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ABSTRACT At present, active detectors are commonly used for detection of land mines. Land mines can be
detected with high precision through active detectors. However, the operating principle of active detectors
can also lead to vital dangers. When detecting mines in the field, electrical signals sent to the environment
from active detectors sometimes trigger the mine blasting mechanism and cause mine explosion. Another
way to detect land mines without triggering the blasting mechanisms is to use passive detectors. The biggest
handicap of passive detectors is that they cannot detect mines as much as active detectors. This causes
that passive detectors are as dangerous as at least active detectors. In this case, passive detectors can cause
dangerous results like active detectors. In this paper, we have developed solutions that eliminate the handicaps
of passive mine detectors. For this purpose, a new approach, which is established on artificial intelligence
based on the magnetic anomaly, measurement height, and soil type, is suggested. The experimental setup is
designed to verify and test the proposed approach. In this respect, the actual data measured under different
conditions were recorded and processed with modern and effective artificial intelligence techniques; and
alternative models were developed. With the proposed approach, the mines are detected with a success rate
of 98.2%. This success rate in detection is promising for the passivemine detectors. A significant contribution
of the developed model in terms of literature is the successful classification as well as the detection of mines.
In experimental studies conducted with real data, five different types of mines are classified as 85.8% success
rate. The proposed model has been a pioneering study on mine classification in the literature. Moreover,
the realization of this paper with a passive mine detector proves the success of the proposed approach.

INDEX TERMS Mine detection and diagnosis, meta-heuristic classification, artificial neural network.

I. INTRODUCTION
Detection of mines buried in the ground is very important in
terms of safety of life and property. Many different methods
have been used in this regard; however, it has not yet been
possible to achieve 100% success. Mine detection process
consists of sensor design, data analysis and decision algo-
rithm phases. When the previous publications are examined,
the following studies came to the forefront.

Detection of explosive vapors from buried land mines
by chemical sensors has been demonstrated [1]. Magnetic
field changes of landmines could be measured with mag-
netic induction sensors [2]. Detection of mines by Ground
Penetrating Radar (GPR) is a very common method [3].
Feature reduction methods have been used to classify mul-
tidimensional data from sensors [4]. The great difference
between the elastic properties of themine and the surrounding

soil has been revealed using high frequency seismic waves
for the detection of buried mines [5]. The Elliptic Sys-
tems Method has been developed to produce images of
buried mines and this method is adapted to the problem of
landmine imaging using the Helmholtz Equation [6]. One of
the methods used in the literature for mine detection is the
neutron retroreflective method. In this method, an increase
in the number of reflected thermal neutrons on the ground
where the mine is buried is detected [7]. Especially, for
the detection of plastic land mines, a method combining
electromagnetic induction and neutron back propagation
(scatter) is designed [8]. Another approach has shown that
landmines cause anomalies in the thermal image of the soil.
Thus, thermal anomalies in measured infrared images are
used for mine detection [9]. To increase the mine detection
rate, the super resolution technique MUSIC algorithm and
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SAR (Synthetic Aperture Radar) were applied together for
signal processing and image reconstruction of the GPR sig-
nal [10]. Various algorithms are presented in a hierarchical
manner to distinguish between Anti-Tank (AT) and Anti-
Personnel (AP) landmines using the data gathered fromWide
Area Electromagnetic Induction (WEMI) and GPR sensors.
The KNN method based on angle model uses two parameter
models. Linear Estimation Processing and Spectral Properties
are calculated for GPR data when the parameters match the
In-phase and Quadrature data [11]. Vehicles equipped with
sensors and cameras [12] and robot designs [13], [14] are
frequently used methods in mine search operations.

Inmine detection, it is also important how the data obtained
are analyzed as well as vehicle design, sensor technology
and sensing methods. Very different methods have been
used in the analysis of data obtained during mine detection
and in the decision-making stages. Generalized Likelihood
Ratio (GLRT) [15], Minimum Classification Error (MCE)
to improve the performance of the Discrete Hidden Markov
Model (DHMM)-based mine scanning system [16] and
Wavelet Transform [18] and two-dimensional and three-
dimensional NUFFT (Nonuniform Fast Fourier Transform)
algorithms have also been used for land mine detection using
GPR [19].

In another study, a discovery process based on Principal
Component Analysis (PCA) and Support Vector Machine
(SVM) techniques was proposed to detect land mines in
real SAR images [20]. It is also seen that UWB-GPR data
processing is used to identify anti-personnel landmines [21].
In another study, an SVM with a hypersphere classifica-
tion boundary called HyperSphere-SVM (HS-SVM) using an
HMM (Hidden Markov Model) kernel on a feature vector
subtracted by a post-filter-based method was proposed for
mine scanning [22]. Context-DependentMulti-Sensor Fusion
for mine detection is seen as another method [23].

Many different designs and methods have been devel-
oped for mine detection such as using Finite Differ-
ence Time-Domain (FDTD) and Artificial Neural Networks
(ANNs) [24], FLGPVAR (Forward-Looking Ground Pene-
trating Virtual Aperture Radar) images [25], the contextual
extraction approach for Fuzzy Integral Adaptive Local Fusion
(CELF-FI) [26], 3D image analysis method [27], Electromag-
netic band-gap (EBG) antenna design for GPR with Metal
Detector [28], TLM method [29], Adaptive Neuro Fuzzy
Inference System [30], comparison of Attribute Extrac-
tion Methods by Using Penetrating Radar [31], holographic
radar [32], Thermal Display Time Series [33], RBF Kernel-
based SVM classification [34] and mine detection by GPR
mounted on drone [35]. The method of determining mines
with the detection of anomalies in the earth’s magnetic field
has also entered the literature [36]. In the related studies,
the anomaly in the Earth’s magnetic field was measured using
a fluxgate sensor (type FLC100).

