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ABSTRACT Kernels of operating systems are written in low-level unsafe languages, which make them
inevitably vulnerable to memory corruption attacks. Most existing kernel defense mechanisms focus on
preventing control-data attacks. Recently, attackers have turned the direction to non-control-data attacks
by hijacking data flow, so as to bypass current defense mechanisms. Previous work has proved that non-
control-data attacks are the critical threat to kernels. One of the important purposes of these attacks is to
achieve privilege escalation by overwriting sensitive kernel data. The goal of our research is to develop a
lightweight protectionmechanism tomitigate non-control-data attacks that compromise sensitive kernel data.
We propose an approach that enforces data integrity of sensitive kernel data by preventing the illegal write to
these data to mitigate privilege escalation attacks. The main challenge of the proposed approach is to validate
the modification of sensitive kernel data at runtime. The validation routine must verify the legitimacy of the
duplicated sensitive data and ensure the credibility of the verification. To address this challenge, we modify
the system call entry point to monitor the change of the sensitive kernel data without any change to Linux
access control mechanism. Then, we use stack canaries to protect the duplication of sensitive kernel data that
are used for integrity checking. In addition, we protect the integrity of sensitive kernel data by forbidding
illegal updates to them. We have implemented the prototype for Linux kernel on Ubuntu Linux platform.
The evaluation results of our prototype demonstrate that it can mitigate privilege escalation attacks and its
performance overhead is moderate.

INDEX TERMS Kernel, non-control-data, credential, privilege escalation.

I. INTRODUCTION
Over the past decades, memory corruption vulnerabilities
in kernels of modern commodity operating systems have
been a hot topic for the researchers all the time. Since
the security of OS kernels is one of the preconditions for
many security solutions, attackers have paid more atten-
tion to kernel exploits. Through those memory corruption
vulnerabilities, attackers can execute arbitrary codes in the
kernel or even take full control of the whole system. To pro-
tect the kernel from memory corruption exploits, researchers
have proposed several kernel-specific defense mechanisms,
such as Supervisor Mode Execution Protection (SMEP), Ker-
nel Address Space Layout Randomization (KASLR), Kernel
Control Flow Integrity (KCFI), etc. SMEP prevents the

execution of the code located in a user-mode page while the
operating system is running in a higher privilege level [1].
KASLR makes it much more difficult for attackers to find
gadgets in the kernel address space [2]. KCFI introduces
a solid solution to prevent subverting the kernel’s control
flow [3], [4].

Since the defenses against code injection or code reuse
attacks [5] that base on manipulating control-data have
evolved into mature mechanisms step by step, attackers turn
their attention to non-control-data attacks [6]. Researchers
have proposed several exploit techniques, such as Data-
Oriented Exploits and Data-Oriented Programming [7].
As we known, attackers usually manipulate the non-control
data to achieve privilege escalation without subverting any
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control flow of the kernel, for example, overwriting the cre-
dentials of the current process (uid, gid, etc.) with the ones
of the root user.

To defend against non-control-data attacks, researchers
have proposed several solutions from different aspects. These
solutions render the non-control data either impossible to
be manipulated [8]–[13], or harder to be located in the
kernel [14], [15]. However, all these solutions suffer from at
least one of the limitations as follows: high performance over-
head, the necessity for higher-privileged execution modes
(e.g., hypervisors), dependency on the support of specific
hardware features, or incompatibility with the kernel.

The goal of this paper is to provide a practical defense
solution for the security-critical non-control data in the
kernel to prevent privilege escalation attacks. We achieve
this by enforcing data integrity of data structures that
involves with access control mechanisms, such as struc-
ture cred, mm_struct, task_struct, addr_limit
(in thread_info), and so on. We present a framework
called PrivGuard to protect the sensitive data in kernel from
being compromised. PrivGuard monitors the modification
of the sensitive data by hooking the system calls. Then,
PrivGuard saves a duplication of the sensitive data before
the invoking of a system call, and uses this duplication for
integrity check before the returning of this system call. Stack
canaries are used to protect the duplicated sensitive data from
be overwritten by attackers. As for data integrity, PrivGuard
enforces it by preventing the illegal write to the sensitive
kernel data.

We implement a prototype for Ubuntu Linux platform and
evaluate its practicality and effectiveness. The performance
evaluation results show that it has an acceptable impact on
operating system, and an average overhead of 9% on system
call on x86 system. The impact on I/O and computation
latency is negligible. The real-world attack test case shows
that PrivGuard can defend against data-only privilege escala-
tion attacks effectively. In summary, we make the following
contributions in this paper:
• We propose a practical method to monitor the modifica-
tion of sensitive data in kernels by hooking the system
calls without changing the existing linux access control
mechanisms, and leverage stack canary to protect the
duplicated sensitive data.

