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ABSTRACT Automatic identification systems (AISs) serve as a complement to radar systems, and they
have been installed and widely used onboard ships to identify targets and improve navigational safety based
on a very high-frequency data communication scheme. AIS networks have also been constructed to enhance
traffic safety and improve management in main harbors. AISs record vessel trajectories, which include rich
traffic flow information, and they represent the foundation for identifying locations and analyzing motion
features. However, the inclusion of redundant information will reduce the accuracy of trajectory clustering;
therefore, trajectory data mining has become an important research direction. To extract useful information
with high accuracy and low computational costs, trajectory mapping and clustering methods are combined in
this paper to explore big data acquired from AISs. In particular, the merge distance (MD) is used to measure
the similarities between different trajectories, and multidimensional scaling (MDS) is adopted to construct
a suitable low-dimensional spatial expression of the similarities between trajectories. An improved density-
based spatial clustering of applications with noise (DBSCAN) algorithm is then proposed to cluster spatial
points to acquire the optimal cluster. A fusion of the MD, MDS, and improved DBSCAN algorithms can
identify the course of trajectories and attain a better clustering performance. Experiments are conducted
using a real AIS trajectory database for a bridge area waterway and the Mississippi River to verify the
effectiveness of the proposed method. The experiments also show that the newly proposed method presents
a higher accuracy than classical ones, such as spectral clustering and affinity propagation clustering.

INDEX TERMS AIS network, data mapping, DBSCAN, trajectory similarity, trajectory clustering, maritime

transport.

I. INTRODUCTION

As an important type of navigational equipment, radar can
be used to aid navigation, supervise ships and monitor
vessel traffic flow via a vessel traffic service (VTS). How-
ever, identifying individual targets requires different tech-
nologies. Very high frequency (VHF) radios are among the
most important communication and safety devices for ship
operators and managers and can realize boat-to-boat to boat-
to-shore communication [1]. Based on a VHF data com-
munication scheme, automatic identification systems (AISs)
provide functionalities for SOLAS (AIS Class A) vessels
only in limited environments defined by radio propagation

properties. The AIS system is installed and widely used on
ships to enhance their ability to identify targets.

The AIS network consists of several AIS base sta-
tions or shore ones that are connected and constructed
to improve maritime surveillance and traffic management.
AISs provide an important complementary data source to
radar, especially for large, co-operating ships [2]. The tem-
poral resolution of the AIS signal is commonly enhanced
through marine radar (data fusion). The received AIS data are
sent to the data fusion system and can then be correlated with
raw sensor data, allowing vessel trajectories to be tagged with
useful information [3].
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FIGURE 1. The global AIS communication networks.

As adigital communication system, a shipborne AIS is able
to send and receive important information. AISs use VHF
radios to transmit data, such as basic parameters and cargo
information, maritime mobile service identities (MMSIs),
accurate positions, routes, speeds, sea gauges, heading sta-
tuses and other information. This information can be trans-
mitted to surrounding ships to improve maritime traffic and
ensure navigational safety [4]. The global AIS communica-
tion networks are shown in Fig. 1.

The International Maritime Organization (IMO) defines an
AIS as a ship and shore broadcast system based on wire-
less information that can be used to assist in identifying
ships, tracking targets, exchanging information and avoiding
collision between ships [5]. AISs are self-reporting mes-
saging systems originally conceived for collision avoidance
via high-speed updates. AISs can process 2,000 reports per
minute and update information every two seconds to further
guarantee reliable and stable ship-to-ship and ship-to-shore
operations. AIS data provide a vast amount of real-time
information that can be used to support decision-making and
management [6].

Maritime traffic patterns are important for judging
maritime conditions, researching navigational features, clas-
sifying and predicting ship activities [7]. AIS data can
be effectively used to infer different levels of contextual
information from characteristics to spatial and temporal dis-
tributions of routes [8]. A novel spatio-temporal vessel tra-
jectory clustering method is proposed to extract the maritime
movement patterns and further assist in making decisions.
The proposed method represents a basic step toward being
able to detect anomalies and make projections from current
trajectories and patterns for automatic forecasting. Therefore,
AIS data research and processing have become a prime focus
of scholars [9].