When the studies in the literature are examined, it is seen
that active detector design using a number of different meth-
ods is preferred [4], [5], [7], [15], [16], [31], [32], [35].

Despite all the studies done on mine detection today, people
still lose their lives because of land mines. This is due to the
handicap of existing mine detectors. Active detector design
has not been adopted due to the hazards it creates. Magnetic
anomaly method is considered to be very suitable for passive
detector design [45]. The passive mine detector prevents the
mines from being triggered unintentionally. However, there
are also some restrictions on passive mine detectors. For
example, the performance of passive detectors under actual
conditions and on real dataset has not been adequately tested.
When studies that only consider magnetic anomalies are
examined, it is understood that passive detector studies have
been tested on a limited set of very small numbers of data and
problem space. The experimental results of related studies
should be examined in this regard. Thus, the passive detection
approaches [45] used in the literature in the experimental
study section was also used in this article. We tested exist-
ing passive mine detection approaches on experimental data
obtained in our own study. We have experimentally proved
that up to 84% of mine detection successes are obtained
only when the magnetic anomaly is taken into consideration.
Similarly, when mine classification performance was mea-
sured, it was observed that this rate decreased to 57.7%. This
fact reveals the handicaps of the existing approaches when
the real world application is done. Briefly, in the passive
mine detectors, it has not been realized that mines cannot
be detected only by the magnetic anomaly. In other words,
the performance of passive mine detectors working on the
basis of the Earth’s magnetic field does not meet the standards
set by the United Nations in this regard. For this reason,
the presence of other parameters that could be effective in
determining mines has been researched. As a result of these
investigations, it was evaluated that soil type and height
parameters other than magnetic anomalies may be effective
in mine detection.

In this study, a new approach to passive mine detector
design is proposed. A way of expressing the mine type by
a function of a three-dimensional problem such as mag-
netic anomaly value, measuring height and soil type has
been suggested. Recently, stable and effective classifica-
tion techniques have been used in the literature to model
the problem depending on the new approach. Thanks to
the artificial intelligence-based system developed on the
basis of the proposed approach, analytical relations in the
multi-dimensional mine problem are effectively modeled and
problem-specific patterns can be successfully explored. The
developed approach has been verified and tested on data
obtained from a real experimental setup. The results obtained
meet the 98.2% detection rate determined by the United
Nations for landmines. Successful results obtained on real-
world data are promising in terms of the spread of pas-
sive mine detection systems. The developed approach also
improves the performance of passive mine detectors in classi-
fying mines. This rate has reached up to 85.8% from 57.7%.
All these comparisons are given in the experimental
section.
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In the second section of the paper, magnetic anomaly is
discussed. In the third section, the method proposed in the
article is applied in detail. In this section, detailed information
is provided from the definition of the problem to the prepa-
ration of the datasets and modeling of the problem. In the
fourth section, the data obtained from the experimental setup
are modeled with modern and effective artificial intelligence
techniques. In the experimental study section, several models
are proposed and their performances are compared. Thanks
to the proposed approach and developed models, it is shown
in the experimental study that land mines can be detected
effectively and their types can be identified.

II. METHOD OF THE STUDY
The magnetic anomaly method works according to the
principle of measuring the anomalies resulting from the
object in the magnetic field that disturbs the structure of it,
the magnetic field, and the data obtained at this point are
used to determine the conditions such as motion and position
[37], [38]. The determination of parameters such as position,
depth or direction of motion using magnetic anomaly has
been carried out since 1970 [39]–[44].

In this study, a technique has been used to determine the
extent of land mines by measuring the anomaly of the Earth’s
natural magnetic field. The main principle in this method is to
determine the existence of anomaly in the environment where
research is conducted. The different magnetic properties of
different types of materials are the reason for the anomalies.
In this case, if this method is used for mine detection, it is also
possible to detect a metallic, semi-metallic, plastic explosive
device. However, the main problem here is that objects such
as rocks, metal wastes and even tree roots can be excluded
from the definition of mine/explosives [45]. This problem is
solved by an algorithm developed for the analysis of the data
obtained in anomaly measurement. In this study, Fluxgate
sensor was used to measure the magnetic anomaly. These
sensors canmeasure DC or low frequency ACmagnetic fields
and have a measurement range of 10−10-10−4 Tesla.

It is possible to classify detectors used in mine detection in
two categories: passive and active ones. In the activemethods,
signals are sent to the objects and mine detection is done
depending on the state of the signal reflected from the objects
as shown in Figure 1. The biggest handicap of such methods
is that the transmitted signal explodes the mine by activating
the trigger mechanism of it. During the mine clearance, there
have been incidents that caused a large number of deaths
resulting from this. There is not any triggering handicap in
passive methods. Passive methods, however, cannot detect
remotely and effectively as well as active methods. In this
paper, a passive mine detection and classification method
based on the magnetic anomaly, the height of the detector
and the soil type has been developed to remove the danger
created by the active methods. One goal of the developed
method is to classify mines beyond mine detection. For this
purpose, the mine detection problem has been redefined as
‘‘mine detection and diagnosis problem’’.

FIGURE 1. Mine detection methods.

Beyond the detection of mine, a new approach has been
developed primarily to identify the type of mine. In the
developed approach, the class of objects buried underground
is defined according to the state of three independent char-
acteristics/variables (input parameters). These are the type
of soil to which the mine is buried, the height of the mine
detector from the ground <H> and the size of the mag-
netic anomaly <V>. The fluxgate sensor is used to mea-
sure the magnetic anomaly. With the developed method,
it is first determined whether objects buried in the earth are
mines or not. The type of mine is determined when mine
presence is detected. For this purpose, the magnetic anomaly
created by the objects buried in the soil is measured and the
mines are identified and classified according to the soil type
and distance of the sensor to the soil. Modern and effec-
tive machine learning techniques are used to classify mine
types according to their state as three independent variables
Mtype = f (V, H, S). In order to develop the model, it is nec-
essary to define the problem in detail (to analyze dependent
and independent variables).