• We present PrivGuard, a framework that enforces data
integrity of kernels’ sensitive data by preventing the
illegal write to the data.

• We implement a prototype of PrivGuard for Linux ker-
nel. The performance evaluation results show that it
incurs an average overhead of 9% on system call and
nearly has no impact on I/O and computation. The per-
formance overhead for applications is negligible. The
security evaluation for the real-world non-control-data
attack shows that PrivGuard can defend it effectively.

We organize the remainder of this paper as follows.
Section II briefly introduces kernel privilege escalation
attacks. Section III defines the problem scope of this paper.

Listing 1. Privilege escalation payload.

Section IV describes the detailed system design. Section V
presents the implementation of PrivGuard. Section VI
dicusses the limitation of our work and the future works.
Section VII illustrates the evaluation results. Section VIII
briefly introduces related work. Section IX presents the
conclusion.

II. BACKGROUND
In this section, we introduce the background of privilege
escalation attacks by manipulating the security-sensitive data
in the kernel. Over the past few years, attackers have paid
more attention to the kernel. One of the most common attack
vectors is to exploit memory corruption in the kernel to
manipulate the control-data to hijack the control flow, or to
corrupt the non-control data to tamper with the data flow.
In what follows, we briefly introduce these kernel attacks that
achieve privilege escalation.

A. PRIVILEGE ESCALATION WITH CONTROL-DATA
ATTACKS
The kernel control-data attack is a kind of attack that exploits
memory corruption to redirect the kernel’s control flow to
malicious codes injected by the attacker or the fragments of
existing codes chained together by the attacker. The former
is called code injection attack, which can be prevented by
Supervisor Mode Execution Prevention (SMEP), or Priv-
ileged Execute Never (PXN). The latter is known as the
code-reuse attack [5]. The ROP attack is a novel and prevail
code-reuse attack technique. In a typical ROP attack for
privilege escalation, the kernel control flow is diverted to a
user-space address which contains the privilege escalation
payload, as illustrated in Listing 1. The privilege escalation
payload will allocate a new credential with root privilege and
apply it to the current process.

To deal with ROP attacks, researchers put forward a
novel technique named Control Flow Integrity (CFI) [3], [4].
CFI validates each indirect control flow transfer in the kernel
whenever it happens to ensure that the kernel’s control flow
conforms to the valid control flow graph (CFG) which is
acquired by static analysis in advance. However, CFI can also
be bypassed with control-data attacks. For example, attackers
can overwrite each callback function pointer of SELinux to
the default one to disable SELinux, which doesn’t violates
the policy of CFI.

B. PRIVILEGE ESCALATION WITH NON-CONTROL-DATA
ATTACKS
An attack that leverages a memory corruption vulnerability to
tamperwith security-critical data, rather than redirect the con-
trol flow, is a non-control-data attack. Such kinds of attacks
are firstly introduced by Chen et al. [6] to reveal that they
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can cause dangerous security problem. Hu et al. [7] prove
that non-control-data attacks are Turing-complete. Moreover,
due to not bending the control flow transfer of the pro-
gram, non-control-data attacks can bypass current defense
mechanisms that are designed mainly for preventing control-
data attacks. Therefore, non-control-data attacks are serious
threats to Linux kernel. Non-control-data attacks make priv-
ilege escalation by directly compromising sensitive kernel
data structure. For example, the cred data structure of a
process could be located in the kernel address space, and then
be overwritten with the one of the privileged process, so as to
escalate the privilege of the original process.

Several solutions have been proposed to defend against
non-control-data attacks [8], [9], [11], [12], [14], [15]. How-
ever, existing defense mechanisms for preventing privi-
lege escalation suffer from some limitations as mentioned
in Section I.

III. PROBLEM SCOPE
In this section, we specify the problem scope of our work.
First, we describe the threat mode and assumptions. Then,
we provide some examples that modify the kernel’s data to
explain the motivation.

A. THREAT MODEL AND ASSUMPTIONS
The aim of our research is to prevent privilege escalation
attacks, which exploit memory corruption vulnerabilities to
manipulate security-sensitive data in the kernel. We only take
the attacks that come from unprivileged programs in user-
space into consideration. Therefore, the attacks that comes
from malicious drivers and kernel rootkits are out of scope,
since they are at the same privilege level as the kernel, and
thus hard to defend against.

Specifically, we make the following assumptions:
Memory Corruption: There is at least one memory cor-

ruption vulnerability in the kernel that allows attackers to gain
the ability of reading and writing arbitrary memory.

User Space: There is no restriction on attackers in the user
space. Attackers can execute any code in the user space and
invoke kernel API function.

