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ABSTRACT Based on a sequential Monte–Carlo simulation technique, a reliability evaluation method and
several indices are proposed for tidal current farm integrated generation systems in this paper. A tidal current
velocity model is first developed to capture the chronology and randomness of tidal current velocity by
combining a fuzzy equivalent matrix-based clustering approach with a nonparametric probabilistic modeling
technique. The single and multiple wake effects between tidal current turbines in a tidal current farm
are quantitatively represented using an analytical wake model. Second, a power output model for a tidal
current farm (TCF) is proposed, incorporating the characteristics of tidal current velocity, wake effects and
turbine failures. A sequential Monte–Carlo simulation-based reliability evaluation method, as well as several
reliability evaluation indices are proposed to quantify the impacts of TCF integration and wake effects on the
reliability level of generation systems. The historical tidal current velocity data collected from a site located
in FL, USA, and the popular reliability test system known as RBTS with an additional TCF were used to
verify the accuracy and effectiveness of the proposed method. The impacts of tidal power integration and
the relative distances between turbines in TCF on generation systems’ reliability were also studied.

INDEX TERMS Tidal current generation, wake effects, reliability evaluation, sequentialMonte Carlo, power
system planning.

I. INTRODUCTION
Renewable energy has been intensively investigated and
developed to address the challenges of climate change and
growing energy demands worldwide in recent years. Tidal
current generation (TCG), which generates electricity by
extracting kinetic energy from tidal flows, has attracted ever-
increasing attention because of its huge energy potential and
renewability [1]. TCG projects have been emerging in large
numbers in many countries, such as China and the UK. It is
foreseeable that TCG will play a more prominent role in
future power systems [2], [3].

The reliability level and planning strategies of genera-
tion systems will be unavoidably changed by the integration
of TCG. It is necessary to investigate reliability evaluation
methods and indices to analyze the impacts of TCG integra-
tion to help achieve a better tradeoff between the reliability
and the economic efficiency of generation systems.

TCG is characterized by the following features [4]:
1) Chronology, bi-direction and randomness of tidal

power. Tide mainly results from the interaction of
gravitational forces between the sun, the moon, and
the Earth [3], [5]. Consequently, the chronology and
regularity of tidal current velocity (TCV) are revealed,
i.e., TCV variation follows several specific patterns and
the TCVs at adjacent time points are strongly correlated
with each other. Moreover, the tidal current always
flows in two opposite directions because of the nature
of tide. TCV is also affected by several random factors,
such as wind and wave interaction, surges and turbu-
lence. Hence, TCV displays complex characteristics
involving strong chronology and weak randomness [6].
Correspondingly, the power outputs of tidal current tur-
bines (TCTs) show similar characteristics since there is
a cubic relationship between TCT output and TCV.
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2) The wake effects between TCTs in a tidal current
farm (TCF). A TCT extracting kinetic energy from tidal
flow causes velocity reduction in the downstream tidal
flow. This phenomenon is called a wake effect. Obvi-
ously, the outputs of TCTs located downstream and the
total TCF output are decreased by wake effects [7].

The previously mentioned TCG characteristics are crucial
to model the behavior of TCF output and should be accurately
captured in the reliability evaluation of generation systems.
To the best of our knowledge, little work has been done
on the reliability analysis of TCG integrated generation sys-
tems. A reliability evaluation method was proposed in [8]
for the tidal power generation system (TPGS) with a doubly
fed induction generator (DFIG). The failure rates of major
components in a TPGS including the rotor side converter,
the grid side converter, and three different operation modes of
DFIG were all taken into account in evaluating the reliability
of a TPGS. However, the impact of TCG integration on
the reliability of generation systems has not been addressed.
A reliability evaluation method for a hybrid generation sys-
tem including TCG, wind power and battery energy storage
was proposed in [9]. Based on the historical data of TCV
and the Wakeby distribution, hourly probabilistic models
for four different seasons were independently developed;
i.e., 96 Wakeby distribution models were used to capture the
randomness of TCV at each hour in each season. Unfortu-
nately, the chronology of TCV and wake effects were missed
with this method. Furthermore, there is no effective index for
evaluating the impact of TCG integration on the reliability
level of generation systems.