A. DEFINITION OF THE PROBLEM
The parameters of the problem and the data types of these
parameters, their values and limits are given in Table 1.
FLC100 type sensors are used to measure the magnetic
anomaly due to the fact that output voltage is stable but not
suitable for the passive detector design.

B. OBTAINING THE DATA AND ANALYZING THE PROBLEM
Depending on the information given in Table 1, the data
samples of the problem are represented with a 4-dimensional
vector as <V, H, S, M>. The dataset is prepared to model
the problem. The data samples represent the problem space
in a homogeneous manner. For this, the data samples were
collected for all types of mines. An experimental set (test sim-
ulator) was prepared to obtain a sample subset of the problem
space. Training, validation and test sets were established with
the sample data obtained from the test simulator. The photo-
graph of the experimental setup is given in Figure 2 [46].
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TABLE 1. Parameters of the problem.

In the test simulator, symmetrical power supply meets the
voltage and current required by the entire system. In the
experiments, the system is set to ± 15 V voltage value.
The stepper motor control panel enables movement control
on X, Y, Z axes. It allows information to be recorded and pro-
cessed on the display screen via the NI DAQ 6800. A stepper
motor driver card is used to carry out computer-controlled
movement of stepper motors moving in Cartesian coordi-
nates. The imaging unit defines the data exchange character-
istics with the sensors; and stores the data. All parameters
related to the operation of the system are controlled here.
The soil pool is the place where the explosives are buried and
consists of an area of 110∗80∗30 cm filled with different soil
types.

The detector carrying the FLC sensors in the test simu-
lator can move in three axes. In this case, the height of the
detector can be adjusted from the ground. It is thus possible
to examine the magnitude of the magnetic anomaly created
by buried objects in the earth, depending on the height.
Before developing the proposed artificial intelligence-based
classifier model, the relation between anomaly voltage (V),
soil type (S), height (H) and mine type (M) was investigated.

Information on these investigations is given in Figures 3-5.
First, the existence of magnetic anomalies created by a mine
buried in the soil, namely the relationship between V and M
is observed. In this experimental study, the soil type is dry
and humus. The FLC sensor is moved 15 cm above the
ground surface. During this movement, the position of the

FIGURE 2. Test simulator.

sensor changes and the output voltage value is continuously
recorded. As the sensor passes over the mine, there is an
increase in the output voltage depending on the magnetic
anomaly created by the mine. Mine creates a high magnetic
permeability for the magnetic flux in this direction. With this
effect, it is possible to detect the position where the mine
is located. There is also an increase in the amplitude of the
magnetic anomalies as the density of the metal particles used
to increase the mine effect increases. The experimental work
was carried out for five different situations, one with nomines
in the ground and four with different types of mines. The
graphs of the obtained data are given in Figure 3.

Figure 3 gives the magnetic anomaly for five different
cases. When the graph in Fig. 3 (a) is investigated, it is seen
that the magnetic field generated by the earth has oscillated
at a low band interval. Therefore, the magnetic field of the
earth can be observed steadily with the FLC sensor. When
the graphics given in Figure 3 (b, c, d, e) are examined, it is
seen that each mine type creates a magnetic anomaly in its
own characteristic. In Figure 3 (f), it is seen that all cases
are collected in a graph and these cases can be distinguished
from each other. The voltage values in the graphs indicate that
magnetic anomalies at different levels are caused by the types
of mines. This information leads to the idea that the mines
can be detected depending on the output voltage value of the
FLC sensor. However, this information is partially correct.
Today, passive mine detectors designed with FLC sensor are
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FIGURE 3. Magnetic anomaly created by buried mines.

not at the desired level to detect mines. The most important
reason for this is that the value of the magnetic anomaly
changes as it moves away from the ground (soil surface).
In other words, the measurement results vary depending on
the distance between the point at which the mine is buried
and the point at which the magnetic anomaly is measured.
This suggests that considering the magnetic anomaly alone
is an inadequate approach for mine detection. It is clear that
the change of the measurement height with the movement of
the mine detector also changes the magnetic anomaly values.
We have also seen that the soil type is also effective on the
magnetic anomaly created by themines. The relation between
soil type and measurement height with magnetic anomaly is
given in Figures 4 and 5.

The magnetic anomaly values generated by the mines
are shown in Fig. 4 depending on the soil type (the
actual data obtained from the experimental setup are given
in Figure 2). The horizontal axis indicates the soil type.

FIGURE 4. Investigation of the effect of soil type (S) on magnetic anomaly.

The data in Figure 4 belong to a total of 30 data samples
obtained from measurements made with the constant height
for six different soil types and five different mine types.
Under these conditions, the number of anomalies generated
by different soil types is measured separately for each mine
type. Thus, the relation between soil type and magnetic
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FIGURE 5. The effect of height (H) on magnetic anomalies.

anomaly has been investigated for five different mine types.
The red line in Figure 4 belongs to the anti-tank mine. Mag-
netic anomaly values were recorded by changing the soil
where the mine was buried. For example, the red line shows
the voltage values obtained by placing the anti-tank mine in
six different soil types. There is no direct or explicit relation
between soil type and magnetic anomaly for anti-tank mines.
This may be due to the fact that the anti-tank mines show
magnetic anomalies that can be measured to a maximum
extent because anti-tank mines show a much larger magnetic
anomaly than other types of mines. This anomaly keeps the
output voltage of the sensor at the maximum value even if the
soil type is changed. For different types of mines, different
anomaly valuesweremeasured in different soil types. In order
to investigate the effect of soil type on mine classification
problem, it was decided to create two different models. One
of these models included the soil type, while the other did not
take into account the soil type. Another information obtained
from Fig.4 is that the size of the anomaly varies depending
on the type of mine. This can be clearly seen from the graphs
obtained for mine types given in five different colors.