Kernel Attacks Defense: There are already some defense
mechanisms against code injection attacks deployed in the
kernel, such as SMEP [1]. There are also some defense mech-
anisms against code-reuse attacks deployed in the kernel,
such as Control Flow Integrity [3], [4], Kernel Address Space
Layout Randomization [2], or Code-Pointer Integrity [16].
However, all these defense mechanisms cannot prevent non-
control-data attacks.

B. MOTIVATION EXAMPLE
Based on the threat model and assumptions above,
we leverage a real-world Linux kernel vulnerability,
CVE-2014-3153 [17], to manipulate kernel non-control
data to make privilege escalation for the current process.
CVE-2014-3153 reports a bug in the system call futex()
which provides the fast user-space locking. There are

Listing 2. A function that writes the data referred by writebuf to the
location pointed by readbuf.

two vulnerabilities in the kernel functionsfutex_requeue,
futex_lock_pi and futex_wait_requeue_pi.
By leveraging these vulnerabilities, attackers can cause futex
variables to have waiters but no owner, the so-called dangling
pointer. By filling the function stack, attackers can modify
the data in the waiter rt_waiter on the stack to control
the node of the waiting list in the kernel. Then, they can
acquire the ability of writing arbitrary kernel address through
inserting nodes into the waiting list to change addr_limit
with 0xffffffff.

After overwriting addr_limit, as shown in Listing 2,
attackers can use the function write_pipe to overwrite the
memory in the kernel space that readbuf points to with the
prepared data referred bywritebuf, by invoking the system
calls read and write. In practice, the content pointed by
readbuf is normally some security-sensitive data, which
thus will be manipulated.

To achieve privilege escalation, attackers usually choose
to compromise the process credentials which are typical
security-sensitive data. The cred structure stores the cre-
dentials for a process, and the privilege level of the process
is determined by it. Therefore, it is the primary objective in
the privilege escalation attacks. For example, Listing 3 shows
DAC check in Linux kernel. If attackers overwrite the kernel
data like fsuid, they can bypass the DAC checks and access
sensitive files.

In order to manipulate the cred structure, we need to get
the location of it at first. Since the rt_waiter is on the
kernel stack, the address of thread_info can be acquired
by rt_waiter & 0xffffe000. Then, through parsing
thread_info, the address of task_struct and cred
can be located as thread_info->task_struct and
task_struct->cred step by step.
As shown in Figure 1, there are three ways to get local

privilege escalation with the function in Listing 2.
I The address of cred can be obtained by referring
task_struct->cred. Then, attackers can directly
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Listing 3. Code snippet in Linux kernel for discretionary access control
check.

FIGURE 1. Three ways to achieve local privilege escalation.

overwrite the content of cred, for examine, uid=0,
gid=0, and so on;

II Attackers can overwrite the pointer of cred in the
task_struct to make it point to a fake or an existing
one with root privilege, whicn makes the cred describe
a malicious process. This changes their context of use.

III The structure mm_struct describes the memory
map of the process. By parsing task_struct->mm,
attackers can get the pointer that contains the address of
mm_struct. Through overwriting the one of attacker-
controlled process with the one of privileged process,
the context of privileged process is corrupted. The mali-
cious code can run in the privileged context.

IV. SYSTEM DESIGN
In this section, we firstly elaborate the main idea of the pro-
posed defense system. Then, we describe the funtionalities in
details. Figure 2 shows a overview of the architecture of our
system.

A. MAIN IDEA
As we known, Linux uses two operating modes, kernel mode
and user mode. Only trusted core components of operating

FIGURE 2. The PrivGuard at runtime.

system run in the kernel mode, and other components and
applications run in the user mode. A user-space application
must invoke system calls on its behalf to access the kernel
data. Thus, the kernel data is not directly accessible to user-
space applications, including user-space attack codes.

Therefore, we design the system based on system call
hooking to monitor the modification of sensitive kernel
data. In the implementation of operating systems, those
security-sensitive data are only supposed to be modified by
some specific system calls, such as sys_seteuid and
sys_setcap, with pre-defined permission-checking rules
that will forbid unprivileged users to make privilege esca-
lation through modifying those data. Therefore, the system
calls can be divided into two categories: the ones that can
change the sensitive kernel data legitimately, and the ones that
should have no right to change those sensitive data. We only
focus on the latter category to monitor the illegitimate change
of the sensitive kernel data and check the integrity of them.

In addition, the system call interfaces of different Linux
distributions are seldom changed. Thus, our system needs
little change to port from one Linux distribution to another,
which means it has good compatibility and portability.

B. SYSTEM CALL HOOKING
Since system calls are the gate that allows a user-mode appli-
cation to access the sensitive kernel data, we hook them to
ensure that the sensitive data is not compromised during their
execution.