Other tidal power-related work has mainly focused on the
optimal layout of TCT arrays [10], [11], planning and opera-
tion analyses [12]–[15]. Although much work has been done
on the probabilistic modeling of PV and wind power, and
reliability evaluation of generation systems incorporating PV
or wind power [16]–[18], these methods cannot be directly
used for tidal power integrated generation systems since both
PV and wind power display stronger randomness and much
weaker or little chronology compared with tidal power.

It can be deduced from the above review of literature that
the characteristics of tidal power have not been fully con-
sidered in the reliability evaluation of generation systems by
the existing methods, which may lead to inaccurate reliability
evaluation results or inappropriate planning strategies. In this
paper, a sequential Monte Carlo-based reliability evaluation
method is proposed for generation systems incorporating
TCF. The main contributions of this paper are listed as
follows.

1) A time series model for TCF power output is proposed.
The chronology, randomness and bi-direction of TCV
are all considered, as well as the multiple wake effects
of tidal flow and TCTs failures.

2) A sequential reliability evaluation method and eight
reliability evaluation indices are proposed to quantify
the impacts of TCG integration and wake effects on the
reliability level of generation systems. The historical

data of TCV and RBTS were used to test the effective-
ness and accuracy of the proposed method.

The rest of this paper is organized as follows. The TCF
power output time series model is developed in Section II.
The reliability evaluation method for a generation system
incorporating TCF is proposed in Section III. Case studies are
provided in Section IV, followed by conclusions in Section V.

II. THE TCF POWER OUTPUT TIME SERIES MODEL
The simulation of tidal power time series is an important part
of the sequential reliability analysis of generation systems
incorporating TCF. In this section, a model of TCF power
output time series is presented to capture the characteristics of
TCV, turbine wake effects and TCT failures. The framework
of the proposed model is shown in Fig. 1. First, a fuzzy equiv-
alent matrix-based clustering approach is combined with a
nonparametric kernel density estimation method to capture
the strong chronology and weak randomness of TCV. Second,
an analytical model is introduced to simulate turbine wake
effects and estimate the TCV reduction for each TCT in a TCF
while considering the bi-direction of TCV. Next, the TCT
power output is further modeled by taking stochastic turbine
failures into account. Finally, the TCF power output time
series model is developed by combining the models of TCV,
wake effects and TCT power output.

FIGURE 1. The TCF power output time series model.

A. THE MODEL OF TIDAL CURRENT VELOCITY
The chronology and regularity of TCV can be efficiently
simulated by using a clustering technique. The k-means clus-
tering technique [19] is popular andwidely used in power sys-
tem analysis. Unfortunately, it is sensitive to the initial cluster
centers, whichmeans the result of classificationmay be unde-
sirable. A fuzzy equivalent matrix-based approach (FEMBA)
is adopted in this section, which does not require any initial
cluster center setting. Furthermore, in FEMBA, the member-
ship functions can be derived from the historical TCV data
without requiring any user’s subjective experience [20].

Assume that there are n historical day curves of TCV
at a specific location, which can be represented as V =
{V1,V2, . . . ,Vn}, in which Vi = [vi1, vi2, . . . , vid ] denotes
the ith day curve of TCV, where i = 1, 2, . . . , n, and d is the
number of time points in one day. The set of n historical day
curves V can be expressed in matrix form and is shown as
follows, where each row denotes a day curve of TCV.

V =


v11 v12 · · · v1d
v21 v22 · · · v2d
...

...
...

...

vn1 vn2 · · · vnd

 (1)
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By using FEMBA, n day curves can be categorized into
several clusters, and then each cluster mean and day curves
belonging to each cluster can be derived. The cluster means
can be regarded as typical day curves to simulate the chronol-
ogy of TCV. Classification using FEMBA includes the fol-
lowing steps.