After the soil type, the effect of the height (H) on the
magnetic anomaly was investigated. In other words, the FLC
sensor’s ability to measure the magnetic anomaly from differ-
ent heights was examined. In addition, the relation between
the magnetic anomalies of the mine type was investigated.
The soil type was kept constant for this; and the magnetic
anomaly value obtained from the sensor depending on the
different altitude values was measured and recorded for each
type of mine. In Figure 5, the horizontal axis shows height,
while the vertical axis shows the output voltage of the sensor.

For the different altitude values given in Figure 5, the volt-
age value at the sensor output is understandable and shows a
clear change. Therefore, it is seen that the FLC sensor pro-
duces different signals (voltage amplitudes) for the selected
height range. To assess the mine type, it is necessary to
follow the lines in the different colors given in Figure 5.
The red line belongs to the anti-tank mine. Since the anti-
tank mine generates a large magnetic anomaly, the sensor
output produces an output signal with a maximum amplitude
between 0 cm and 4 cm. Moreover, it is very clear that all
the colors, i.e. the magnetic anomaly effects of each mine
type, are different. For different types of mines at the same

height, the amplitude value of the signal generated by the FLC
sensor is different. This also applies to different heights. The
summary of this subsection and the explanations necessary
for motivation in the next section are given below.

- When the problem is analyzed, it is seen that mag-
netic anomalies change depending on the type of mine,
the measurement height and the type of soil. Therefore,
considering only the magnetic anomaly for the design of
a passive mine detector may be an incomplete or even
a faulty approach. Until now, the failure of passive
mine detectors may not be an effective analysis of the
problem.

- Magnetic anomaly value, soil type and height of mea-
surement should be considered as independent variables
in the design of a passive mine detector. Models of
combinations of these three independent variables were
developed in the experimental study section. The per-
formances of the developed models have been measured
and compared with each other. Depending on the infor-
mation obtained, the most suitable model for the design
of the passive mine detector has been developed and
proposed.

C. PREPARING THE DATASET
Figure 6 gives the magnetic anomaly value (V) of the data
samples obtained from the experimental setup and the type
of mine (M) for different soil types and different height
values. The vertical axis represents the value of V and the
horizontal axis represents the data sample number. Seventy-
one of 352 data samples belong to non-mine cases. The class
of these data samples is labeled as ‘‘Type 1’’. Similarly,
mine samples are classified with labels ‘‘Type 2’’, ‘‘Type 3’’,
‘‘Type 4’’ and ‘‘Type 5’’. The red lines in Figure 6 give
the average of the magnetic anomaly values created by the
data samples of each class. For example, the data samples
between 71-143rd on the horizontal axis and shown with
Type-2 belong to the ‘‘anti-tank’’ mine class. The average
voltage value of data samples of class ‘‘Type 2’’ is about 0.7V.
Data samples include noisy data. Data cleaning is an effective
step on the success of data mining. Therefore, to successfully
model the mine problem, the noisy data must be removed
from the database. In the dataset cleaning process, a total

FIGURE 6. Mine types and voltage values of the data samples obtained
from the test simulator.
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of 14 noisy data samples were deleted. In the modeling of
the problem, 338 data samples were used.

D. MODELLING OF THE PROBLEM
The general principle of the mine detection and diagnosis
(classification) process is given in Figure 7. According to this
function, the target parameter (dependent variable) in the sys-
tem is the type of mine. The mine type appears to be discrete
(labeled) when considering the data type. For this reason,
this is a classification problem. Commonly used algorithms
in classification problems are Naive Bayes, Support Vector
Machine (SVM), decision trees, k-Nearest Neighbor (k-nn)
and ANN [11], [20], [22], [30], [34].

FIGURE 7. Mine detection and diagnosis process in the developed system.

The data types of the independent variablesmust be consid-
ered in order to determine the classification algorithms which
can be applied to the problem among alternative artificial
intelligence techniques. When the independent variables of
the system are examined, the ‘‘voltage’’ and ‘‘high’’ param-
eters are continuous values while the soil type is discrete
value. In order to apply classification algorithms that work
with numerical data, it is necessary to convert the soil type to
a discrete numeric value. Figure 7 presents the most modern
and effective classification techniques which can be applied
to the problem.

Among the artificial intelligence techniques presented
in Figure 8, the meta-heuristic k-NN with fuzzy metric is
an effective hybrid classification technique recently devel-
oped [47]. ANNs and meta-heuristic classifiers, which are
the most effective and modern classification techniques for
modeling the problem, are used.

FIGURE 8. AI-based effective classification techniques.

1) DEVELOPMENT OF ANN-BASED MODEL
Multilayer, feed forward and back propagation network struc-
ture is adopted as ANN model. The structure of the model,

which is designed as a 3-input and 5-output network, is given
in Fig 9.

FIGURE 9. ANN model designed for mine classification problem.

