
SPECIAL SECTION ON ENERGY MANAGEMENT IN BUILDINGS

Received May 16, 2018, accepted July 1, 2018, date of publication August 21, 2018, date of current version December 31, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2866461

Energy Efficient Integration of Renewable
Energy Sources in the Smart Grid for
Demand Side Management
NADEEM JAVAID 1, (Senior Member, IEEE), GHULAM HAFEEZ2, SOHAIL IQBAL 3,
NABIL ALRAJEH4, MOHAMAD SOUHEIL ALABED4, AND MOHSEN GUIZANI 5, (Fellow, IEEE)
1Department of Computer Science, COMSATS University Islamabad, Islamabad 44000, Pakistan
2Department of Electrical Engineering, COMSATS University Islamabad, Islamabad 44000, Pakistan
3Department of Computing, National University of Science and Technology, Islamabad 44000, Pakistan
4Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University, Riyadh 11633, Saudi Arabia
5Department of Electrical and Computer Engineering, University of Idaho, Moscow, ID 83844, USA

Corresponding author: Nabil Alrajeh (nabil@ksu.edu.sa)

This work was supported by the Deanship of Scientific Research at King Saud University under Grant RG-1438-037.

ABSTRACT With the emergence of smart grid (SG), the consumers have the opportunity to integrate
renewable energy sources (RESs) and take part in demand side management. In this paper, we introduce
generic home energy management control system (HEMCS) to efficiently schedule the household load and
integrate RESs. The HEMCS is based on the genetic algorithm, binary particle swarm optimization, wind-
driven optimization (WDO), and our proposed genetic WDO algorithm to schedule appliances of single and
multiple homes. For energy cost calculation, real-time pricing (RTP) and inclined block rate schemes are
combined, because in case of only RTP, there is a possibility of building peaks during off-peak hours that may
damage the entire power system.Moreover, to control the demand under the grid station capacity, the feasible
region is defined and a problem is formulated using multiple knapsack. Energy efficient integration of RESs
in SG is a challenging task due to time varying and their intermittent nature. The simulation results show
that the proposed scheme avoids voltage rise problem in areas with high penetration of renewable energy.
Moreover, the proposed scheme also reduces the electricity cost up to 48% and peak to average ratio of
aggregated load up to 37.69%.

INDEX TERMS Renewable energy sources, demand side management, load scheduling, meta-heuristic
techniques, trading/cooperation.

I. INTRODUCTION
Traditional electric grids are inefficient to meet the mod-
ern challenges, i.e., renewable energy (RE) integration, dis-
tributed generation (DG) and demand side management
(DSM). In this regard, smart grid (SG) has emerged as a
smart solution which integrates traditional power systems
with information and communication technologies (ICTs)
and enables two-way communication between utility and
consumers [1]. It also incorporates RE sources (RESs),
energy storage systems (ESSs), smart meters, distributed
storage (DS) and sensors. Moreover, it encourages user par-
ticipation for energy savings, cooperation through demand
response (DR) mechanism and trading among prosumers [2].

RESs are greener alternative to fossil fuel and key con-
tributors for the SG. Therefore, an energy efficient integra-
tion of RESs has increased in recent years. It was recorded

in 2014 that wind, solar and biomass power plants provided
60% electricity in Denmark, about 30% of electricity demand
in Portugal was supplied by non-hydropower renewable and
Spain had 29% of RE generation [3]. However, the energy
efficient integration of RESs in SG poses significant chal-
lenges from both RE and power grid sides. From the RE
side, to handle intermittent nature of RESs due to varying
weather conditions is a challenging task. From the power grid
side, harmonics, voltage and frequency fluctuations due to
power electronic devices is a challenge. Energy storage and
load scheduling by DR are effective to mitigate stochastic and
intermittent nature of RE generations [4], [5].

DSM has been developed since early 1980s to balance
the time varying demand of consumers and generation
capacity of power systems. Zhao et al. [6], perform the
optimal scheduling of appliances by employing genetic
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algorithm (GA). This model reduces the electricity cost and
peak to average ratio (PAR) while using real time pric-
ing (RTP) plus inclined block rate (IBR) tariffs. However,
the objectives are achieved at the cost of user comfort.
Another relevant work in [7], utilizes heuristic based energy
management controller (EMC) to optimally schedule appli-
ances in the presence of time of use (ToU) plus IBR tar-
iff and achieves the objectives: electricity bill reduction,
PARminimization and user comfort maximization. However,
reducing electricity bill and PAR results in less user comfort
because of the tradeoff between cost and user comfort. The
EMC based on the harmony search differential evolution
(HSDE) algorithm, for home energy management (HEM),
is proposed in [8]. The EMC schedules appliances while
taking energy from both utility and RESs and considers RTP
tariff for billing systems. However, the electricity bill saving
is increased at the expense of user comfort. The intelligent
residential energy management system (IREMS) is used for
the optimal scheduling of household appliances and sizing
of RESs and ESS [9]. The electricity cost is reduced and the
revenue is increased using GA. However, users’s categoriza-
tion and trading surplus energy is not considered between the
users.

Hence, in this paper, we focus on energy efficient integra-
tion of RESs with the battery storage in smart homes, where,
load is scheduled using heuristic techniques. In this regard,
we propose an architecture to efficiently schedule household
loads and integrate RESs for minimizing the difference of
demand and supply. The distinctive features of our proposed
work are given as follows:

1) We design a HEM control system (HEMCS) hav-
ing an energy management control unit (EMCU) to
schedule household appliances under the DSM frame-
work. Furthermore, the appliances are categorized as:
smart appliances (SAs) and traditional appliances (TA).
To schedule the appliances optimally, SAs are further
classified into three categories: power elastic appli-
ances, time elastic appliances and essential appliances.
The EMCU schedules appliances for a single home
and multiple homes using four different meta-heuristic
techniques: the evolutionary algorithm called GA,
equation based optimization algorithm known as binary
particle swarm optimization (BPSO), population based
scheme which is wind driven optimization (WDO) and
our proposed genetic WDO (GWDO) algorithm. The
simulations are performed to analyze the significance
of each earlier said optimization scheme against the
parameters of user comfort, PAR and electricity cost.

2) The challenge of RESs (stochastic and intermittent
nature for energy generation) is handled by integration
of ESS and energy trading among consumers. In this
regard, residential consumers are divided into three
categories: grid energy consumer (GEC), smart energy
consumer (SEC) and trading energy consumer (TEC).
In addition, consumers with excess power generation
compete to trade excess generation with neighboring

consumers to increase the revenue and reduce the
reverse power flow.

The rest of the paper is organized as follows. Related work
is presented in Section II. In Section III, the system model is
introduced. Problem formulation is discussed in Section IV.
Section V describes the results obtained through extensive
simulations and the findings of the proposed work are pre-
sented in Section VI.