1) Normalization of TCV data. The daily chronology of
TCV can be captured by the shape of TCV day curve,
rather than by the absolute velocity value. For instance,
several TCV day curves with similar shapes may have
different velocity values but follow the same pattern.
Hence, all the TCV day curves should be normalized
using their peak values; the corresponding formula is
shown in (2). After normalization, all the TCV data are
in the interval [0, 1].

v′
ij
=

vij
max{vi1, vi2, . . . , vid }

(2)

where vi1, vi2, vid is the TCV at the first, second and
d th time point on the ith historical day curve of TCV,
respectively. The v′ij is the normalized value of vij.

2) Similarity quantification. The correlation coefficient is
adopted to quantify the degree of nearness between
TCV day curves, which can be calculated by

rih =

d∑
j=1

∣∣∣v′ij − vi∣∣∣ ∣∣∣v′hj − vh∣∣∣√
d∑
j=1

(
v′ij − vi

)2√ d∑
j=1

(
v′hj − vh

)2 (3)

where, rih denotes the correlation coefficient of the
ith and hth day curves of TCV, v′hj is the TCV at the
jth time point on the hth day curve after normalization.
vi and vh are the average value of the ith and hth normal-
ized day curves, respectively and can be calculated by

vi =
1
d

d∑
j=1

v′ij vh =
1
d

d∑
j=1

v′hj (4)

It can be observed from (3) that the value of rij is
in the interval [0, 1]. The closer rij is to 1, the more
similarity the two TCV day curves have. Using (3)
and (4), the correlation coefficients between all the day
curves can be derived, and the following n-order fuzzy
relation matrix R can be formulated.

R =


r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
...

...

rn1 rn2 · · · rnn

 (5)

R shows the following two features:
a) R is a symmetric matrix since rij = rji.
b) R is a fuzzy reflexivity matrix since rii = 1.

Hence, R is a fuzzy similarity relation matrix and
each element in R represents the degree of similar-
ity between two TCV day curves. It should also be

noted that the correlation coefficients in R cannot be
directly used to cluster TCV day curves, since R does
not have the feature of transferability. In other words,
if A is similar to B, and B is similar to C, it cannot be
guaranteed that A is similar to C.

3) The square method (SM) is used to transform R into a
fuzzy equivalence matrix with the feature of transfer-
ability. The main steps of the SM are as follows.
a) R2 can be acquired through self-multiplication,

which is defined as
R2
= R ◦ R (6)

where, the symbol denotes the operation of self-
multiplication. The element r2ij of R

2 can be cal-
culated by

r2ij = max
{
min

{
rik , rkj

}
|i, j, k = 1, 2, . . . , n

}
(7)

b) Perform the following self-multiplication until
R2h
= R2(h−1) or l ≥ (log2 n + 1). And then,

let R′ = R2h, where, R′ denotes the desired
fuzzy equivalence matrix with the feature of
transferability.

R2
→

(
R2
)2
→

(
R2
)3
→ · · · → R2h

= R′

(8)

The elements inR′ can be regarded as transferable
similarity coefficients and can be used to classify
the day curves of TCV by choosing a threshold.

4) Select a number in the interval [0, 1] as a clustering
threshold. Check the diagonal elements and coeffi-
cients in the lower triangle block of R′ column by
column; if the coefficients are equal to or larger than
the selected threshold, then the corresponding TCV day
curves are classified into one cluster. If a day curve
cannot be classified by this procedure, it is in a cluster
by itself.

After classification, the mean of each cluster and the day
curves belonging to each cluster can be obtained. The direc-
tion information of tidal current for each cluster mean is
retained by averaging the angle of tidal current at each time
point on day curves belonging to the same cluster.
By taking the cluster mean value away from TCV day sam-

ples belonging to the same cluster, the samples of the stochas-
tic component of TCV at each time point can be derived
to simulate the randomness of TCV. For example, for the
eth cluster, themean is denoted asMe = [me1,me2, . . . ,med ],
and Vei = [vei1, vei2, . . . , veid ] is the ith day curve of TCV
belonging to the eth cluster. The corresponding stochastic
component Seij of veij can be derived by

Seij = veij − mej (9)

Next, the probability distribution for the stochastic com-
ponent of TCV at each time point can be estimated
using a nonparametric kernel density estimation technique.
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FIGURE 2. Turbine wake effect.