Listing 4 shows the entry for Linux system calls for
x86 platform, which is defined in entry_32.S of kernel
files. As shown in Listing 4, OS sets up the registers, pushes
the syscall number saved in eax to kernel stack, and then
calls sys_call_table to start the invocation of system
call. We modify the system call entry point and add two
functions to hook the system call, named syscall_pre()
and syscall_post().

Once a user-space application invokes a system call,
the function syscall_pre() will be executed at first.
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Listing 4. Entry point for system calls on x86 platform.

During its execution, this system call will be determined
whether to be legitimate to access the sensitive kernel data.
Then, a copy of the sensitive kernel data will be duplicated to
be used for integrity checking afterwards. Before the return
of the system call, the function syscall_post() will be
invoked, which is in charge of checking the data integrity of
the sensitive kernel data which is not supposed to be modified
by this system call.

C. SENSITIVE DATA DUPLICATION
PrivGuard prevents illegal write to sensitive kernel data.
In order to verify the data, they need to be duplicated and
saved on the other place.We duplicate these datawhen system
call starts and verify the modification of them when system
call returns.

Each process has a process control block (PCB) tomaintain
the information about the process in the kernel. In Linux,
the PCB is carried by the task_struct data structure. The
process stores its information in task_struct, such as
process descriptor, process identifier, process memory man-
agement, and so on. Process credentials are stored in another
kernel data structure cred, which is referred as a pointer in
the task_struct structure. These data structures are criti-
cal to the privilege level of a process. Thus, we systematically
examine these data structures and classify the data fields that
need to be protected into the following three categories:
I. Identities. The cred structure includes user identities

and group identities, such as uid, gid, euid, egid,
etc. If the uid/gid of a process is zero, it means that
this process has root privilege and full access to all files
in the system.

II. Capability. The capability of a process represents
the operations that the process are allowed to per-
form. cap_permitted indicates the capabilities that
the process has. cap_effective is the capabili-
ties that the process actually uses at the moment.
cap_inheritable is the capabilities that child pro-
cess can inherit. If the capabilities of a process are
manipulated by attackers, the ordinary user can perform

operations that only the root user has the permission to
perform, such as changing the uid of the process.

III. Pointers. In task_struct, there are several point-
ers referring to some sensitive data structures, such as
the pointer to cred, and the pointer to mm_struct
which refers to the structure used for process memory
management. Attackers can manipulate those pointers
to refer to a privileged process, so as to achieve privilege
escalation.

We combine these sensitive data fields together and put
them into a unified structure. When a user-space application
invokes system call, the hook function syscall_pre()
stores the duplication of the security-critical data into the
unified structure. Afterwards, syscall_post() uses it
for checking the integrity of the security-critical data. The
duplicated sensitive data should push on the kernel stack in
advance for the hook function to use it. To avoid conflicting
with the data that already exist in the kernel stack, we choose
a safe place that is unused yet. This place is set at a fixed offset
to the address of thread_info. We obtain the address of
thread_info by the value of current esp minus kernel
stack size. Then add a constant value to result above as the
stack grows from high address to low address.

The size of the sensitive data duplication is much smaller
(about 80 bytes) compared to the size of kernel stack (8 KB).
It will not have a bad impact on the execution of system
calls or kernel functions. In addition, during the runtime of
micro-benchmarks, the operation system does not run into
any faults or cash. Moreover, the kernel has a limit to the
nest depth of system calls or kernel functions, so the space
of kernel stack will not be used up in normal situations.

D. STACK EXHAUSTION CHECKING
Since the duplication of sensitive data was kept on the kernel
stack, we should ensure that there has enough space for saving
data. What’s more, these data shouldn’t be overwritten before
being duplicated. Therefore, we add a check to prevent stack
exhaustion and the overwrite to sensitive data.

In Linux, each process has two different kinds of stacks,
task stack in the user mode and kernel stack in the kernel
mode. The kernel stack is used by the kernel at the exe-
cution of the system calls. As shown in Figure 3, kernel
saves the thread_info structure at the end of the kernel
stack. For x86 architecture, kernel stack size is usually limited
to 8 KB. Thus, the kernel stack space can be exhausted if
the nesting depth of system calls is too large or a function
uses a pretty large stack frame. In such case, the struc-
ture thread_info can be manipulated, probably with the
data crafted by the attacker. As mentioned in Section III,
thread_info contains some sensitive data, for example,
data pointer oftask_struct. These data are usually objec-
tives for attackers. Previous work has demonstrated such a
vulnerability [18] can be exploited by attackers to achieve
privilege escalation [19].

To avoid the circumstances mentioned above, we examine
the status of the kernel stack at the granularity of system calls.
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Before the execution of each system call, we make sure that
the current stack pointer is higher than the address of the
thread_info plus a fixed offset. The fixed offset is used
to reserving space for saving the content of registers and the
duplication.