2) DEVELOPMENT OF INSTANCE-BASED MODELS
a: k-NN MODEL
k-NN is a sample-based classification technique. Parameters
that are effective on classification success are k-neighbor
number, distance metric and voting method. Apart from the
parameters of k-NN, the sample dataset of probing also has
a decisive influence on the classification performance. For
this reason, different k-values and models for distance met-
rics have been developed and tested in experimental studies.
It is also very important to sample the problem space of
the dataset in a homogeneous way. Please refer to [47]–[49]
for detailed information on the implementation steps of the
k-NN algorithm.

b: META-HEURISTIC k-NN
The meta-heuristic classification model consists of two basic
elements. These are the weighting and classification mod-
ules [47]–[49]. The task of the weighting module is to
explore the effect of the independent variables of problem
<V, H, S> on the dependent variable <M>. For this pur-
pose, the effect of the three input parameters on the target
parameter is represented with coefficients taking continuous
value in [0, 1] range <WV, WH, WS> by using a meta-
heuristic search method. Optimization of these coefficients
is performed by finding the values that maximize the clas-
sification performance. The task of the classification unit is
to estimate the class to which M belongs, depending on the
values of the input parameters <V, H, S>. The design of
this unit (meta-heuristic weighting unit) has been done with
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genetic algorithm. The classification unit is designed with the
k-NN algorithm. Parameter optimization and classification
process are given in Figure 10.

FIGURE 10. Parameter optimization and classification process.

Meta-heuristic algorithms search multiple solution can-
didates to find the optimum solution of a problem. Thus,
in this optimization problem, the cost function is k-Nearest
Neighbor classifier (fk-NN). The fk-NN function determines
the class of the dependence of independent variables of the
problem <V, H, S>. When the measurement result obtained
from the experimental setup is represented by an observation
q, the class of this observation q is obtained as given in
Equation 1.

qM = fk−nn(WV ∗ V ,WH ∗ H ,WS ∗ S) (1)

The weight coefficients <WV, WH, WS> given in Equa-
tion 1 are optimum values that maximize the performance of
the classifier fk−nn. The optimal values of these coefficients
are found by the genetic algorithm at the end of the heuristic
search process given in Algorithm 1.

When the problem parameters are taken into consideration,
a solution candidate (p) in the genetic algorithm is repre-
sented by three genes and one fitness value (’u’) as follows
(Equation 2).

P ≡ [WV ,WH ,WS] , [u] (2)

The fitness value of a solution candidate depends on its
classification performance. A dataset consisting of ‘‘test
observations’’ is used to measure the classification per-
formance. The k-Nearest Neighbor algorithm given in
Equation 1 is used to estimate the classes of test observations.
Accordingly, if it is assumed that there are k-observations in
a test data set, the fitness value of any solution candidate is
calculated as given in Equation 3.

u

=
number of correctly estimated observations of the class

k
× 100 (3)

Algorithm 1 The Pseudo-Code of the Optimization Process
Setting parameters and operators, defining cost function
Determining the number (n) of solution candidates in the
population (P)
Start

Create Population (P community with n solution candi-
dates)
loop i=1:n (genetic life cycle)
Calculate the fitness value (∀ni=1∀

n
i=1∀

n
i=1∀

n
i=1 P[i] can-

didate)
if (ending)
P save the best individual in the population<WV ,WH ,

WS> and
exit

else
Choice parent
Cross over
Mutation
Update

end loop

Depending on the information given above, a population of n
solution candidates can be represented as given in Equation 4.

P[i] ≡

WV (1,1) WH (1,2) WS(1,3)
...

. . .
...

WV (i,1) WH (i,2) WS(i,3)


 u1

...

ui

 (4)

Optimum weights are obtained by passing the P population
through the genetic life cycle as in Algorithm 1. At the end
of this process, the best individual from the set of P solution
candidates is registered and used in the k-NN classification
process. References [47]–[49] can be reviewed to obtainmore
detailed information on k-NN and meta-heuristic k-NN with
fuzzy metric algorithms.

III. EXPERIMENTAL STUDY: LANDMINE DETECTION
AND CLASSIFICATION PERFORMANCES
In experimental studies, training and test sets were prepared
by random sampling from 338 data samples. Approximately 3
out of 2 data samples were randomly separated for testing,
while the remaining was separated for training. Accordingly,
the distributions of land mine samples according to their
classes in training and test datasets are given in Figure 11.

Accordingly, two decision models were developed with
each of the three different techniques to determine the most
appropriate detection and diagnosis model. The detection
model decides whether or not there is mine depending on the
values of the <V, H, S> data from the sensors. In this case,
Type 1 represents non-mine condition and Type (2-5) rep-
resents mine condition. That is, according to the distribution
in Fig. 11, 21% of the data samples in the training and test sets
of the detection model belong to non-mine situations whereas
79% belong to mined situations. In the following section,
performances of six different models, ANN, k-NN and
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FIGURE 11. Distribution of randomly selected training and test samples
according to their classes for experimental studies.

meta-heuristic k-NN based detection and diagnosis models
are given, respectively.

In the following sub-section, the results of the two main
studies are shared. In the first study, alternative models are
being created for the problem of mine detection and clas-
sification. Among the created models, the most successful
ones are identified. For this, firstly, a model consisting of
combinations of probing independent variables (V, H and S)
was developed. These models are solved by ANN-based clas-
sification technique. In the analysis process, design variables
defined for mine detection and diagnosis (classification)
are modeled by ANNs and their performance is measured.
By considering the performances of the models, optimum
design variables are determined for the determination and
classification of the mines. After determining the most suit-
able design variables for the problem, the second study was
started. In the second study (the optimum design variables
are set in the previous phase), alternative models are created
withmodern and hybrid artificial intelligence techniques. The
aim of this study is to explore a more effective detection
and diagnostic model of the developed approach. For this
purpose, successful meta-heuristic classification techniques
and fuzzy distance-based meta-heuristic classification tech-
nique, a modern method, have been applied. In the next
subsections, the optimum design variables are determined,
and then the most suitable artificial intelligence model is
investigated.