For example, the probability density function f of the stochas-
tic component is estimated by [21] and [22]

f
(
Sj
)
=

1
nh

k∑
e=1

ne∑
i=1

G
(
Sj − Seij

h

)
(10)

where, Sj is the stochastic component at the jth time point,
f (Sj) is the probability density function of Sj, G is the kernel
function and is often chosen as a Gaussian distribution func-
tion, h is the bandwidth, k is the number of clusters, ne is the
number of day curves belonging to the eth cluster, and n is
the total number of TCV day curves. Obviously, n = k∗ne.

B. THE ANALYTICAL MODEL OF TURBINE
WAKE EFFECTS
The generation behavior of a TCT is affected by other TCTs
located upstream, which should be considered in the esti-
mation of TCF output. An analytical wake model [23] is
introduced to model the turbine wake property and quantify
the TCV reduction caused by the turbine wake effects for
each TCT.

A turbinewake effect between twoTCTs is shown in Fig. 2.
The TCV reduction downstream of a TCT can be estimated
by [23]

vt,xr = vt − (vt − vt,min)e[−((r+0.081x−(D/2))
2/(2(0.081x)2))]

(11)

where vt is the incoming TCV at the tth time point. vt,xr is
the velocity of tidal current flowing to the downstream TCT
with the lateral distance x and the vertical distance r . D is
the diameter of the TCT disc. vt,min is the minimum velocity
along the downstream of a TCT wake and can be calculated
by [23]

vt,min = vt
√
1− CT (0.0927 (x/D)+ 0.993) (12)

where CT is the thrust coefficient of the TCT.
Themutual interaction of turbinewakes exists in a TCF and

the incoming flow of a TCT may be influenced by more than
one TCT upstream in the same TCF. Undoubtedly, multiple
wake effects must be simulated to evaluate the TCF output.
The inflow velocity of the ith TCT under multiple wake
effects of upstream TCTs can be calculated by [23]

vt,i = vt,o −

√√√√√ Nt∑
j=1,j 6=i

(
vt,j − vt,ij

)2 (13)

where vt,i is the TCV of the ith TCT under multiple wake
effects at the tth time point. vt,o is the incoming velocity of
the ith TCT at the tth time point without a wake effect. Nt is
the number of TCTs affecting the TCV of the ith TCT. vt,j
is the TCV of the jth TCT at the tth time point. vt,ij is the
TCV of the ith TCT at the tth time point considering only the
wake effect of the jth TCT.

It should be noted that the TCV distribution in a TCF is
influenced by the direction of incoming tidal current. Since
the incoming tidal current of TCF can be considered as bidi-
rectional flow, the TCF is usually located at themain direction
of tidal current. Consequently, Eqs. (11)-(13) can be directly
used to quantify the TCV distribution in a TCF by specifying
the direction of incoming tidal current.

C. MODELING TCT POWER OUTPUT WITH
RANDOM FAILURES
The power output of each TCT at tth time point in a TCF can
be calculated by [8]

Pt =


0 0 < vt < vcutin
0.5CpρAv3t Stct vcutin ≤ vt < vrated
PratedStct vrated ≤ vt

(14)

where Pt and Prated are the actual output at the tth time
point and rated output of TCT, respectively. Cp is power
capture coefficient and A is the area swept out by the blade
of TCT. vcutin and vrated are the cut-in velocity and the rated
TCV of TCT. vt is the TCV at the tth time point. Stct denotes
the available state of the TCT at the tth time point and can
be either 0 or 1. If Stct equals 1, the TCT is in the up state;
otherwise, the TCT is in the down state.A state duration
sampling approach [19] is applied to determine the hourly
state (up or down) of each TCT in a TCF. The duration Dg of
a TCT residing in its present state is usually assumed to follow
an exponential distribution. By using the following equation,
the ith random sample of Dg can be acquired.