NOMENCLATURE
Atn Set of all appliances
SA Set of smart appliances
TA Set of traditional appliances
Aspe Set of power elastic appliances
pir Power rating of an appliance
EpeT Energy consumption of power elastic appli-

ances
Xt Indicate status of an appliance
Cpe
T Daily electricity cost of power elastic appli-

ances
ϕ(t) Electricity cost per timeslot
Th Scheduling time horizon
Aste Set of time elastic appliances
E teT Energy consumption of time elastic appli-

ances
C te
T Total electricity cost of time elastic appli-

ances
Asea Set of essential appliances
EeaT Total energy consumption of essential appli-

ances
Cea
T Total electricity cost of essential appliances

E ic(t) Energy consumption of each appliance i at
timeslot t

E iT Aggregated energy consumption of all set of
appliances

RPI (E) Combined RTP and IBR function
Eth Threshold energy consumption
Dg(t) GEC energy demand per timeslot
Dgmax GEC maximum energy demand
Eg(t) GEC energy consumption per timeslot
Eg GEC aggregated energy consumption
Ds(t) SEC energy demand per timeslot
Dsmax SEC maximum energy demand
Rs(t) SEC harvested RE
Dus (t) SEC unsatisfied demand
Bed,s(t) Energy drawn by SEC from their ESS
Rs,T (t) SEC borrowed energy from TEC
Seb,s(t) Initially stored energy in ESS of SEC at per

timeslot
Se,min
b,s Lower limit of ESS of SEC
Se,max
b,s Upper limit of ESS of SEC
DT (t) Energy demand of TEC
Dtmax Maximum demand of TEC
RT (t) Harvested RE of TEC
DuT (t) Unsatisfied demand of TEC
Bed,T (t) Energy drawn of TEC from ESS
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RT ,n(t) Energy exchange among TEC
Seb,s(t + 1) Energy stored in next timeslot in the ESS of

SEC
Be,max
d,s Maximum energy drawn from ESS of SEC
Se,min
b,T Lower limit of ESS of TEC
Se,max
b,T Upper limit of ESS of TEC
Be,max
d,T Maximum energy drawn from ESS of TEC
Ssat State of SA at each timeslot

rnt Number of remaining timeslots
wnt Number of waiting timeslots
Spet Initial state of power elastic appliances
Spet+1 State of power elastic appliance at next times-

lot
S tet Initial state of time elastic appliances
S tet+1 State of time elastic appliance at next timeslot
Seat Initial state of time elastic appliances
Seat+1 State of time elastic appliance at next timeslot
Ce
T Total electricity cost

Apr Peak to average ratio
T os Operation timeslots of an appliance
Cw Waiting time cost
µi Time factor of an appliance
Ai Arrival timeslot of an appliance
Capacity Capacity of the grid
α Start time of interval
Ce
s,T (t) Cost of per unit energy transfer of SEC from

TEC
Ce
T ,n(t) Cost per unit of energy exchange among

neighboring TEC
Ce
g(t) Cost of the energy transfer from electricity

grid station
CostGEC GEC cost
CostSEC SEC cost
CostTEC TEC cost
β End time of interval
Ce,max
g Maximum cost of the energy transfer from

electricity grid station
Cr,max
s,T Maximum cost of per unit energy transfer of

SEC from TEC
Ses (t) Energy stored at each timeslot in ESS of SEC
SeT (t) Energy stored at each timeslot in ESS of TEC
RT (t) Renewable energy harvested by TEC

II. RELATED WORK
In order to optimally schedule a household load and inte-
grate RESs, numerous techniques have been presented in
the literature. Two different techniques are described to mit-
igate intermittent nature of RESs in [10]. The first one is
the storage system, which smooth out fluctuations of RE
obtained from RESs. The second technique is the concept of
DG combined with cooperation by exchanging energy among
distributed sources. This technique averages out variations in
energy production across space. The objective is to minimize
average cost of energy exchange within the grid. However,

reduction in the number of peak power plants and frequency
of interruption are not addressed. An alternate method, tomit-
igate stochastic and intermittent nature of RESs is fast-
ramping fuel-based generator as a backup. However, this
method is not cost effective and environmentally friendly.
Liang and Xiaodong [11] presented power quality chal-

lenges due to integration of RESs. The engineering complex-
ity in the integration of RESs to grid is twofold: (i) voltage and
frequency fluctuations, which are caused by non-controllable
variability or intermittent nature of RESs and ii) harmonics
which are caused by the power electronic devices. However,
cooperation among RE generating users are not considered
by the authors.
Li et al. [12] proposed a real time residential side joint

energy storage management and load scheduling model with
RESs integration, under the assumption that RESs, load and
electricity price (EP) are unknown. The authors use the lya-
punov optimization technique to tackle finite time horizon
stochastic problem. In addition, they also use a real time
algorithm for joint load scheduling and energy storage control
to minimize the overall system cost. The simulation results
demonstrate that the proposed scheme is efficient in reducing
the system cost. However, the authors have ignored cooper-
ation among RE generating consumers and residential load
classification.
Zhao et al. [6] have investigated optimal power scheduling

method for DR in HEM system (HEMS). The scheduling of
appliances helped in the reduction of electricity consumption
cost and avoidance of PAR. Moreover, the energy manage-
ment system (EMS) is integrated with a home area network
(HAN) based on RTP with IBR models. The effectiveness of
the schemes is validated via conducting extensive simulations
and it is concluded that the proposed scheme outperforms the
compared schemes in terms of electricity bill and PAR at the
cost of user comfort.

An efficient heuristic approach in [7] presented to utilize
EMC with RESs. For the EP computation, combined model
of ToU with IBR tariffs is used. The problem formulation is
carried out via multiple knapsack (MK). The heuristic based
EMC performs more efficiently in terms of the electricity
bill reduction, PAR minimization and user comfort maxi-
mization. Simulation results show that the designed model
significantly achieves required objectives and hence increases
sustainability of SG. However, when reducing the electricity
cost, the user comfort increases because of inverse relation
between cost and comfort.

Kazmi et al. [8] proposed an algorithm for providing incen-
tive based scheduling for the optimal energy consumption.
DR with ToU pricing program is used to reduce the energy
demand during peak hours. BPSO based HEMS schedules
the appliances and RESs for reducing the electricity bill.
However, the issues of user comfort and challenges of RESs
integration are neglected.

Arun and Silvan [9] proposed IREMS for dynamic DR
in smart buildings. The IREMS schedules appliances during
low-price slots while considering operational dynamics of
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non-schedulable load and intermittent nature of RESs and
maintaining the power demand subjected to various con-
straints in order to reduce the electricity cost. The RESs and
battery storage systems are optimally sized using the GA.
Furthermore, the IREMS ensures effective utilization of
RESs by optimally controlling the battery operation and prop-
erly scheduling the schedulable load.

An intelligent multi-agent control system (MACS) is pro-
posed in [13] to optimize the electricity use and enhance
the user comfort in smart buildings. Intelligent MACS with
heuristic optimization is designed for reducing the energy
consumption without compromising the user comfort and
pressure on environment. A graphical user interface (GUI)
based platform is also developed to provide flexibility to users
to input their preferences and monitor the results. Agents
are divided into four types to coordinate and perform their
tasks efficiently. The simulation results show that intelligent
MACS efficiently achieves the desired objectives. However,
the issues of minimizing appliances’ waiting time, PAR and
demand curve smoothing are not discussed.

Agent based control for decentralized DSM (DDSM) is
used to manage the demand on a large scale in SG [14].
Evolutionary game theoretic techniques (EGTTs) are used
to motivate consumers to adopt an agent based smart meter.
In this mechanism, the agents coordinate in a decentralized
manner to optimize the consumption patterns. The results
show that the proposed scheme is efficient in terms of:
(i) peak demand reduction, (ii) carbon emission and
(iii) decentralized DG. However, authors have ignored power
quality issues accompanied with DG.

Hafeez et al. [15] proposed a heuristic based EMCU to
schedule the household in order to reduce cost and PAR.
In addition, they handle the RESs integration by ESS and
cooperation among the consumers in order to reduce the
reverse power flow. Javaid et al. [16] presented an efficient
model of the DSM that reduces the PAR and electricity bill for
residential, industrial and commercial users. The scheduling
problem is formulated as a minimization problem and eval-
uated using a heuristic evolutionary approach. The proposed
model is beneficial for both utility and customers. However,
the issues such as user comfort, reduction in power consump-
tion and pressure on the environment are not discussed.

A residential power scheduling for DR in SG is pro-
posed for optimal scheduling of smart appliances in order
to minimize the tradeoff between the electricity payments
and discomfort [17]. The power scheduling is formulated as
an optimization problem including integer and continuous
variables under three operation modes. In addition, an opti-
mal scheduling of appliances is achieved by using integer
liner programming (ILP). The simulation results show that
scheduling strategy is effective in achieving desired objec-
tives. However, the proposed scheme achieves objectives at
the cost of increased system complexity and execution time.