E. PROTECTION OF DUPLICATED SENSITIVE DATA
Securing the duplicated sensitive data is necessary, because
it is critical for the integrity checking when the system call
returns. Since we save these duplicated data in the kernel
stack, we secure them by inserting stack canaries close to
them and checking the integrity of canaries before using
them.

The canary is a data field that is inserted into the stack
to protect stack from memory corruption attacks [20]. If the
attacker exploits a stack overflow vulnerability to overwrite
the data on the kernel stack, the integrity of the canary will
be compromised at first.

As shown in Figure 3, a canary is inserted right before
the duplicated sensitive data to ensure the integrity of the
data. Each time before using the duplicated sensitive data,
the integrity of canary will be checked at first to validate the
data.

FIGURE 3. Kernel stack layout.

F. DATA INTEGRITY VERIFICATION
The four sections above have established the base of prevent-
ing privilege escalation attacks: monitoring the modification
of the sensitive kernel data and ensuring the integrity of the
duplicated sensitive data. Therefore, we can enforce the data
integrity policy over these data to prevent privilege escalation
attacks at runtime. PrivGuard can adapt any kind of policy
to protect them. For exmaple, Android operating system
reserves a set of uid/gid for root and system privilege
processes (0-10000 normally). PrivGuard can prevent the
uid/gid of a process changing from the unprivileged set
to the privileged set.

In this paper, we adapt a general-purpose data integrity
policy to prevent privilege escalation attacks. We prohibit the
value of the sensitive kernel data that represents the privilege
from being changed from non-privileged to privileged, such

as uid being changed from non-zero to 0. But there are some
exceptions: a process that executes setuid-to-root binaries,
such as passwd, will experience the privilege change; a
process with the capability of CAP_SETUID can change its
user identifiers.

1) PREVENTING PRIVILEGE ESCALATION ATTACKS
PrivGuard enforces data integrity policy over the sensitive
kernel data to prevent privilege escalation attacks. First of all,
we need to give a definition about the operations that cause
policy violation.

As mentioned in Section IV-C, cred structure contains
user identity and group identity data fields: uid, euid,
suid, fsuid, gid, egid, sgid, and fsgid. If an unpriv-
ileged process modifies its user identity and group identity
to root user identity, we consider this as an illegal privilege
escalation, which needs to be terminated.

As for capabilities, takingcap_effective for example,
once an unprivileged process illegitimately sets some bits
of its own cap_effective to 1, it can perform some
privileged operations constrained by those bits from that
time on. We also consider this as some illegal privilege
escalation.

Moreover, the cred and mm_struct structures are
referred as pointers in task_struct structure. We prevent
the targets of these pointers from being changed from unpriv-
ileged to privileged.

2) LEGITIMATE PRIVILEGE ESCALATION
With above runtime data integrity policy adopted, we can
prevent attackers manipulating the sensitive kernel data to
achieve privilege escalation for the current process. How-
ever, there are two exceptions that we should take into
consideration:

I Privileged process. In Linux operating system, a process
with the capabilities of CAP_SETUID can change its
user identifiers with the ones of root privilege through
system call sys_setresuid. For these situations,
we define a boolean value to indicate this change is
legitimate, and we don’t check the data integrity of the
sensitive data.

II Setuid-to-root binaries. Another exception that privi-
lege escalation probably happen is the execution of the
setuid-to-root binaries. When a setuid-to-root binary
is executed, the process is executed as the owner of
the binary. Therefore, the privilege level of the pro-
cess can change from non-root to root. However, when
the process executes setuid-to-root binary, it doesn’t
invoke the system call to change its user identifiers.
Thus, PrivGuard will not be triggered to check this
change. Since our work is to prevent attacks that achieve
privilege escalation by manipulating the sensitive ker-
nel data, attacking setuid-to-root binary is out-of-scope.
In addition, previous work has already provided solu-
tions to defend against attacks that aim at setuid-to-root
binary [21], [22].
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G. ENSURING CONTEXT CONSISTENCY
To this point, PrivGuard can protect sensitive data from the
first type of attack mentioned in Section III which directly
manipulates the sensitive data. In order to defend against the
last two types of attacks described in Section III which cor-
rupts the context of the process by manipulating the pointers,
PrivGuard must ensure that these sensitive data describe the
same process when using and verifying them. In other words,
we must enforce consistency of the context of these data.

There are two contexts in Linux operating system that
represent the current process. The first one is the process
descriptor, task_struct structure. Every process has its
own process descriptor. The second one is the page global
directory (pgd) of the address space of the process, which
is unique for each process and saved on the register cr3.
PrivGuard ensure the consistency of these two contexts.
We defines a new structure (priv_context) to record
the address of task_struct and the pgd, which is ref-
erenced as a pointer in the cred structure. To protect
priv_context from being corrupted by attackers, we save
it in read-only region. Since user-space processes access
the sensitive data by system calls, the context consistency
checks will be performed at the execution of each system
call. In PrivGuard, these checks happen in the hooking func-
tions of system calls. In details, PrivGuard checks whether
the content of the new structure priv_context correctly
conforms to the current task_struct and pgd saved
on cr3.