Dgi =
1
λ
InRi (15)

whereDgi is the ith random sample ofDg. Ri is the ith random
number uniformly distributed in the interval between 0 and 1.
If the present state of a TCT is up, λ is the failure rate of the
TCT; otherwise, λ is the repair rate of the TCT.
The chronological state transition processes of each TCT

in a considered time span can be obtained by repeatedly
sampling Dg using (15). The Stct at each time point can be
determined from the chronological state transition process.
The chronological states of non-tidal generators in a gener-
ation system can also be determined by (15) with different
random numbers.

In the paper, the TCT is assumed to incorporate the pitch
control system to pitch the nacelle and the blades according
to the real direction of incoming tidal current. That is to say,
the power output of a single TCT is not impacted by the
direction of tidal current. However, the TCV distribution in a
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TCF and the total power output of a TCF are highly impacted
by the direction of tidal current.

III. A RELIABILITY EVALUATION METHOD FOR
GENERATION SYSTEMS INCORPORATING TCF
Sequential Monte Carlo simulation methods have been
widely used in reliability evaluation of generation sys-
tems. Time-dependent variables can be incorporated, and
frequency and duration indices such as loss of load fre-
quency (LOLF) and loss of load duration (LOLD) can also be
estimated [24]–[26]. In this section, a sequential Monte Carlo
simulation method [19] is adopted to develop a reliability
evaluation method for generation systems containing TCF.
A Monte Carlo sampling method is first developed to gen-
erate stochastic samples for reliability evaluation based on
the model of TCF output. Second, the reliability indices are
proposed to quantify the impact of TCG integration and the
wake effects on the reliability level of generation systems.

A. THE MONTE CARLO-BASED SAMPLING METHOD FOR
RELIABILITY EVALUATION
The sampling procedure is as follows and the flow chart is
shown in Fig. 3.

1) Input the failure and repair rates of each generator for a
given generation system, n historical TCV day curves
collected from a given site, the cut-in velocity, rated
velocity and rated power of each TCT, and the layout
information of TCTs for a given TCF. Initialize the
convergence precision ε in the Monte Carlo simulation
and let the iteration count kd = 1.

2) Categorize the n day TCV samples using the FEMBA
given in Section II-A. The means and day curves of
TCV for each cluster can be acquired. The probability
of each cluster can also be derived by dividing the
total number of day samples by the number of samples
belonging to each cluster.

3) Based on a random number following a uniform dis-
tribution between 0 and 1, randomly choose a TCV
cluster. Establish a TCV model using the day curves
of the selected cluster.

4) Based on the TCV model, generate stochastic samples
for the stochastic components of TCV at each time
point using the rejection sampling method [17]. Then,
add the random samples of the stochastic components
at the corresponding points to the mean curve of the
selected cluster to generate a random TCV day sample.

5) Repeat Steps 3-4 until a year-long sample of TCV has
been generated.

6) Randomly generate the state of each TCT in the TCF at
each time point for one year using themethod described
in Section II-C.

7) Based on the analytical wake model given in
Section II-B, produce the random TCV samples,
the random state of each TCT, and the TCF output at
each time point for one year.

FIGURE 3. A reliability evaluation method for generation systems
incorporating TCF.

8) The stochastic samples of load at each time point in one
year can be generated using the chronological probabil-
ity model of load given in [19].

9) Determine the states of non-tidal generators in the gen-
eration system at each time point for one year using the
state duration sampling approach in Section II-C. Then,
the total generation capacity of the non-tidal generators
at each time point can be calculated using the capacity
and state of each non-tidal generator.

10) Calculate the annual reliability indices including LOLE
(loss of load expectation), LOEE (loss of energy expec-
tation), LOLF, and LOLD using the year samples of
TCF power output, other generators’ power outputs and
loads.