The load scheduling and power trading in systems with
high penetration of RESs is presented in [18]. Authors adopt
approximate dynamic programming to schedule operation

of must-run and controllable appliances and game theoretic
approach to model trading among users with excess power
generation. They formulate a problem of joint load schedul-
ing and power trading in order to increase the revenue and
reduce the electricity cost. The simulation results show that
the scheme is effective in achieving the desired objectives.
However, the challenges accompanied with integration of
RESs are not mentioned.

Phuangpornpitak and Tia [19] investigated the opportu-
nities and challenges of RESs integration in SG systems.
With the integration of RESs, the objectives achieved are as
follow: (i) increase the reliability of the grid and (ii) reduce
the number of peak power plants. However, the stochastic
nature of the RE is an obstacle to the RESs integration into
the SG.

Rahbar et al. [20] proposed an energy cooperation opti-
mization in microgrids with RESs integration. The energy
management problem is handled by two models of micro-
grid cooperation. First, an energy management is preformed
through the off-line optimization by assuming that microgrids
net RE generation, aggregated load and ESSs capacity are
perfectly known ahead of time. Both microgrids energy coop-
eration and ESS can help to mitigate intermittent nature RE
and thereby reduce the net energy cost. In the second method,
the energy management is performed by real-time cooper-
ation of the microgrid using two on-line algorithms of low
complexity namely store-then-cooperate and cooperate-then-
store. The simulation results show that the on-line algorithms
perform optimal energy management very close to the off-
line optimization. However, the power quality problems arise
while trading/cooperation energy with the main grid.

The generic DSMmodel is proposed in [21] for residential
users to reduce PAR, electricity bill and appliances waiting
time. The GA is used for appliances scheduling while satis-
fying the operational constraints. There is a tradeoff between
the electricity cost and the waiting time. The RTP with the
IBR model is used to avoid peak formation. The results show
the effectiveness of the proposed model for both single and
multiple users scenarios in terms of objectives. However,
they ignore the following issues: (i) user comfort and (ii) the
balance between the supply and demand.

Ma et al. [22] introduced a novel concept of cost efficiency-
based residential load scheduling framework, to improve the
economic efficiency of residential sector. The cost efficient
load scheduling for the demand side is performed using
fractional programming, while taking into account the day
ahead bidding and RTP scheme. For practical consideration,
they take the service fee and DERs into account and analyze
their impacts on the cost efficiency. Results show that the
proposed scheduling algorithm can effectively alters users’
consumption behaviors and achieve optimal cost-efficient
energy consumption profile. However, user comfort is com-
promised while reducing the electricity cost.

Chapman et al. [23] presented algorithmic and strate-
gic aspects to integrate DSM aggregation. They proposed
a demand side participation (DSP) through an aggregator,
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which directly interacts with the EMS for load scheduling.
Moreover, they have designed a generic residential demand
side aggregation (RDSA) model by combining the demand
side aggregation with the HEMS. The results obtained
through simulations showed the effectiveness of the scheme
related to reduction in electricity cost for end users and utility
company. However, objectives are achieved at the cost of user
comfort and PAR.

Atia et al. [24] presented the analysis for residential micro-
grids based on the sizing of RESs and battery storage systems.
Mixed ILP (MILP) is used for optimal load scheduling with
high penetration of RESs in residential microgrids. A stochas-
tic model is developed for intrinsic stochastic behavior of
RESs and the uncertainty involving electric load predic-
tion. The aforementioned technique is used to increase the
load flexibility, reduce computational burden and electricity
cost. However, power quality problems arise with integration
of RESs.

The model of DR optimization for smart home scheduling
under RTP is proposed in [25]. Objective functions defined
for the minimization of the electricity bill and user dis-
satisfaction are formulated by convex programming (CP).
Regularization technique is proposed to deal with SAs for
which on/off status are governed by binary decision variables.
By relaxing these variables from integer to continuous val-
ues, the problem is reformulated as a new CP problem with
an additional regularization term in the objectives. Simula-
tion results show efficient reduction in electricity cost and
users dissatisfaction; however, the issues of peak formation,
appliances’ waiting time and integration of RESs are not
addressed.

An optimal energy scheduling for residential SG with
centralized RESs is presented in [26]. The optimal energy
scheduling aims at: (i) optimal utilization of RESs to bal-
ance the tradeoff between the system wide benefit and
the associated cost due to volatility, (ii) how volatility of
RESs influences its optimal use. Authors proposed special
monotonic structure for load scheduling and the poly-block
approximation algorithm to determine the optimal utilization
of RE to lower the marginal cost. The proposed scheme opti-
mally utilizes RESs to balance the tradeoff between benefits
and cost, however, user comfort and frequency of interruption
are not addressed.

Gao et al. [27] proposed an autonomous EMS based on
game theory for residential energy management. The simula-
tion results show that the proposed game-theoretic approach
is effective in reducing the total energy cost. Zhu et al. [28]
discussed sizing of energy storage appliances for residen-
tial feeders with high penetration of solar energy based
on graphical performance. Three locations are investigated
for installing energy storage devices. The rated power and
storage capacity are calculated to specify the operational
requirements. An EMS is proposed in [29] for optimizing
the operation of the SG. Both DSM and active manage-
ment schemes optimally utilize the RESs in order to reduce
customers’ energy consumption cost and carbon emissions.

FIGURE 1. A smart power system configuration.

The efficiency of the EMS is validated on a 23-Bus 11 kV
distribution network. A centralized scheduling model is pro-
posed in [30] to exploit the demand flexibility of residen-
tial devices. Simulation results ensure that storage heaters,
stationary batteries and electrical vehicles are the auspicious
devices for DR.

Manzoor et al. [31] proposed a teacher learning based
GA (TLGO) for home energymanagement, capable to handle
a large number of parameters with less computational efforts.
TLGO is able to handle complex scenarios and has high
convergence rate. The related work is summarized in Table 1.

III. SYSTEM MODEL
A smart power system composed of a service provider and
demand side having residential, industrial and commercial
sectors containing a large number of consumers, is shown
in Figure 1. We specifically focused on the residential sec-
tor and the electricity demand of the residential sector is
fulfilled by the RE generation, ESS, power imported from
the electricity grid station and by trading electricity among
RE generating consumers.

A. HEMCS MODEL
HEMCS comprises of: EMCU, smart meter, electrical appli-
ances and in home display and monitoring control unit
(IHD and MCU) as shown in Figure 2. The EMCU receives
RTP, DR and price incentive information from the utility
company through a smart meter. The smart meter is one of
the key factors in the SG which uses advanced metering
infrastructure (AMI) that is responsible for the bi-directional
communication between the electricity grid station and the
consumers. The communication between the electrical appli-
ances and the EMCU can be performed via various commu-
nication technologies such as ZigBee, Z-Wave, Wi-Fi, etc.
Moreover, the smart meter receives and transmits information
related to RTP, DR, price incentives and load consumption to
the electricity grid station. The EMCU, based on GA, BPSO,
WDO and GWDO, schedules the electrical appliances while
considering an objective function, constraints and control
parameters. In addition, all electrical appliances, generation
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TABLE 1. An overview of the related work.

system and control center give information to the EMCU to
read and process for further action as shown in Figure 2.

B. APPLIANCES CLASSIFICATION
In this section, appliances’ classification is discussed as
in [15]. Appliances are classified into two categories on
the bases of energy consumption pattern and their interac-
tion with EMCU. Detailed explanation of classification is
given as:

SA: This refers to the class of appliances which has
wireless transceivers and a data processor to use the wire-
less communication technologies (i.e., ZigBee, Z-Wave

and Wi-Fi) for receiving real-time data from the EMCU
to control or modulate their operations. These appliances
make the function faster and more energy efficient. These
appliances are further classified into three types, which are
discussed in the upcoming subsections.