A. MODELING OF PROBLEM WITH ANN
In this section, the most suitable design variables are investi-
gated for modeling the problem. In this process, ANN-based
models are created in accordance with the different combina-
tions of design parameters, the V, H, and S. The performances
of the created models are being tested. For this purpose,
four different ANN models are created for mine detection.
These are; Msense_1 = fANN_detect(V, H, S), the detection
model in which the V, H and S are taken into consideration,
the Msense_2 = fANN_detect (V, H) model, in which the S is
neglected, the Msense_3 = fANN_detect(V, S) model, in which
the H is neglected, and the Msense_4 = fANN_detect(V) model,
in which the S andH are neglected. The second study has been
conducted to determine the type or class of mine. Four differ-
ent ANN-based classification models have been developed
for this purpose. These are; Mclass_1 = fANN_classify(V, H, S),
the classification model in which the V, H and S are taken
into consideration, the Mclass_2 = fANN_classify(V, H) model,
in which the S is neglected, the Mclass_3 = fANN_classify(V, S)
model, in which the H is neglected and the Mclass_4 =

fANN_classify(V) model, in which the S and H are neglected.

1) DETECTION PERFORMANCE OF ANN-BASED MODELS
In this sub-section, four different ANN models are created,
each consisting of combinations of design variables. Each
of the created models is measured for the performance of
detecting mines. The first model is represented byMsense_1 =

fANN_detect(V, H, S), the second model is represented by
Msense_2 = fANN_detect(V, H), the third model is represented
by Msense_3 = fANN_detect(V, S) and the fourth model is
represented by Msense_4 = fANN_detect(V). Fourth of these
models Msense_4 = fANN_detect(V) is based on the approach
used in the design of the passive mine detector in the litera-
ture [45]. The performances obtained in these four models are
compared with each other to investigate the most appropriate
approach (design variant combination or input parameters of
problem) to detect and classify mines with a passive mine
detector.

Figure 12 shows the performance curves of the Msense_1,
Msense_2, Msense_3 and Msense_4 models. In the chart
on the top left (a), mine detection is performed according
to the input parameters of problem (design variables) V, H
and S. In this model, the learning process continued effec-
tively for about 80 epochs. The cross-entropy value is also
reduced to a value close to 10−2. In the chart on the top
right (b), the soil type was not taken into consideration when
mine was detected. In this case, the learning process lasted
about 50 epochs. The cross-entropy value is reduced to 10−1.
It was tried to determine the existence of mines according to
(Figure 12 c) V and S design variables as given in the lower
left and (Figure 12 d) only according to the V parameter as
given in the lower right. In both (c and d), the learning process
was interrupted at low epoch values and was not able to learn.
The information obtained from these four graphs indicates
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FIGURE 12. Training performances of ANN-based mine detection models. (a) Msense_1 = fANN_detect(V, H, S) (proposed).
(b) Msense_2 = fANN_detect(V, H). (c) Msense_3 = fANN_detect(V, S). (d) Msense_4 = fANN_detect(V).

that V, H and S are more effective than the other combinations
of input parameters in mine detection.

The Receiver Operating Characteristic (ROC curve) and
confusion matrix will be examined to determine this effect
of this effect. Figure 13 shows the ROC curves obtained for
the formation of the Msense_1, Msense_2, Msense_3, and
Msense_4models. The area of the curve below theROC curve
shows the discrimination accuracy of the respective models.
It is desirable that the ROC curve of the model developed in
classification problems has the closest value to 1. According
to the ROC curves shown in Figure 13, the accuracy of the
Msense_1 model is higher. This information also supports
that the soil type and height of measurement should be taken
into consideration in mine detection.

The information that most clearly and quantitatively
reveals the mine detection performances of the Msense_1,

Msense_2, Msense_3 and Msense_4 models is the confusion
matrices given in Figure 14. According to these comparison
matrices, there is a difference 5.4% in the mine detection
between the Msense_1 and Msense_2 models. The mine
detection problem for Msense_1 is 10.4% and 11.6% higher
than for the Msense_3 and Msense_4 models. This proves
that independent variables should be selected as V, H, S in the
mine detection problem.When the experimental study results
of Msense_1 are examined, it is seen that the mine detection
is successful with 95.6% accuracy.

2) CLASSIFICATION PERFORMANCE OF
ANN-BASED MODELS
The mine detection performance of models developed in
the previous section based on four different approaches was
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FIGURE 13. ROC curves ANN-based mine detection models. (a) Msense_1 = fANN_detect(V, H, S) (Proposed).
(b) Msense_2 = fANN_detect(V, H). (c) Msense_3 = fANN_detect(V, S). (d) Msense_4 = fANN_detect(V).

tested experimentally. Mine diagnostic (classification) mod-
els are created based on the same approaches in this section.
The objective of experimental work is to determine the
most successful approach to the classification of mines. For
this purpose, Mclass_1 = fANN_classify(V, H, S)Mclass_2 =

fANN_classify(V, H), Mclass_3 = fANN_classify(V, S) and
Mclass_4 = fANN_classify(V) models are created and tested.
The performances of four models are given comparatively.
Figure 15 shows the performance curves of the models.

In Figure 15-a, the mine class is realized according to the
input parameters V, H and S. In this model, the learning
process continued effectively for about 85 epochs. The cross-
entropy value is also reduced to a value close to 10−1.
In Figure 15-b, the soil type was not considered in the
classification of mines. In this case, the learning process
lasted about 60 epochs. The cross-entropy value is not
sufficiently lower than the first model. When the

graphs c and d in Figure 15 are examined, it is seen that
the learning process is terminated in a short time. Both
approaches (Mclass_3 and Mclass_4) are found to have very
low epoch values and a low classification performance.
These results indicate that the most suitable independent
variables (design parameters) for the mine classification
problem are the V, H, S combination (i.e. the proposed
approach).