11) The variance coefficient η of LOEE is used as the
convergence criterion in the sequential Monte Carlo
simulation. If η is less than ε, exit; otherwise, let
kd = kd + 1 and go back to Step 3.
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B. RELIABILITY EVALUATION INDICES FOR THE
TCF-INTEGRATED GENERATION SYSTEMS
Based on the LOLE, LOEE, LOLF and LOLD, the follow-
ing four indices are developed to quantify the influence of
TCG integration on the improvement of generation system
reliability.

ITPLOLE =
(LOLEb − LOLEa)

LOLEb
(16)

ITPLOEE =
(LOEEb − LOEEa)

LOEEb
(17)

ITPLOLF =
(LOLFb − LOLFa)

LOLFb
(18)

ITPLOLD =
(LOLDb − LOLDa)

LOLDb
(19)

where ITPLOLE, ITPLOEE, ITPLOLF and ITPLOLD denote
the percentage of improvement in the LOLE, LOEE, LOLF
and LOLD due to the integration of tidal power, respectively.
The LOLEb, LOEEb, LOLFb and LOLDb are the reliability
indices before the integration of tidal power. The LOLEa,
LOEEa, LOLFa and LOLDa are the reliability indices after
the integration of tidal power.

Furthermore, the following four indices are presented to
quantify the influence of turbine wake effects on the reliabil-
ity level of generation systems.

CTWLOLE =
(LOLEw − LOLEnw)

LOLEnw
(20)

CTWLOEE =
(LOEEw − LOEEnw)

LOEEnw
(21)

CTWLOLF =
(LOLFw − LOLFnw)

LOLFnw
(22)

CTWLOLD =
(LOLDw − LOLDnw)

LOLDnw
(23)

where CTWLOLE, CTWLOEE, CTWLOLF and CTWLOLD
are the percentage changes due to the turbine wake effects
in the LOLE, LOEE, LOLF and LOLD indices, respectively.
LOLEnw, LOEEnw, LOLFnw and LOLDnw are the reliability
indices of the generation system without considering the tur-
bine wake effects. LOLEw, LOEEw, LOLFw and LOLDw are
the reliability indices of the generation system considering
the turbine wake effects.

IV. CASE STUDIES
To demonstrate the accuracy and effectiveness of the pro-
posed method and assess the impacts of TCG integration
and turbine wake effects on the reliability of generation
systems, cases with different TCG capacities, different TCT
distances and different directions of incoming tidal current
were designed and analyzed using the popular reliability test
system RBTS [27] with the addition of TCF.

The RBTS is composed of 11 conventional generating
units, ranging in size from 5 MW to 40 MW, with a total
installed capacity of 240 MW. The hourly peak load curve
consisting of 8736 load points on a per unit basis is adopted
and the annual peak load is 185 MW [27].

A TCF is added to the RBTS in the case studies. The TCTs
in a TCF are arranged in a rectangular layout. The parameters
of the TCTs deployed in the TCF are as follows: the cut-in
tidal current velocity vcutin and rated tidal current velocity
vrated are 1.5 and 2.5 m/s, respectively; the rated power Prated
is 1 MW; the power capture coefficient Cp is 0.5; the thrust
coefficient CT is 0.7; the diameter of turbine D is 20 meters;
and the failure and repair rates are 1.4011 failures/year and
38.1793 repairs/year, respectively [8]. The hourly measured
data of the tidal current velocity used in the case studies over a
period of one year are collected from a site located in Florida,
USA [28].

A. CONVERGENCE ANALYSIS OF THE PROPOSED
RELIABILITY METHOD FOR THE RBTS GENERATION
SYSTEM CONTAINING A TCF
Assume that the RBTS is integrated with a 20 MW TCF
consisting of five rows of four TCTs. The lateral and vertical
distances between TCTs are 60 meters. The variance coef-
ficient of LOEE is used as the convergence criterion in the
proposed sequential Monte Carlo simulation method and the
convergence precision ε is set to be 0.05.