V. IMPLEMENTATION
In this section, we present the implementation of PrivGuard
on Ubuntu Linux x86 platform.

A. MODIFICATION OF SYSTEM CALL ENTRY POINT
The Linux x86 kernel has two system call entry points: int
0x80 for interrupt-based system calls and syscall for fast
system calls. As shown in Listing 5, we modify the system
call entry point to invoke the function syscall_pre before
system call entering and the function syscall_post
before system call returning.

To call a C function from assembly code, we should use
the macro asmlinkage as a modifier at the definition of the
C function, which means that the arguments for this C func-
tion are passed by stack in x86. The registers are used to save
some important data during the execution of system calls. For
example, the system call number is loaded into register eax.
And eax is also used for saving the return value of the system
call. Therefore, to avoid the content of registers being trashed
by the invocation of the hook function, we push the content
of registers on the kernel stack before invoking the function,
and pop the data from the stack to the corresponding registers
after the execution of the function. We also push the function
arguments on the kernel stack to pass it to the hook function.

B. CANARY INSERTION AND CHECK
Canaries are stored in the higher address next to the sensitive
data, so attacks that exploit buffer overflow vulnerability need

Listing 5. Modifications for one system call entry point.

to overwrite the canaries at first. We generate the canaries
with the XOR result of a random value and the sensitive data
saved on the stack. As long as the canaries or the sensitive data
were overwritten by attackers, it can be detected by checking
the data integrity of the inserted canaries.

The random value is acquired by adopting the Time Stamp
Counter (TSC) as the random value generator. The low
32-bit of the TSC value changes frequently (TSC on 1GHz
CPU overflows and is reset per 4.3s), thus we can treat it
as a random value. The TSC value can be obtained by the
unprivileged instruction RDTSC. We perform bitwise XOR
of the random value and the sensitive data and push both
the TSC value and XOR result on the stack. We verify the
canaries through performing bitwise XOR of the sensitive
data and the XOR result above. The result should be same
as the TSC value saved on the stack.

Integrity checking of canaries is inserted before each
conditional branch of data integrity checking that uses the
sensitive data to make decision. If canaries have been over-
written before conditional branch performs, the result of data
integrity checking could be wrong. Therefore, we consider
the process as a malicious program and send a signal to notify
the operating system to terminate it.

C. CONTEXT CONSISTENCY CHECK
The priv_context is saved in the read-only region,
we modify the linker script vmlinux.lds.S of x86 archi-
tecture to add a section for saving it. When using the
priv_context, we verify that it belongs to this section.
To check the context consistency, each process/thread needs
to have its own cred. Since cred structure can be shared
in the same Linux thread group, we disable the sharing and
ensure that each task_struct links to a unique cred.
Although the system calls are designed to be used by

user-space process, some kernel threads may also invoke the
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system calls. The kernel has a unique address space. The
operating system uses the same kernel address space of
the previous process when scheduling a kernel thread, thus
the pgd saved on cr3 doesn’t change. Likewise, in the inter-
rupt, the register cr3 will record the pgd of the interrupted
process, thus the pgd saved on cr3 also doesn’t change.
According to the above facts, PrivGuard checks whether
the operating system is scheduling a kernel thread or in the
interrupt to avoid false positives.

VI. DISCUSSION
We discuss the potential attacks which can bypass the pro-
posed defense mechanism, PrivGuard. We also introduce the
possible future work.

A. USE-AFTER-FREE ATTACKS
For temporal memory corruption vulnerabilities, such as use-
after-free (UAF), our design may fail to deal with them. For
instance, if the structure cred of a process is improperly
freed and reallocated to another process with root privilege
later, the former process will gain root privilege. However,
our design can still mitigate the exploitation of UAF vulner-
abilities to some extent. For example, PingPong Root [23]
exploits a UAF vulnerability to control a dangling function
pointer. Attackers leverage it to overwriteaddr_limit, and
then corrupt the process credentials. However, attackers need
to invoke system call close to trigger this exploit, which can
be detected by PrivGuard.

B. DMA ATTACKS
DMA (direct memory access) can directly access arbitrary
physical address, so attackers can manipulate sensitive data
in memory by using it. We haven’t implemented any defense
mechanism against it yet. However, previous work [24] has
leveraged IOMMU (input/output memory management unit)
to defend against DMA attacks.