The Receiver Operating Characteristic (ROC curve) and
confusion matrix will be examined to determine the effect.
In Figure 16, the ROC curves obtained for the formation
of Mclass_1, Mclass_2, Mclass_3 and Mclass_4 models are given.
According to the ROC curves shown in Figure 16, the accu-
racy of the Mclass_1 model is higher. This information also
supports that the design parameters, the V, H and S should
be taken into account in mine classification as in the mine
detection process.
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FIGURE 14. Confusion matrixes of ANN-based mine detection models. (a) Msense_1 = fANN_detect(V, H, S) (Proposed).
(b) Msense_2 = fANN_detect(V, H). (c) Msense_3 = fANN_detect(V, S). (d) Msense_4 = fANN_detect(V).

The information that most clearly reveals the mine classi-
fication performances of the Mclass_1, Mclass_2, Mclass_3 and
Mclass_4 models is the confusion matrices given in Figure 17.
According to these comparison matrices, there is a differ-
ence of about 15%-20% in the mine detection between the
Mclass_1 and the other models. When the experimental study
results of Mclass_1 are examined, it is seen that the mines
are classified with an accuracy 71.3%. It is not possible
to ignore this great difference in mine classification perfor-
mances of the fourmodels. For this reason, in order to develop

a strong mine classifier, the combination of VHS parame-
ters must be considered. In this section, it has been proven
experimentally that the most appropriate approach for the
design of the passive mine detector consists of the V, H and
S parameters.

B. PERFORMANCE OF INSTANCE-BASED TECHNIQUES
In the previous subsection, a new approach has been proposed
to consider the V, H, and S parameters for passive mine detec-
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FIGURE 15. Training performances of ANN-based mine classification models. (a) Mclass_1 = fANN_classify(V, H, S) (proposed).
(b) Mclass_2 = fANN_classify(V, H). (c) Mclass_3 = fANN_classify(V, S). (d) Mclass_4 = fANN_detect(V).

tor design. In this subsection, the problem is modeled using
alternative techniques to the ANNs, considering the proposed
approach. At the beginning of alternative techniques are
sample-based, modern and hybrid classification algorithms.
To learn more about the modern meta-heuristic classification
techniques, the one developed by Kahraman [47] can be
examined. The parameters of the algorithms applied in the
experimental study are given in Table 2. In the tests for the
k-neighborhood number of the user-defined parameters of
the k-NN algorithm, the best performance was found in 2,
3, 4 and 5 neighboring numbers. Euclidean (EU), Manhat-
tan (MA), Minkowski (MI), and Fuzzy Distance relations
were used to measure the distance. Both weighted voting and
majority voting have been tried in class determination and
successful results have been obtained in both.

It has been proved in the previous section that the most
appropriate approach for the detection and classification
of mines is model_1 (V, H, S). In the following subsec-
tions, experimental studies are carried out by using this
model_1 (V, H, S) and alternative artificial intelligence tech-
niques. These studies consist of two parts. The first study is
for the detection of mines and the second is for the classifi-
cation of mines.

1) DETECTION PERFORMANCE OF k-NN AND
META-HEURISTIC k-NN TECHNIQUES
Thirty-two independent mine detection models have been
developed using four different k-values, four different dis-
tance metrics and two different algorithms. The detection
performance of the developed models was measured by
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FIGURE 16. ROC curves of ANN-based mine classification models. (a) Mclass_1 = fANN_classify(V, H, S) (proposed).
(b) Mclass_2 = fANN_classify(V, H). (c) Mclass_3 = fANN_classify(V, S). (d) Mclass_4 = fANN_detect(V).

experimental studies. The detection performances obtained
from 32 independent models for the 113 data samples in
the dataset are given in Table 3. The detection performance
of meta-heuristic algorithm-based models is considerably
higher than that of classical k-NN-based models. These dif-
ferences between the performances of the two algorithms
correspond to the results of other studies in the literature on
problems in different domains [47].

The results given in Table 3 show that sample-based clas-
sification technique detects mines at a high rate of 95% in
many cases. The detection performance of the meta-heuristic
k-NN algorithm with fuzzy metric is 98.2%. If the k-value
is 2, 3, 4 and the distance metric is fuzzy, then only 2 out
of 113 data samples are evaluated incorrectly. This is a result
of the success of the modeling approach (<M> <V, H, S>),

which is especially recommended in this study. The meta-
heuristic search unit has discovered the optimal values of the
effects of the independent variables (V, H, S) on the dependent
variable (M) as <WV = 0.757036, WH = 0.657224,
WS = 0.603281>.

2) CLASSIFICATION PERFORMANCE OF k-NN AND
META-HEURISTIC k-NN TECHNIQUES
Classification performances of k-NN and meta-heuristic k-
NN algorithms are given under this heading. Please refer
to Reference 47 to learn about a wide range of these algo-
rithms. As in the previous section, a total of 32 different
models have been created for mine classification studies.
As a result of the classifications performed using these
models, the error percentages given in Table 4 are obtained.
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FIGURE 17. Confusion matrixes of ANN-based mine classification models. (a) Mclass_1 = fANN_classify(V, H, S) (proposed).
(b) Mclass_2 = fANN_classify(V, H). (c) Mclass_3 = fANN_classify(V, S). (d) Mclass_4 = fANN_detect(V).

Classical sample-based classification models fail according
to the classification performances given in Table 4. On the
other hand, the performance of the model-based classical
models at mine detection was acceptable (see Table 3). This
situation indicates the difficulty of diagnosing mine types.
The meta-heuristic k-NN-based models are twice more suc-
cessful in detecting mines than the classical models.