1) POWER ELASTIC APPLIANCES
This type of appliances have elasticity in terms of their power
consumption, i.e., air conditioner, water cooler and refrig-
erator. These appliances can operate at a minimum power
during on-peak hours and at maximum power during off-
peak hours in order to reduce the peak power consumption
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FIGURE 2. Proposed system model.

and the electricity cost. We represent such type of appliances
by Aspe, their energy consumption is denoted by EpeT and pir
is the power rating. The energy consumption of power elastic
appliances is given as follows:

EpeT =
∑
i∈Aspe

T∑
t=1

(pir × Xt ) (1)

where Xt is an indicator which indicates the status of an
appliance, if it is equal to 1 the appliance will be in on state
otherwise appliances will be in off state.

The daily electricity cost of power elastic appliances can
be computed by the following equation:

Cpe
T = EpeT × ϕ(t) (2)

where Cpe
T denotes the total electricity cost of power elastic

appliances and ϕ(t) is the electricity cost per timeslot.

2) TIME ELASTIC APPLIANCES
Unlike power elastic appliances, these appliances have fixed
power rating and have elasticity in their operational time.
These appliances can be switched ON at any time within the
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user defined time intervals in order to reduce the electricity
cost and PAR. In addition, these appliances can be inter-
rupted, shifted and shutdown at any time, if needed. These
appliances are capable to execute their operations at differ-
ent intervals without degrading the performance of the task.
For instance, a water motor, a clothes dryer and a washing
machine are considered time elastic appliances. Consumers
need their water tank to be full without running out of water
motor or washing machine can operate on any timeslot before
clothes dryer. This type of appliances is represented by Aste
and their energy consumption is denoted by E teT . The energy
consumption of time elastic appliances in a day is calculated
as:

E teT =
∑
i∈Aste

T∑
t=1

(pir × Xt ) (3)

The daily electricity cost of time elastic appliances can be
computed by the following formula:

C te
T = E teT × ϕ(t) (4)

where C te
T denotes the total electricity cost of time elastic

appliances.

3) ESSENTIAL APPLIANCES
Essential appliances, such as an electric kettle, an electric iron
and an oven have fixed power ratings. These appliances can-
not be interrupted once they start their operations until com-
pletion of their tasks. They can only be shifted before they
are turned ON. These appliances have predefined scheduling
time horizon in which they operate in order to enhance users’
comfort. It is represented byAsea, having a power rating p

i
r and

the net energy consumption EeaT . A daily energy consumption
of these appliances is calculated as:

EeaT =
∑
i∈Asea

T∑
t=1

(pir × Xt ) (5)

The electricity cost can be calculated by the following
Equation:

Cea
T = EeaT × ϕ(t) (6)

whereCea
T denotes the electricity cost of the energy consumed

by the essential appliances.
TA: Unlike SA, TA refers to the type of appliances which

can be operated and controlled manually without any inter-
action to the EMCU. These appliances are used by the con-
sumers manually if needed such as, an electric bulb, a fan,
a television, a computer etc. A TA cannot be scheduled,
because they do not communicate and interact with the
EMCU.

C. POWER USAGE AND CONSUMPTION MODEL
Let the set of all appliances denoted by Atn = {SA ∪
TA} such that, SA = {Aspe ∪ Aste ∪ Asea} and TA =
{fan, television, computer}. Moreover, Aspe={AC,WC,RF},

Aste = {WM ,CD,Wm} and A
s
ea = {EK ,EI ,OV } are sets of

power elastic, time elastic and essential appliances, respec-
tively. The scheduling time horizon is of 24 hours and every
hour represents the timeslot of 12 minutes. In other words
every hour has 5 timeslots and the total timeslots are120. The
daily scheduling time horizon is represented by the symbol
Th = {1, 2, 3, ........,T } and 1, 2, 3, ........,T represents the
day timeslots from 1 to 120. For each electrical appliance i,
the energy consumption at each timeslot t, is given as follow:

E ic(t) = {E
i
c(1),E

i
c(2),E

i
c(3), .......,E

i
c(T )} (7)

where E ic(1),E
i
c(2),E

i
c(3), .......,E

i
c(T ) denote the energy

consumption of each electrical appliance i, at each
timeslot t, during a scheduling time horizon. The daily
aggregated energy consumption of each electrical appliance i,
is given below:

E iT =
T∑
t=1

E ic(t) (8)

where E iT denotes the aggregated energy consumption.

D. PRICING MODEL
To compute the electricity cost, a variety of pricing models
are available, i.e., ToU, critical peak rebates (CPR), RTP and
critical peak pricing (CPP). When only the RTP is used, there
is a possibility of building peaks during OFF peak hours,
because most users would shift their loads to off peak hours
for managing the electricity consumption cost and as a result
the entire electricity power system is damaged. Therefore,
we combined the RTP and IBR schemes in our proposed
scheduling strategy to effectively reduce the electricity cost,
peak power consumption and enhance the reliability of the
power system. This combined pricing model is beneficial for
both utility and consumers. For instance, consumers want
to reduce the electricity cost and schedule most of their
appliances during timeslots 0-30 (12am-6am) due to low
EP which may result in peak formation during this interval.
To avoid this peak formation, IBR is incorporated. In this
pricing model, when the load of a consumer increases over
a certain threshold, a penalty is added to the consumers’ bill
which decreases the peak formation. The combined RTP and
IBR function is defined as follows:

RPI (E) =

{
ϕ(t) if 0 ≤ E iT ≤ Eth
κ × ϕ(t) if E iT ≥ Eth

(9)

where E iT denotes the appliances’ aggregated energy con-
sumption, Eth is the threshold of enregy consumption
and whenever aggregated energy consumption exceeds the
threshold, the electricity cost increases by a constant positive
value κ .

E. RE INTEGRATION MODEL
Greening the power system aims at integration of RESs on
a large scale. RESs integration is a practice of developing
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efficient ways to deliver the RE to the grid and neighboring
consumers at the time of need to enhance the revenue and
reliability of the power system. Whereas, the intermittent
nature of RESs, which creates fluctuation in the power gen-
eration, makes them inefficient. Integration of te ESS is an
efficient way to smooth out these fluctuations. The alternative
way is trading where surplus generation is distributed among
neighboring consumers. On the basis of RESs generation and
energy trading, residential consumers are divided into three
categories [15]: GEC, SEC and TEC, where GEC gets energy
only from the electricity grid station and neither cooperates
nor generates their own energy as shown in Figure 3. The
SEC generates its own energy, as well as takes energy from
the electricity grid station and neighboring RE generating
consumers to fulfill their electricity demand. Unlike the SEC,
the TEC generates, stores and trades its energy with other
consumers. The detailed description is as follows:

FIGURE 3. Proposed RE model.

1) GEC
The GEC depends only on grid energy, it does not have RESs.
The energy demand of GEC is Dg(t) units per timeslot. The
energy demand of GEC is bounded as Dg(t) ≤ Dgmax . The
GEC uses the RTP and the price incentive information in
order to take part in a DR program to reduce the electricity
cost and the peak power consumption by shifting their load
from on peak hours to off peak hours. The aggregated energy
consumption of GEC can be calculated by the following
formula:

Eg =
T∑
t=1

Eg(t) (10)

2) SEC
The SEC fulfills its energy demand from RESs, ESS, neigh-
boring RE generating consumers and electricity grid station.
The energy demand of SEC per timeslot is Ds(t) units. The
energy demand per timeslot should not exceed the maximum
demand Ds(t) ≤ Dsmax . The SEC fulfills its demand by its
own RE. If the demand of SEC increases, the available energy
from RESs Rs(t) < Ds(t), they utilize the available energy

and the rest of the demand will be called unsatisfied demand
as:

Ds(t)− Rs(t) = Dus (t) (11)

The SEC fulfills the unsatisfied demand by the following
manner:

1) Draws energy stored from the ESS
The SEC draws Bed,s(t) units of energy from its ESS to
serve the unsatisfied demand.