The reliability indices of the RBTS incorporating a TCF
reached the convergence criterion after 9897 sampling years.
Table 1 shows the values of LOLE, LOEE, LOLF and LOLD.
The LOEE and its variance coefficient versus the number
of sampling years are plotted in Fig. 4. The coordinate axis
on the left side of Fig. 4 denotes the variance coefficient
of LOEE, while the coordinate axis on the right side of
Fig. 4 denotes the yearly value of LOEE. It can be observed
from Fig. 4 that both the LOEE and its variance coefficient

TABLE 1. Reliability indices of RBTS containing a 20 MW TCF.

FIGURE 4. The curves of LOEE and its variance coefficient versus the
number of sampling years.
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vary sharply at the early stage. The indices gradually become
stable as the number of sampling years increase.

B. RELIABILITY ANALYSIS OF THE RBTS GENERATION
SYSTEM WITH DIFFERENT TCF CAPACITIES
The following four cases are designed to evaluate the impact
of TCG integration on the reliability performance of the
RBTS generation system.
Case 1: No TCF is connected to RBTS.
Case 2: The RBTS is integrated with a 20 MW TCF

consisting of five rows of four TCTs. The lateral and vertical
distances between TCTs are both set to be 60 meters.
Case 3: The RBTS is integrated with a 40 MW TCF

consisting of five rows of eight TCTs. The lateral and vertical
distances between TCTs are both set to be 60 meters.
Case 4: The RBTS is integrated with a 60 MW TCF

consisting of six rows of ten TCTs. The lateral and vertical
distances between TCTs are both set to be 60 meters.

The TCT deployment in the integrated TCF for Cases 2-4 is
shown in Fig. 5, where one star denotes a TCT. The relative
distances between TCTs and the position information of each
TCT can be acquired fromFig. 5. For Cases 1-4, the reliability
of the RBTS was evaluated using the proposed method, and
the test results are shown in Table 2. It can be seen that
LOLE, LOEE, LOLF and LOLD all dramatically decreased

FIGURE 5. The TCT deployment in the TCF under Cases 2-4.

TABLE 2. Reliability indices for cases 1-4.

for Case 2 compared with those for Case 1, and correspond-
ingly, ITPLOLE, ITPLOEE, ITPLOLF and ITPLOLD display
significant improvement percentages due to the addition of
the tidal current power integration.

The LOLE, LOEE, LOLF and LOLD indices for
Cases 3 and 4 have marginal decreases compared with those
for Case 2. Equivalently, the ITPLOLE, ITPLOEE, ITPLOLF
and ITPLOLD indices are only marginally larger than those
for Case 2. This suggests that the reliability level of RBTS is
not significantly improved by the integration of more TCTs
for Cases 3 and 4, although the integrated tidal current capac-
ity is doubled or tripled compared to that in Case 2. This fact
indicates that increasing more than 20 MW of tidal current
generation capacity may not be an economically effective
solution for further improvement of the RBTS generation
system reliability. However, it should be emphasized that the
conclusion is case-dependent; different conclusions may be
obtained for different cases. The proposed method provides
a tool in helping quantify the reliability of any generation
system with TCTs.

C. RELIABILITY ANALYSES OF THE RBTS GENERATION
SYSTEM WITH DIFFERENT TCF WAKE EFFECTS
To demonstrate the impact of turbine wake effects on the
reliability of the RBTS generation system, the following four
cases are presented with different TCT layout scenarios.
Case A: The turbine wake effects are not considered in the

reliability analysis of RBTS.
Case B: The RBTS is integrated with a 20 MW TCF

consisting of five rows of four TCTs. The lateral and vertical
distances between TCTs are both set to be 60 meters.
Case C: The RBTS is integrated with a 20 MW TCF

consisting of five rows of four TCTs. The lateral and vertical
distances between TCTs are both set to be 80 meters.
Case D: The RBTS is integrated with a 20 MW TCF

consisting of five rows of four TCTs. The lateral and vertical
distances between TCTs are both set to be 100 meters.