Clustering is among the most important research methods
in data mining and is often applied to large point databases,
and it can be used to obtain the pattern information of
vessels [10], [11]. The clustering process is known as an
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FIGURE 2. Trajectory clustering framework.

unsupervised learning method in which a priori knowledge
about the dataset is not available. Many clustering algorithms,
such as the K-means [12], density-based spatial clustering
of applications with noise (DBSCAN) [13], Ordering Points
To Identify the Clustering Structure (OPTICS) [14], and
balanced iterative reducing and clustering using hierarchies
(BIRCH) [15] algorithms, have been proposed and many still
being under further research. However, trajectory data are dif-
ferent from traditional point data and cannot be directly clus-
tered by classicial clustering algorithms [16]. Other issues
pertaining to trajectory data remain unresolved, including
1) whether to consider the whole trajectory length, 2) how
to extract useful traffic flow information, 3) how to choose
appropriate points in the trajectory, and 4) how to directly
measure the similarity between trajectories [17], [18]. The
literature indicates that trajectory clustering is composed of
three components, and the framework for trajectory clustering
is shown in Fig. 2.

Trajectories consist of many points and are usually not
straight lines; therefore, methods of measuring the distances
between points cannot be simply used directly to mea-
sure the distance between trajectories. The current cluster-
ing algorithms are all based on points, which cannot be
directly used for trajectory clustering. Therefore, a fusion
between multidimensional scaling (MDS) and the improved
DBSCAN algorithm is proposed to realize vessel trajectories
based on a representation of abstract points. The proposed
methodology can clearly differentiate information on differ-
ent vessel trajectories.

The purpose of the fusion method is to identify traffic
flow patterns and customary routes from immense traffic
movement trajectories and then to discern abnormal trajec-
tories. To improve the accuracy of the associated calcula-
tions, the merge distance (MD) has been applied to measure
the similarity between trajectories [19]. In particular, this
method is able to effectively calculate the robust similarities
between trajectories. When the distances between all trajecto-
ries are received, they must be transformed into the distances
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between points. As a useful data mapping and dimensional
reduction method, MDS is used to solve this problem. There-
after, the improved DBSCAN is used to cluster abstract
points. This fusion approach, using MD, MDS and the
improved DBSCAN algorithm, is not sensitive to undesirable
noise and can also aid a better clustering performance.

The traffic flow patterns detected by the clustering method
from raw trajectory data have provided a solid foundation
for further research on trajectory visualization and safety
route planning. The remainder of the paper is organized
as follows. Section II reviews the main clustering algo-
rithms. Section III introduces the trajectory similarity mea-
surement MD method, the data mapping algorithm, the theory
behind MDS and the improved DBSCAN method. Section IV
provides a comprehensive description of numerous experi-
mental processes and a complete evaluation analysis of dif-
ferent algorithms in different data sets. Finally, Section V
presents the discussion, and Section VI provides conclusions
and future work.

Il. BRIEF REVIEW OF CLUSTERING ALGORITHMS
Clustering algorithms are used in various fields, such as
pattern recognition, image processing, data mining, statistical
analysis, and other business applications [20]. Recently, dif-
ferent types of clustering methods have been proposed and
further developed by scholars worldwide. Until now, clus-
tering methods could be roughly divided into six categories:
partitioning methods [21] (e.g., K-means and K-medoids),
hierarchical methods (e.g., Balanced Iterative Reducing
and Clustering Using Hierarchies (BIRCH)), density-based
methods [22] (e.g., DBSCAN), grid-based methods [23]
(e.g., STatistical INformation Grid (STING)), model-
based clustering algorithms [24] and fuzzy -clustering
algorithms [25].

The partition-based clustering algorithm divides data
objects into different clusters, and it also demands that each
object belongs to a cluster only until the optimal clustering
result is obtained [26]. Generally, the criterion used in parti-
tioning is that the within-cluster similarity of objects should
be as large as possible and that the between-cluster similarity
is should be as small as possible. Partition-based clustering
methods mainly include the K-means, K-medoids, Cluster-
ing LARge Applications (CLARA), and Clustering Large
Application based upon RANdomized Search (CLARANS)
algorithms, etc. K-means and K-medoids need to determine
the number of clusters in advance; however, choosing an
appropriate value of k is scientifically not straightforward.
The K-medoids algorithm is more robust, having a higher
time complexity and is superior to K-means for isolated
points. However, it is only suitable for small data sets.
Partition-based clustering algorithms always assign points to
the nearest cluster; therefore, these algorithms cannot dis-
cover non-spherical clusters.