2) Borrows the energy from the neighboring TEC
The SEC takes the surplus energy of Rs,T (t) units from
the TEC in order to fulfill the unsatisfied demand.

3) Transfers the energy from the electricity grid station
In this case, the energy drawn from the ESS and bor-
rowed from the TEC is insufficient to satisfy the resid-
ual demand, then the SEC gets Eg(t) units of energy
from the electricity grid station.

The sum of the energy drawn from the ESS, energy trans-
ferred from the TEC and energy transferred from the electric-
ity grid station must satisfy the residual demand as mentioned
in the Equation below:

Bed,s(t)+
T∑
t=1

Rs,T (t)+ Eg(t) = Dus (t)

T∑
t=1

Rs(t)+ Bed,s(t)+
T∑
t=1

Rs,T (t)+ Eg(t) = Ds(t) (12)

When harvested energy from RESs exceeds the demand
Rs(t) > Ds(t) then the SEC performs the following actions:
1) The excess energy is stored in the ESS to facili-

tate the energy efficient integration of RESs. The
storing energy in the ESS is bounded by Se,min

b,s ≤

Seb,s(t) ≤ S
e,max
b,s .

2) Stops borrowing energy from the neighboring TEC.
3) Stops getting energy from the electricity grid station.
where Eg(t) is the energy taken at each timeslot from the

electricity grid station, Rs,T is the electricity bought at each
timeslot from the neighboring TEC, Rs(t) is the RE harvested
at each timeslot from RESs, Seb,s(t) is the initially stored
energy in the ESS of the SEC.

3) TEC
The TEC fulfills its energy demand from the RESs, ESS,
utility and the neighboring TEC, it also trades with other
users and the grid. The energy demand of the TEC is DT (t)
and bounded by DT (t) ≤ Dtmax . The TEC fulfills its energy
demand and trades energy in the following manner. If the
harvested energy is deficient, RT (t) < DT (t) then unsatisfied
demand is calculated as:

DT (t)− RT (t) = DuT (t) (13)

1) Draw energy stored from the ESS
The TEC uses Bed,T (t) units of energy from the ESS in
order to fulfill the demand of the unsatisfied load.
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2) Exchange energy among the TEC
The TEC can borrowRT ,n(t) from the neighboring TEC
to fulfill the residual load.

3) Transfers energy from the electricity grid station
In this case, the energy from the ESS and the energy
borrowed from the TEC is the insufficient to meet the
demand, then the TEC borrows Eg(t) units of energy
from the electricity grid station.

The unsatisfied demand is equal to the sum of energy taken
from the ESS, neighboring TEC and electricity grid station as
shown in the following Equation:

Bed,T (t)+
T∑
t=1

RT ,n(t)+ Eg(t) = DuT (t)

T∑
t=1

RT (t)+ Bed,T (t)+
T∑
t=1

RT ,n(t)+ Eg(t) = DT (t) (14)

where DuT (t) shows the unsatisfied demand of the TEC,
RT ,n(t) is the energy exchange among the TEC and
Bed,T (t) is the energy drawn from the ESS. In the case, when
the harvested energy exceeds the demand RT (t) > DT (t),
the surplus energy is stored in the ESS or traded with other
consumers or the grid to utilize the energy efficiently and
increase the revenue.

F. ESS MODEL
The ESS is used to tackle the fluctuations in the RE gen-
eration and to efficiently utilize the RE and enhance the
reliability of the power system. The SEC and TEC have the
ESS installed in their premises in order to facilitate energy
efficient integration of RESs. The modeling of the ESS for
the SEC and the TEC is as follow:

1) SEC, ESS MODEL
The ESS greatly contributes in energy efficient integration of
RESs, it also increases safety, reliability and assists in eco-
friendly environment. Our proposed energy model for the
ESS at the SEC premises evolves as:

Seb,s(t + 1) = Seb,s(t)− B
e
d,s(t)+ S

e
s (t) (15)

where Seb,s(t) is the initially stored energy in the ESS,
Ses (t) is the amount of energy stored in the ESS at each
timeslot and Bed,s(t) is the unit of energy drawn from the ESS.
The energy availability constraints of the ESS are as follows:

Bed,s(t) ≤ S
e
b,s(t) (16)

We impose charging, discharging and finite battery capacity
constraints at each timeslot as:

Bed,s(t) ≤ Se,min
b,s

Se,max
b,s ≥ 0&Se,min

b,s ≥ 0

Se,min
b,s ≤ Seb,s(t) ≤ S

e,max
b,s (17)

where Se,min
b,s is the minimum limit of battery discharge, finite

capacity or maximum limit for charging of battery is denoted

by Se,max
b,s . The practical assumption on capacity of the ESS is

given below:

Se,max
b,s ≥ Be,max

d,s + S
e,min
b,s (18)

where the maximum energy that can be drawn from the ESS
is denoted by Be,max

d,s .

2) TEC, ESS MODEL
The TEC installs the ESS to store the harvested energy and
overcome the fluctuation problems in the RE it also facilitates
the energy efficient integration of RESs in order to increase
the revenue and eliminates the wastage of energy. The
ESS charging evolves as:

Seb,T (t + 1) = Seb,T (t)− B
e
d,T (t)+ S

e
T (t) (19)

where Seb,T (t) is the initially stored energy in the ES, S
e
T (t) is

the amount of energy stored in the ESS at each timeslot t and
Bed,T (t) units of energy is drawn from the ESS. The energy
availability constraints of the TEC and the ESS is as follows:

Bed,T (t) ≤ S
e
b,T (t) (20)

The charging and discharging of the ESS are bounded by
the upper limit and lower limit as follows:

Bed,T (t) ≤ Se,min
b,T

Se,max
b,T ≥ 0&Se,min

b,T ≥ 0

Se,min
b,T ≤ Seb,T (t) ≤ S

e,max
b,T (21)

where Se,min
b,T is the lower limit of the battery discharge,

the finite capacity or upper limit for charging is denoted
by Se,max

b,T and the battery charging and discharging of the ESS
at each timeslot is bounded in between these two limits. The
practical assumption on the capacity of the ESS is given as:

Se,max
b,T ≥ Be,max

d,T + S
e,min
b,T (22)

where Be,max
d,T denotes the maximum energy that can be drawn

from the ESS of the TEC.

IV. PROBLEM FORMULATION
In this section, the load scheduling and the RE integration
problem is formulated. In general, it is difficult to formulate
and solve the joint optimization problem of the load schedul-
ing and the RE integration; therefore, we formulate them
individually.

A. SCHEDULING PROBLEM FORMULATION
The load scheduling problem is formulated by multiple knap-
sack approach. The knapsack problem is a combinatorial
problem (finding an optimal solution from a finite set of
objects), where multiple objects are associated with a value
and weight [32]. The object must be packed such that the
value of the object within the knapsack is maximized and
weight must be in predefined limit. The knapsack has n
objects; each object i from the set of n objects has two
attributes: value and weight along with the constraint of
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the capacity to denote the minimum and maximum weights
that can be easily supported by the knapsack. The knapsack
problem is a standard problem template which is used to map
numerous problems in multiple domains.

1) MAPPING SCHEDULING PROBLEM TO KNAPSACK
The mapping of scheduling problem to knapsack problem is
outlined as:

• The m knapsacks correspond to timeslots Th
• The n objects show n appliances to be packed.
• The weight of each object represents the energy con-
sumed E ict by each appliance in each timeslot.

• The value of object is cost.
• The capacity is the weight which knapsack supports,
it depicts the amount of electricity which can be acquired
from the electricity grid station at a given timeslot.
On the consumers’ side the electricity cost and the peak
power consumption can be controlled in order to ensure
that the utility is not overstressed.