The error rate is 14.2% when the mine classification
performance is the highest according to the error rates

obtained. On condition that this success is granted; the dis-
tance metric is ‘‘fuzzy’’ and the k-value is 4. In this case,
the meta-heuristic search unit discovered the optimal values
of the effects of the independent variables (V, H, S) on
the dependent variable (M) as <WV = 0.997804, WH =

0.703208, WS = 0.792557>. Of the 113 data samples,
16 were classified as erroneous, provided that an error rate
of 14.2% was obtained. The confusion matrix for these
16 misclassifications is given in Figure 17.
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TABLE 2. The design parameters of meta-heuristic k-NN algorithm.

TABLE 3. The percentage of misdetections in instance-based algorithms.

TABLE 4. The percentage of misclassifications in instance-based
algorithms.

As shown in Figure 18, the difference between the types
of mines could be diagnosed with a minimum performance
of 77.3%, a maximum of 100% and an average of 85.8%.
This result is the most successful of both ANN-based
and sample-based models. When searching with the mine
detector, many data are received and evaluated within a
few seconds. The evaluation these data from the same point
within the range of seconds significantly reduces the likeli-
hood of an erroneous decision being made. In other words,
the model developed according to the performance in Fig-
ure 18 can successfully diagnose the mine even under the
worst conditions. In addition, if the detector is kept close

FIGURE 18. Confusion Matrix of meta-heuristic k-NN with fuzzy (k) = 4.

to the ground after mine detection, the classification perfor-
mance is 100%. To understand this, please refer to Figure 7
again. Near-distant (up to 4cm above ground) magnetic
anomaly values can be distinguished by mine types only.

IV. COMPARISONS AND DISCUSSION
It is possible to decide the most successful model after
examining the detection and diagnostic performance obtained
with both ANN and k-NN-based models. In the ANN-based
detection model, the average success performance was 95.6%
(error rate 4.4%). The mine detection percentages obtained
from 32 different k-NN-based models are given in Figure 19.
The detection performances of all alternative models are
noteworthy. This is promising for passive detector design.
The heuristic k-NN algorithm, designed with fuzzy metrics
in all developed models, is the most successful. In this model,
mine detection performance was 98.2%. This achievement is
also a result of the mine modeling approach.

FIGURE 19. The detection performance percentages obtained from
k-NN-based detection models.

In the ANN-based diagnostic model, the average suc-
cess rate was 71.3%. Successful detection percentages
obtained from 32 different models with k-NN base are given
in Figure 20. Accordingly, the highest classification per-
formance of the heuristic k-NN model with fuzzy metric
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FIGURE 20. Classification performance percentages obtained from
k-NN-based classification models.

is 85.8%. This is also the most successful of all developed
models.

V. CONCLUSIONS
It is possible to explain the results obtained from this study
carried out in order to solve the problem of detection and clas-
sification of landmines under four headings. These include
the approach, method, technique, and experimental findings
obtained to model the problem. The contribution and results
of the study in terms of literature are given below:

i) It was known in the literature that magnetic anomalies
were caused by mine presence. However, this study
proves for the first time in experimental studies that
the size of this anomaly exhibits a change that can be
modeled depending on the height of measurement (dis-
tance of the detector/sensor from the soil surface) and
soil type. Therefore, a model based on the parameters
‘‘magnetic anomaly’’, ‘‘height’’ and ‘‘soil type’’, which
is amine type dependent variable, is defined for the first
time in the landmine problem. Based on this definition,
the problem model was developed to define under-
ground buried objects in a multi-dimensional problem
space. It was thus possible to model the characteristics
of objects more accurately. This information is vital
in terms of real world practices. Because in a real
application, the height of the mine detector from the
ground is not constant and the soil type changes.

ii) In the literature, mine detection with active mine detec-
tors was performed with a high detection performance,
but with the risk of triggering the mine blasting sys-
tem at any moment. The second advantage of the
approach proposed (meta-heuristic k-NN with fuzzy
metric) in this study is that the mine detection with a
passive detector design is performed with 98.2% per-
formance. This successful detection performance will
give momentum and direction to future studies related
to passive detectors.

iii) Most of the studies in the literature focused on mine
detection. The classification of mines with a passive
detector design has never been achieved before. The
approach proposed in this study has created a function

of the magnetic anomalies created by the mines buried
in the soil depending on the mine type, height and
soil type. Thanks to this model, mines are located in
multidimensional space according to their types. In this
way, a passive detector design has opened the way
for the detection of mines. Experimental studies have
shown that mine detection is successfully performed at
approximately 85.8%. It is important that this ratio is
obtained in a real-world application where the detector
is moving and its height changes at any time.

iv) Another important contribution of this study to the
literature is to convert the mine detection problem into
a mine classification problem and model it effectively
with artificial intelligence-based techniques. In the lit-
erature, ANNs have been the most frequently used
technique for modeling classification problems with
multidimensional and numerical valued input prop-
erties. ANN is preferred because it is easy to apply
through ready toolboxes and creates successful models.
In addition, recently developed hybrid classification
algorithms have shown remarkable classification per-
formance. However, applying new and powerful algo-
rithms to a problem is not as easy as conventional
artificial intelligence techniques. For this, expert sup-
port is needed in the field of artificial intelligence.
In this paper, alternative and modern classification
techniques have been successfully applied to model
problem. The most successful of these techniques is the
fuzzy logic-based meta-heuristic classification algo-
rithm. This algorithm has proven to be very successful,
especially in the mine diagnostic process.

As a result, it is expected that this paper will encourage
accelerating passive mine detector-based studies attempting
to identify mine types; and redefining the mine problem as a
multi-dimensional problem.
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