C. CODE INJECTION ATTACKS
PrivGuard inserts checks before and after the execution of
system calls by modifying the kernel code. Therefore, if the
attacker tampers with the inserted code, PrivGuard will prob-
ably be bypassed. However, researchers have proposed sev-
eral mechanisms to protect kernel code integrity, such as
code-pointer integrity, control flow integrity, etc. We have
assumed the kernel have adopted at least one of the mecha-
nisms to ensure kernel code integrity in Section III-A. There-
fore, attackers cannot compromise the inserted code.

D. PORTABILITY ON OTHER PLATFORM
Although we implement our prototype on x86 architecture,
the techniques used by PrivGuard are generic to most other
architecture platform. Therefore, porting PrivGuard builds
to other commodity platform is possible, such as x86-64,
AArch32, and AArch64. Some architecture-dependent codes
need extra work, such as the modification of system call
entry. However, different architectures have similar system

call entry, so the extra work is little. As for stack canary, there
are some registers like TSC registers, Performance Monitors
Control Registers on ARMv8. The rest techniques are both
architecture-independent.

VII. EVALUATION
In this section, we illustrate evaluation results of the proposed
defense prototype PrivGuard. We evaluate the performance
overhead incurred by PrivGuard.We perform all these experi-
ments on a desktop computer with Intel Core i7-4720 2.6GHz
processor and 4GBmemory, which runs with Ubuntu Release
14.04 x86 with Linux kernel version 3.13.0.

A. MICRO-BENCHMARKS
1) UnixBench
The first experiment we conduct is to evaluate PrivGuard
using Byte UnixBenchwith version 5.1.3 [25]. As shown
in Table 1, the second column is the overhead percentage of
the kernel with PrivGuard compared to a unmodified ker-
nel. What’s more, we also include evaluation results from
PrivWatcher, which provides protection for process creden-
tials, for comparison. And the third column is the rela-
tive overhead percentage of PrivWatcher [9]. The results
show that the performance overhead of some test cases
is negligible with the value less than 1%, while that of
execl, pipe throughput, pipe-based context
switching, process creation and system call
is not negligible with the value between 3.1% and 17.3%.

TABLE 1. The results of UnixBench.

Test cases of execl and process creation both
involve with changing the process credentials by invoking
system calls, which will trigger the invocation of the system
call hook functions. As mentioned in Section IV-A, some
system calls can change the sensitive data legitimately, and
thus the data integrity checks caused by those system calls
do not need to be performed. This situation is applicable
to the two cases above, which explains their performance
overhead is lower than the results of test cases pipe
throughput, pipe-based context switching
and system call which need to verify the data integrity
because the system calls invoked belong to the second cat-
egory. As we see from the table, PrivGuard incurs lower
overhead than PrivWatcher in test case of execl, process
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TABLE 2. The results of LMBench.

creation and shell scripts. In test case of pipe
throughput, pipe-based context switching
and system call, PrivGuard has higher overhead than
PrivWatcher.

2) LMBench
We evaluate PrivGuard’s impact on system calls in details by
using LMBench version 3. Table 2 illustrates the results of
LMBench [26]. The system call latency is the average of the
results of 10 experiments. The second and third columns show
the execution time of the system calls on the unmodified ker-
nel and the kernel with PrivGuard, respectively. For compar-
ison, we also include evaluation results from KENALI [11],
which enforces data flow integrity for kernel; SALADS [15],
which provides kernel data structure layout randomization;
and KCoFI [3], which enforces complete CFI over the whole
Linux kernel.

As we can see from Table 2, the performance overhead
incurred by PrivGuard in average is about 9%, which is
moderate. Especially, the performance overhead for stat,
open/close, singal catch, page fault and mmap
is pretty low, which can be neglected. Compared to other solu-
tions, the performance overhead is much lower than them.
Therefore, our solution that enforces data integrity to prevent
privilege escalation attacks is practical.

B. APPLICATION BENCHMARKS
The third experiment is to evaluate the performance over-
head of the applications. We conduct the experiment with
file compression applications bzip2 and gzip, web server
benchmark tool ApacheBench, and kernel compile bench-
mark script kcbench. We use bzip2 and gzip to
compress a 212MB file and measure the time that the com-
pression takes. We set ApacheBench to run 100 POST
requests (with 100KB) to the server to measure the pro-
cessing time per request. We also use kcbench to compile
Linux kernel with version 3.13.0 and measure the time it
takes.

Table 3 shows the results of application benchmarks. As the
results show, PrivGuard introduces little overhead to user
applications. Among all the overhead, the highest overhead
is 0.99% while the lowest overhead is 0.4%, which is all

TABLE 3. The results of application benchmarks.

below 1%. Thus, we believe that the overhead of PrivGuard
is negligible on the applications.