Now we provide the mathematical model for our scheduling
problem considering electrical appliances, objective function
and constraints using knapsack.

For SA, we define Ssat = (rnt ,w
n
t ) state of the SA at each

timeslot, where rnt indicates the number of the remaining
timeslots of the SA,wnt shows the number of waiting timeslots
for which the operation of the appliance can be delayed;
where Xt ∈ {0, 1} is an indicator, for on and off status
of appliances. Power elastic appliances Aspe, start operating
immediately and show elasticity in their power in order to
achieve the desired objectives. The mathematical model for
the state of power elastic appliances is as follows:

Spet = (T os , 0)

Spet+1 =

{
(rnt − 1, 0) if Xt = 1, rnt ≥ 1
(0, 0) otherwise

(23)

where Equation 23 indicates the current state and state in the
next timeslot of power elastic appliances. The time elastic
appliances Aste, operation can be delayed and interrupted if
required. The mathematical model for the state of time elastic
appliances is given by:

S tet = (T os , β − α − T
o
s + 1)

S tet+1 =

{
(rnt ,w

n
t − 1) if Xt = 0, wnt ≥ 1

(rnt − 1,wnt ) if Xt = 1, rnt ≥ 1
(24)

Equation 24 ensures the initial and the next timeslot status
of Aste.
Essential appliancesAsea, tolerate delay before starting their

operations. The state of essential appliances is mathemati-
cally modeled as:

Seat = (T os , β − α − T
o
s + 1)

Seat+1 =

{
(rnt ,w

n
t − 1) if Xt = 0, wnt ≥ 1

(rnt − 1, 0) if Xt = 1, rnt ≥ 1
(25)

where Equation 25 shows current and next timeslot states
of essential appliances. In the scheduling problem, our objec-
tives are to minimize the electricity cost, the PAR and the
tradeoff between the electricity cost and the user comfort.
The objective function subjected to constraints is formulated
using knapsack as follows:

min F(Ce
T ,A

p
r ,Cw) (26)

where

Ce
T =

∑
i∈SA

pir

T∑
t=1

(Xt × ϕ(t))

Peak = max(
∑
i∈SA

(pir × Xt ))

Average =
1
T
(
∑
i∈SA

T∑
t=1

(pir × Xt ))

Apr =
Peak

Average

Cw =

{
µ× t × (T os − Ai) for T os ≥ Ai
0 otherwise

subjected to: ∑
i∈SA

(E ic(t)× Xt ) ≤ Capacity (27a)

Capacity−
∑
i∈SA

(E ic(t)× Xt ) ≥ 0 (27b)∑
i∈SA

E i,unschc (t) =
∑
i∈SA

E i,schc (t) (27c)∑
i∈SA

Ce,un - sch
T ≥

∑
i∈SA

Ce,sch
T (27d)∑

i∈SA

T o,i,unschs =

∑
i∈SA

T o,i,schs (27e)

Xun - sch
t 6= X sch

t (27f)

The constraints in Equations 27a and 27b ensure that
the aggregated energy consumptions of all set of appliances
should not exceeds the load capacity of the electricity grid
station. Total energy consumption before and after schedul-
ing must remain constant as indicated by the constraint
in Equation 27c. Equation 27d indicates that our scheme per-
forms well in terms of electricity cost. Equation 27e ensures
that the total operational time of all appliances before and
after scheduling is equal. The status of appliances before and
after schedulingwill not be the samewhich ensures that appli-
ances are scheduled properly as indicated by Equation 27f.

B. COST MODEL AND TRADING PROBLEM FORMULATION
The ESS and trading among consumers facilitates the energy
efficient integration of the RESs. Therefore, we formulate
the trading and the cost model for energy transferred from
the neighboring TEC and the electricity grid station. For
transferring the energy from the TEC to the SEC, the cost
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of per unit energy transfer is denoted as Ce
s,T (t). Similarly,

the electricity cost per unit of the energy exchange among
the neighboring TEC during any timeslot t, is Ce

T ,n(t) and
the cost of energy transfer from the electricity grid station
to consumers is Ce

g(t). The objective function of the net cost
of the energy transfer of the aforementioned three consumers,
is modeled as follows:

Cost = min (CostGEC,CostSEC,CostTEC) (28)

where

CostGEC =
T∑
t=1

Ce
g(t)× Eg(t)

CostSEC = Ce
g(t)× Eg(t)+

T∑
t=1

Ce
s,T (t)×Rs,T (t)

CostTEC = Ce
g(t)× Eg(t)+

T∑
t=1

Ce
T ,n(t)×RT ,n(t)

The objective of the controller is to design and tune the
system control parameters such that, the cost of energy trans-
fer and the reverse power flow are minimized, subject to
consumers’ trading and ESS constraints are as follow:

subject to: Cr
s,T (t) < v Ce

g(t)&C
r
T ,n(t) < Ce

g(t) (29a)

Ce
g(t) ≤ C

e,max
g &Cr

s,T (t) ≤ C
r,max
s,T (29b)

Bed,s(t)+
T∑
t=1

Rs,T (t)+ Eg(t) = Dus (t) (29c)

Bed,T (t)+
T∑
t=1

RT ,n(t)+ Eg(t) = DuT (t) (29d)

Ses (t) ≤ Rs(t) (29e)

SeT (t)+
T∑
t=1

Rs,T (t) ≤ RT (t) (29f)

Seb,s(t + 1) = Seb,s(t)−
T∑
t=1

Bed,s(t)+ S
e
s (t)

(29g)

Seb,T (t + 1) = Seb,T (t)−
T∑
t=1

Bed,T (t)+ S
e
T (t)

(29h)

Bed,s(t) ≤ min(Seb,s(t), S
e,min
s ) (29i)

Bed,T (t) ≤ min(Seb,T (t), S
e,min
T ) (29j)

Ses (t) ≤ min(Se,max
b,s − Seb,T (t), S

e,max
s ) (29k)

SeT (t) ≤ min(Se,max
b,T − Seb,T (t), S

e,max
T ) (29l)

The cost of energy transfer from the TEC and the electricity
grid station is bounded as in Equation 29a and Equation 29b.
Equation 29c and Equation 29d show the residual demand
of both the SEC and the TEC, it will be met under the
objective function. In case of surplus energy, an amount of
energy stored in its own battery and an amount of energy

TABLE 2. Description of single household.

donated to neighboring consumerswill be less than the energy
harvested by consumers as in Equation 29e and Equation 29f.
Equation 29g and Equation 29h ensure the storing capability
of the ESS of the SEC and the TEC, respectively. The energy
drawn from the ESS of SEC and TEC at each timeslot is
bounded as shown in Equation 29i and 29j. The energy stored
in the ESS of the SEC and the TEC in each timeslot is
bounded as shown in Equation 29k and Equation 29l.

V. SIMULATION RESULTS AND DISCUSSION
In this section, we present the simulation results to highlight
the effectiveness and productiveness of our proposed tech-
nique in terms of electricity consumption cost, PAR and to
balance the tradeoff between the cost and the user comfort.
Different simulations are performed, then we show the results
of average of 10 runs. Furthermore, the control parameters for
performing simulations are: the 24 hours time horizon which
is distributed over 120 timeslots by making each scheduling
slot of 12 minutes. A daily scheduling time horizon is rep-
resented by the symbol Th = {1, 2, ...,T } and 1, 2, ...,T
represents the timeslots from 1 to 120. The RTP signal is
midwest independent system operator (MISO) daily EP tariff
taken from the federal energy regulatory commission (FERC)
as illsutrated in Figure 4 [33]. From the RTP signal, it is clear
that the timeslots 30-45 (6am-9am) and 85-100 (5pm-8pm)
are on peak slots, timeslots 50-70 (10am-2pm) are shoulder
peak and the rest of the timeslots are off peak as depicted
in Figure 4.