The reliability indices of the RBTS for Cases A-D were
assessed using the proposed method and the test results are
shown in Table 3. LOLE and LOEE increase by more than ten
percent for Case B compared with Case A, whereas the LOLF

TABLE 3. Reliability indices for cases A-D.
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TABLE 4. Reliability indices for cases E-F.

and LOLD increase by about five percent. This indicates that
the reliability level of the RBTS with a TCF is decreased due
to the turbine wake effects as the power output of the TCF is
reduced by the influence of the turbine wake.

The CTWLOLE, CTWLOEE, CTWLOLF, CTWLOLD
indices decline with the increase in the distance between
the TCTs in a TCF, which can be seen from the results in
Cases B-D. This is because the turbine wake effect becomes
weaker with increasing distance between the TCTs, and the
output of the TCF increases correspondingly. These results
suggest that the turbine wake effects should be considered
in the reliability analysis of generation systems with tidal
current generators. Ignoring the turbine wake effects will
lead to overly optimistic reliability indices when the distance
between TCTs is small, which may result in an incorrect
conclusion for planning decisions. On the other hand,
the results also indicate that the turbine wake effect may be
neglected if the distance between TCTs is large enough. The
proposed method provides a vehicle to quantify the turbine
wake effects between TCTs.

D. RELIABILITY ANALYSES OF THE RBTS GENERATION
SYSTEM CONSIDERING THE DIRECTION OF INCOMING
TIDAL CURRENT
In this subsection, the RBTS is integrated with a 20 MW
TCF consisting of five rows of four TCTs. The lateral and
vertical distances between TCTs are both set to be 60 meters.
To investigate the impact of tidal current direction on the
reliability level of generation systems, the following two
cases are designed.
Case E: The direction of incoming tidal current of TCF is

not considered in the reliability evaluation.
Case F: The direction of incoming tidal current of TCF is

considered in the reliability evaluation.
Case E and Case F were analyzed using the proposed

method. The derived reliability evaluation indices are shown
in Table 4, where, 1R denotes the difference of the indices
under Cases E and F in percentage form. It can be seen that
without considering tidal current direction, the LOLE, LOEE
and LOLF are underestimated while the LOLD is overesti-
mated. The reason is that the direction of incoming tidal cur-
rent influences the TCV distribution in the TCF. Especially,
when there are some TCTs in down state, the layout of TCTs
in the TCF will be largely changed and the power output
of TCTs and TCF are highly dependent on the velocity and
direction of incoming tidal current. It can be deduced that
ignoring the direction of tidal current, the power output of

TCF will be overestimated and the over-optimistic reliability
results will be derived.

V. CONCLUSIONS
A sequential Monte Carlo simulation-based reliability eval-
uation method is proposed for generation systems incorpo-
rating TCG. The TCV characteristics, turbine wake effects,
and TCT failures are all modeled and incorporated by the
proposed method. Eight reliability evaluation indices are
developed to quantify the impacts of TCF integration and
wake effects on the reliability level of generation systems.
The historical TCV data collected from a site located in
Florida, USA and the popular reliability test system RBTS
were used to verify the accuracy and effectiveness of the
proposed method. The following conclusions can be drawn:

a) The reliability level of generation systems can be
largely improved by integrating tidal power sources.
However, excessive integration capacity of tidal power
may have only marginal effects on the further improve-
ment in the generation system reliability level. Deter-
mining the proper integration capacity of tidal power is
an important task.

b) The reliability of generation systems with tidal current
generators is affected by turbine wake effects. Ignoring
the turbine wake effects will lead to overly optimistic
reliability analysis results when the distance between
TCTs not large enough.

c) The TCV distribution in a TCF and the power output of
a TCF are highly dependent on the velocity and direc-
tion of incoming tidal current. Neglecting the direction
of tidal current will overestimate the power output of
TCF and lead to over-optimistic reliability evaluation
results.
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