C. SECURITY EVALUATION ON PRIVILEGE ESCALATION
ATTACKS
We leverage two real-world examples to demonstrate the
capability of PrivGuard to defend against privilege escalation
attacks. These examples are based on CVE-2014-3153 [17]
and CVE-2015-1805 [27].

CVE-2014-3153 reports a flaw in the Linux kernel’s futex
subsystem through version 3.14.5. The futex_requeue
function does not ensure that calls have two different futex
addresses, which allows attackers to make privilege escala-
tion via a crafted FUTEX_REQUEUE command that facil-
itates unsafe waiter modification. The experimental result
shows that this attack is prevented at the execution of system
call sys_read when the attack tries to change the cred
structure of the process illegally.

CVE-2015-1805 reports a bug in the Linux kernel imple-
mentation of vectored pipe read andwrite functionality before
version 3.16. The kernel doesn’t take the some corner cases
that data isn’t synchronized during copying into consider-
ation, which leads to out-of-bounds copying of I/O vector
array. Therefore, this memory corruption vulnerability allows
attackers to escalate their privileges on the system via a
crafted application. Our experimental result shows that this
attack is prevented at execution of system call sys_read
when trying to overwrite the capabilities of the current
process.

Therefore, PrivGuard is effective to prevent privilege esca-
lation attacks.

VIII. RELATED WORK
In this section, we elaborate a variety of defense mechanisms
for non-control-data attacks.
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A. DATA INTEGRITY
PrivWatcher moves process credentials to the safe region
and makes the region non-writable to Linux kernel [9].
Then, all the changes to process credentials are mediated
by PrivWatcher. It prevents privilege escalation attacks by
enforcing data integrity on process credentials. However,
PrivWatcher needs to adopt a hypervisor to obtain secure
isolated execution domain, which introduces the new attack
surfaces to the whole system. For example, the trusted com-
puting base of Xen contains more than ten-million lines of
code. By the year of 2015, there are 135 CVEs in Xen,
89 CVES in KVM, and 234 CVEs in VMware. PrivWatcher
also doesn’t protect the kernel_cap_t structure.
Sentry ensures the data integrity of security-critical kernel

data by enforcing data access restrictions [12]. It partitions
kernel data structures to move all non-sensitive fields to a new
structure, which is then referred as a pointer in the original
structure. Sentry allocates the original structure that contains
sensitive fields into the protected memory pages. Sentry
verifies write accesses by checking whether the instruction
pointer belongs to the trusted region (kernel address space).
This check is inadequate against kernel-level memory corrup-
tion, and Sentry is hypervisor-based.

B. DATA FLOW INTEGRITY
DFI is a generic solution to defend against both control-data
attacks and non-control-data attacks [8]. DFI generates the
data-flow graph via static analysis before the execution of
programs. Then, it instruments the program to check whether
the flow of data at runtime conforms to data-flow graph.
Recently, Song et al. [11] applies DFI in Linux kernel. It uses
point-to analysis to discover the sensitive data, and then
leverages hardware-specific features to achieve data flow iso-
lation between the sensitive data and the non-sensitive data.
Considering the performance overhead, Kenali only enforces
fine-grained DFI over the sensitive data.

C. DATA SPACE RANDOMIZATION
Since attackers still need to acquire the address of some non-
control data pointers, data space randomization can mitigate
non-control-data attacks [2], [14], [15]. However, a fine-
grained data space randomization may lead to a high per-
formance overhead because all the data structure should be
randomized frequently.

D. DYNAMIC TAINT ANALYSIS
DTA is a technique to keep track of tainted data from
untrusted sources when the program executes, and then to
detect attacks if tainted data is used in a sensitive way [10].
As a use case of DTA in network, it will tag all data com-
ing from the network as tainted, track their propagation,
and alert the user when those data are used in a way that
could compromise system integrity. Because of the inten-
sive tracking caused by DTA, it will incur high performance
overhead.

E. MEMORY SAFETY
Memory safety prevents memory corruption attacks at run-
time. Cyclone [28] and CCured [29] store bounds information
for each pointer, which is used for bounds checking to enforce
memory safety. SoftBound improves such method by storing
the bounds metadata into a disjointed space [30]. However,
a complete memory safety enforcement at runtime will incur
high performance overhead, for example, 116% average over-
head incurred by SoftBound.

IX. CONCLUSION
In this paper, we design and implement PrivGuard to protect
the sensitive kernel data from privilege escalation attacks.
We propose a technique to hook system calls to monitor
the modification of the sensitive kernel data, verify the
data integrity of those data at runtime, and leverage stack
canary to protect the duplicated sensitive data. We imple-
ment the PrivGuard prototype on Ubuntu 14.04 with kernel
version 3.13.0, and evaluate the practicality and effectiveness
of it. The experiment results indicate that its performance
overhead is acceptable, and it can defend against privilege
escalation attacks effectively.
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