The combined RTP and IBR is exploited for encouraging
users to schedule appliances’ from on peak to off peak hours
to reduce the electricity cost. We assume that the EMCU
receives RTP, DR and price incentive information from the
utility company via the SM and keeps in view the objective
function, constraints, control parameters and user behavior to
schedule the SA for a single home and multiple homes [27].
For this reason users set some control parameters for the SA
such as, scheduling time horizon, operation timeslots (OTS),
start time of intervalα, end time of intervalβ and power rating
as listed in Table 2. The control parameters can be set on the
IHD and the MCU and transmitted to the EMCU for further
processing. The control parameters for multiple homes are
listed in Table 3. We have performed comparative evaluation
of heuristic techniques by scheduling the SA, evaluation is
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TABLE 3. Multiple homes appliances description.

FIGURE 4. RTP signal.

based on performance parameters: minimize the electricity
cost, PAR and user comfort. The energy efficient integration
of RESs is facilitated by ESS and trading energy among
consumers in order to reduce the cost and reverse the power
flow. The detailed description is as follow:

A. FEASIBLE REGION
The area which satisfy all linear constraints based on the
defined objective function is called the feasible region. The
region satisfies all restrictions imposed by inequality con-
straints and none of them is violated. The solution fond by
the objective function within this region will be a feasible
solution.

1) ELECTRICITY COST AND CONSUMPTION
We find a feasible region for cost and energy consump-
tions in order to set boundaries for our objective function.
For this purpose, we consider a cost ranging from 0.081 to
2.1 cents/kWh and a range of power consumption is from
1 to 9.1 kWh as constraints. The feasible region is based
on the coordinates and conditions listed in Table 4. These
coordinates will set the constraints as demonstrated below,
which bound scheduled load and electricity cost with in the
feasible region.

0.081 ≤ C i(t) ≤ 2.1 (C1)

1 ≤ E ic(t) ≤ 9.1 (C2)

TABLE 4. Conditions for feasible region.

FIGURE 5. Electricity cost vs. energy consumption.

where constraint C1 represents that the maximum cost at any
timeslot is 2.1 cents, which ensures that scheduled cost should
remain under 2.1 cents at any timeslot. The energy consump-
tion of the scheduled load must remain within the range
indicated by constraint C2. The net energy consumption of
all set of appliances should not exceed electricity capacity of
grid station. The aggregated electricity cost is enclosed by the
coordinates P1, P2, P3 and P6 as shown in Figure 5.Whereas,
the feasible region is bounded by the coordinates P1, P2, P3,
P4 and P5. The cost lies at any timeslot within this region that
is feasible.

2) ELECTRICITY COST AND WAITING TIME
When the waiting time is zero then the electricity cost is max-
imum and vice versa. Thus, these parameters are inversely
proportional to each other. The range of delay which our
system can tolerate is 0-10 timeslots, the electricity cost
sets the coordinate with respect to the waiting time listed
in Table 5. The region encircled by coordinates P1, P2 and
P3 is the feasible region, any solution within this region is
feasible. Where P1 ensures that, when users do not wait, they
pay more. When users can tolerate delay, the electricity cost
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TABLE 5. Coordinates of feasible region.

FIGURE 6. Electricity cost vs. waiting time.

decreases with respect to the waiting time as indicated by
coordinates P2 and P3 of the feasible region. The coordinates
set constraints, which define boundaries of the feasible region
as shown in Figure 6. The enclosed region is the feasible
region based on points P1-P3 and any solution within this
region is acceptable.

0 ≤ wnt ≤ 10 (C3)

0 ≤ Ce
T ≤ 78 (C4)

where constraint C3 ensures that the waiting time of
the scheduled load must be between 0 and 10 timeslots.
Aggregated electricity cost of the scheduled load must be
within the boundaries of the feasible region as indicated by
constraint C4.

B. ELECTRICITY COST ANALYSIS FOR DIFFERENT
SCHEDULING SCHEMES
The daily electricity cost of unscheduled and scheduled
loads for a single home and multiple homes is depicted
in Figure 7. The unscheduled electricity load cost is
high during the timeslots 30-45 (6am-9am) and 85-100
(5pm-8pm), because consumers use more appliances in these
timeslots that tend to lead to high electricity cost of 2.1 cents
and 1.4 cents. The meta-heuristic (GA, BPSO, WDO,
and GWDO) based scheduling reduces the electricity con-
sumption cost up to 0.7, 0.65, 0.67 and 0.60 cents, respec-
tively. The maximum daily electricity bill per timeslot is
reduced from 2.1 cents to 0.6 cents with GWDO, that is
71.4% reduction. Our proposed the GWDO algrithm outper-
forms other scheduling algorithms as shown in Figure 7a.
The results show that the GWDO algorithm is more sta-
ble. The electricity cost analysis of five homes is illustrated
in Figure 7b. We analyze the consumption cost of electricity
profile of different homes while considering dynamic OTS
and power rating of appliances for each home. The scheduling

of appliances through optimization techniques helped in
reducing the PAR and electricity cost. Extensive simulations
show the significant reduction in electricity cost when using
the GWDO algorithm compared to heuristic techniques.

C. PEAK POWER CONSUMPTION ANALYSIS FOR
DIFFERENT HEURISTIC BASED EMCU
The daily power consumption profiles of unscheduled and
scheduled loads based on GA, BPSO, WDO and our pro-
posed (GWDO) for a single households and multiple house-
hold are depicted via Figure 8. The power consumption of
unscheduled appliances is high during the timeslots 30-45
(6am-9am) and timeslots 85-100 (5pm-8pm), because con-
sumers do more activities in these time slots, that results
in high electricity cost and PAR. The EMCU based on
GA, BPSO, WDO and GWDO schedules household appli-
ances while considering objective function, user defined con-
straints, combined pricing schemes and control parameters in
order to reduce the electricity cost, PAR and waiting times.
It can be seen from Figure 8a, that the peak power consump-
tion of unscheduled appliances is relatively more due to the
dynamic operation and without taking into consideration the
EP that eventually lead to more peak power consumption
and electricity cost. However, the scheduled load must be
within the bounds defined by the feasible region as shown
in Figure 5. On the other hand, the electricity cost and peak
power consumption are relatively less using optimization
techniques (GA, BPSO, WDO and GWDO) and considering
various factors (EP, on/off peak timeslots and user prefer-
ence). The peak power consumption of unscheduled loads
is 9KW and by the scheduled load: GA, BPSO, WDO and
GWDO is 7 kW, 6.3 kW, 6.1 kW and 5.9 kW, respectively.
The GA schedules time elastic appliances during timeslots
where the EP is low. The BPSO scheduler shifts appli-
ances from on peak timeslots 30-45 (6am-9am) to off peak
timeslots 10-25 (2am-5am). The results show that our pro-
posed GWDO has more suitable, stable and optimal load
profile than unscheduled and scheduled loads using other
techniques, because GWDO employs properties of both GA
and WDO to properly tune the control parameters. The
decrement percentage between unscheduled and scheduled
loads is listed in Table 6. The load profile of five homes
is shown in Figure 8b. We take dynamic OTS and power
ratings and evaluate the performance of the GA, BPSO,WDO
andGWDO.We take dyamic OTS and power ratings, because
in different home users behavior and appliances are different.
The heuristic based EMCU efficiently schedules appliances,
while considering objective functions, stochastic behavior of
users, constraints and control parameters for minimizing the
PAR and the electricity consumption cost. Additionally, our
proposed GWDO outperforms other heuristic techniques as
shown in Figure 8b.

D. TRADEOFF ANALYSIS OF ELECTRICITY COST
AND USER COMFORT
User comfort is related to both electricity cost and appliances
waiting time. The appliances scheduled by the GA, BPSO,
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FIGURE 7. Electricity cost per timeslot. (a) Single home. (b) Multiple homes.

