12.3952dB
for LMS, −15.4545dB for LMLS, −29.9875dB for
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FIGURE 12. Residual noise in ECG signal after EM elimination, (a). after filtering with LMS (b). after filtering with
LMLS (c). after filtering with NLMLS (d). after filtering with SRNLMLS (e). after filtering with SNLMLS (f). after filtering
with SSNLMLS (g). after filtering with BBNLMLS (h). after filtering with BBSRNLMLS (i). after filtering with
BBSNLMLS (j). after filtering with BBSSNLMLS (number of samples are taken on x-axis and amplitude on y-axis).

NLMLS, −27.9876dB for SRNLMLS, −25.9087dB for
SNLMLS, −23.4677dB for SSNLMLS, −28.4567dB for
BB-NLMLS, −26.5467dB for BBSRNLMLS, −24.6578dB
for BB-SNLMLS and −22.3334dB for BB-SSNLMLS.
By considering number of multiplications BBSRNLMLS is
found to be better, even though it is inferior to NLMLS,
SRNLMLS, and BBNLMLS algorithms in terms of filtering
ability.

IV. CONCLUSION
In this paper, an attempt has beenmade to propose ASE-DWT
based reference signal generation technique. The DWT unit
generates the reference signal corresponding to the arti-
facts present in the cardiac signal. In proposed method
LMLS based artifact cancellation is implemented. Sim-
ulation results have proved that by using LMLS based
artifact cancellation, artifacts are removed from the car-
diac signal. For comparison purpose various algorithms,
namely, LMS, LMLS, NLMLS, SRNLMLS, SNLMLS,
SSNLMLS, BBNLMLS, BBSRNLMLS, BBSNLMLS, and
BBSSNLMLS are implemented for noise cancellation exper-
iments.Among the considered algorithms BB-SRNLMLS
achieves comparably better SNR and EMSE than the other
algorithms. However, BB-SRNLMLS needs only ‘7’ mul-
tiplications and greatly less than the other three algorithms
NLMLS; SRNLMLS; BB-NLMLS. But the SNR and EMSE
of BB-SRNLMLS is little bit inferior than the remaining
algorithms. So, by considering the smaller number of compu-
tations required by BB-SRNLMLS, even though it is inferior
in terms of SNR and EMSE it may be used for practical

medical telemetry systems. The performance measures such
as, SNR, EMSE, computational complexity, convergence
characteristics are measured and shown in Tables 1, 2, 3, 4,
5, 6 and Figure 3, Figure 4 respectively. Thus, BBSRNLMLS
based ASE is found to be better than other algorithms. Hence,
this realization is suitable for real time remote cardiac care
monitoring applications.
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