FIGURE 8. Energy consumption profile. (a) Single home. (b) Multiple homes.

TABLE 6. Peak power consumption analysis.

WDO and GWDO lead towards low electricity cost as com-
pared to unscheduled load case, because heuristic techniques
are applied keeping in view the objective function, constraints
and control parameters. Generally, electricity cost and appli-
ances’ waiting time are inversely related. Heuristic based
EMCU try to balance the tradeoff between the electricity cost

and the user comfort. In addition, by including the user com-
fort constraints on the objective function, the performance
of heuristic techniques (GA, BPSO, WDO and GWDO) is
enhanced in terms of user comfort and electricity cost. For a
single home and multiple homes, the electricity cost is high if
appliances waiting time is zero and low if appliances waiting
time is greater than zero as shown in Figure 9a and Figure 9b.

E. PAR PERFORMANCE ANALYSIS
The relationship between the unscheduled and scheduled
loads with respect to the PAR for a single home and multiple
homes is shown in Figure 10. The PAR minimization empha-
sizes on the balanced energy consumption in all timeslots.
The EMCU reduces the PAR using DR incentive, combined
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FIGURE 9. Electricity cost and user comfort tradeoff. (a) Single home. (b) Multiple homes.

FIGURE 10. PAR analysis. (a) Single home. (b) Multiple homes.

RTP and IBR pricing scheme, power elasticity and shifting
loads from the maximum peak to minimum peak price times-
lots. Moreover, the values: 2.25, 2.09, 1.7, 1.55 and 1.35 are
the unscheduled and scheduled loads of the PAR based on the
GA, BPSO, WDO, GWDO, respectively. Additionally, it can
be observed from the results that significant differences in
unscheduled and scheduled loads using the GA, BPSO,WDO
and GWDO is 7.11%, 24.4%, 31.1% and 40%, respectively.
Figure 10a shows the PAR analysis for five homes per day.
The load scheduled based on the GA, BPSO, WDO and
GWDO in the presence of dynamic OTS and dynamic power
ratings reduces the PAR as depicted in Figure 10b. Moreover,
the percent decrement of the GWDO is more compared to
other heuristic techniques as listed in Tables 8 and 7.

TABLE 7. Single home PAR analysis.

F. AVERAGE WAITING TIME
Time elastic appliances have more average waiting time
(i.e., 10 timeslots), because these appliances are delay toler-
ant and have time elastic nature. Unlike time elastic appli-
ances, power elastic appliances tolerate the flexibility in
power and have minimum waiting time. Essential appliances
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FIGURE 11. Aggregated cost analysis. (a) Single home. (b) Multiple homes.

TABLE 8. Multiple homes PAR analysis.

FIGURE 12. Average waiting time.

have less waiting time as compared to time elastic appliances
and more waiting time as compared to power elastic appli-
ances as shown in Figure 12.

G. AGGREGATED COST COMPARATIVE ANALYSIS
The comparison of unscheduled and scheduled loads with
respect to electricity cost for a single home and multiple
homes is depicted through Figure 11. Whereas, per day cost
of the electricity for unscheduled and scheduled loads is 71,

TABLE 9. Single home total cost comparative analysis.

64, 41, 39 and 37 cents, against the GA, BPSO, WDO and
GWDO, respectively, as illustrated in Figure 11a. Moreover,
the highest cost is for unscheduled load which is 71 cents,
because in the unscheduled case most of the appliances
operate during on-peak intervals. All heuristic techniques
follow the objective function and constraints that results in the
reduction of electricity cost as compared to the unscheduled
load as listed in Table 9. The cost reduction by the GWDO is
more (47.8%) as compared to the unscheduled and scheduled
loads by the GA, BPSO and WDO because it applies to
the population based genetic operators on the optimal values
of the WDO instead of random values. The per day cost
of five homes is depicted in Figure 11b. The EMCU based
on the GA, BPSO, WDO and GWDO schedules load using
the objective function, constraints, control parameters, users
dynamic OTS and power rating for electricity cost reduction.
The results proved the efficiency of the system for scheduling
by implementing the GWDO, GA, BPSO and WDO is 260,
220, 150 and 131 cents, respectively.

H. COST ANALYSIS WITH RESS AND WITHOUT RESS
In Figure 13, the relation between the electricity cost and
users with the RESs is dipected. It is clear form the fig-
ure that an increased number of users with the RESs play a
very important role in electricity cost reduction. As the GEC
depends only on energy of electricity grid station, it pays
more cost of 250 cents as compared to users with RESs.
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TABLE 10. Multiple homes total cost comparative analysis.

FIGURE 13. Cost versus percentage of users utilizing RESs.

FIGURE 14. ESS storage capacity versus TEC.

The SEC fulfills its load demand from RESs, ESS and grid
station. However, it does not take part in the local energy
trading, so its electricity cost is 210 cents more then the TEC.
The percentage decrement of TEC’s cost as compared to GEC
and SEC are 40% and 24%, respectively.

I. TRADE OFF ANALYSIS OF ESS AND TEC
For a given storage capacity of ESS, the cost of energy
exchange decreases with the increase in the number of
the TEC. This is because of a greater number of TEC avail-
able to generate and share energy among neighboring con-
sumers and hencemitigate the need of borrowing energy from
the electricity grid station as shown in Figure 13. It can be

FIGURE 15. Reverse power flow versus percentage users with RESs.

FIGURE 16. Fluctuations versus ESS.

seen from Figure 14, that for a given number of TEC, there
exist an optimal storage capacity of ESS. It is evident that
as the number of TEC increases, the need of optimal storage
capacity of ESS decreases because the TEC will provide
energy to neighbors with low cost.

J. REVERSE POWER ANALYSIS
The efficient utilization of RESs in consumers’ premises
encourages users to trade excess energy with neighboring
consumers in order to reduce the reverse power flow. The
trading energy with the utility grid injects reverse power flow
which causes the voltage rise problem that may damage the
entire power system. To evaluate the effect of our proposed
method on the reverse power flow due to the gape between
the supply and demand is illustrated in Figure 15. The reverse
power flow is significantly reduced by our proposed method.
The reverse power flow is maximum when the TEC trades
energy with the grid and less when it trades with neighboring
consumers. The simulation results validate that the proposed
scheme significantly reduces the reverse power flow as com-
pared to other scenarios.
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K. FLUCTUATIONS WITH RESPECT TO ESS
We plot fluctuations of the RESs as a function of the ESS as
illustrated in Figure 16. It ensures that as the capacity of the
ESS increases the fluctuations of RESs decrease and hence
results in smooth generation. It also ensures that the aggregate
energy production of TEC meets the net load demand and
smooth out fluctuations of RESs by storing, exchanging and
trading the surplus energy. With no ESS, the RESs have
100 % fluctuations whereas, with the maximum capacity
of the ESS and trading very low fluctuations that exist in
the RESs.

VI. CONCLUSION
In this paper, we have proposed the heuristic based tech-
niques for the DSM and energy efficient integration of
RESs in the SG. An EMCU based on heuristic algorithms
(GA, BPSO, WDO and GWDO) is used to schedule the
household appliances in order to achieve our desired objec-
tives. The RTP and IBR are combined to increase the stability
of the proposed system. Additionally, the energy efficient
integration of RESs is facilitated using the ESS and power
trading among consumers. Simulation results show that our
scheme is useful in terms of: the electricity cost, PAR and in
minimizing the tradeoff between the electricity cost and the
user comfort. Furthermore, our proposed scheduling solution
for theDSMand energy efficient integration of RESs is useful
for both, the utility company and the consumers. In addition,
the proposed systemmodel is suitable for designing the power
grid by selecting the optimal combination of the ESS and the
power trading, facilitating the energy efficient integration of
RESs for reducing the electricity cost and the reversing power
flow.
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