Hierarchy-based clustering algorithms [27] can be fur-
ther divided into three types: bottom-up or condensa-
tion algorithms [28] (e.g., Merging of Adaptive Finite
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IntervAls (MAFIA) and ENntropy-based CLUStering
(ENCLUS)), top-down or decomposition algorithms [29]
(e.g., PROjected CLUstering (PROCLUS) and Oriented pro-
jected CLUSter generation (ORCLUS)) and compound algo-
rithms (e.g., BIRCH and Clustering Using REpresentatives
(CURE) [30]). The theory of the bottom-up algorithm is that
each point is taken as a single cluster, and the closest two
clusters are merged into one cluster. Top-down algorithms
are the opposite of the bottom-up algorithms, where all
object points are placed in the same class, which is then
divided into smaller classes according to predetermined rules.
Hierarchy-based clustering algorithms can easily define sim-
ilarities in distance and the number of clusters do not need
to be set in advance; however, these algorithms are time
sophisticated, and the results of clustering are likely to be
a chain.

The essence of density-based clustering algori-
thms [31], [32] is to separate high-density areas from the low
ones. Density-based algorithms are not equivalent because
of their different definitions for high- and low-density areas.
The DBSCAN and OPTICS algorithms are typical exam-
ples. DBSCAN can discover clusters of arbitrary shapes and
handle noise points (outliers) automatically and effectively,
and it has two parameters (Eps and MinPts) and involve low
time complexity [33]. Density-based clustering algorithms
can automatically find the number of clusters, and they
are also suitable for clustering unknown and skewed data
sets. However, density-based clustering algorithms are not
effective when handling data sets with unobvious density
differences.

After the original DBSCAN was proposed in 1996,
many different DBSCAN enhancements were proposed for
clustering studies, such as VDBSCAN (Varied DBSCAN),
EDBSCAN (Enhanced DBSCAN), IDBSCAN (Improved
DBSCAN), FDBSCAN (Fast DBSCAN), GRIDBSCAN
(GRId DBSCAN), KNNDBSCAN (K-Nearest Neighbors
DBSCAN), ST-DBSCAN (Spatial-Temporal DBSCAN),
GMDBSCAN (Grid and Multi-density DBSCAN) and so on.
VDBSCAN and EDBSCAN mainly choose appropriate den-
sity threshold values. IDBSCAN reduces the clustering time,
but it still requires the users to customize the initial parame-
ters. FDBSCAN reduces the clustering time and improves the
accuracy of clustering by the Kernel function. GRIDBSCAN
introduces a three-level mechanism to improve the clustering
accuracy, but it has high time. KNNDBSCAN can determine
the threshold values based on k. ST-DBSCAN introduces
spatial, non-spatial, temporal and density functions to clus-
ter spatial-temporal data sets. GMDBSCAN introduces the
local density to cluster the data set, and determines local
MinPts with grid-density. However, it does not discuss the
time complexity. The reverse nearest neighbor approaches,
such as RECORD, IS-DBSCAN, ISBDBSCAN, and
RNN-DBSCAN, detect observation density with the reverse
nearest neighbors. All these approaches require a single
parameter k, the number of nearest neighbors to define the
density.
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Grid-based clustering algorithms [34] mainly include
STING, clustering with wavelets [35] (WaveCluster), and
CLustering In QUEst (CLIQUE). STING has a higher
efficiency, and the grid structure is conducive to parallel pro-
cessing and incremental updates; however, it may reduce the
quality and accuracy of the clusters. WaveCluster can effec-
tively manage large data sets, find clusters of arbitrary shapes,
and easily identify isolated points; however, it requires a
higher condition requiring knowledge of mathematical mod-
eling and is not able to achieve a superior clustering perfor-
mance for high-dimension data sets. CLIQUE integrates the
advantages of density-based and grid clustering methods and
divides a space into sparse and dense regions, after which
it finds the global distribution pattern of the datasets. Grid-
based clustering algorithms are suitable for large data sets;
however, they are sensitive to the input parameters, which
increases the difficulty of finding an effective method in
theory. The problem that needs to be solved is how to select
the appropriate number of units to achieve a balance between
the data expression and computational complexity. In addi-
tion, a large number of grid cells must be generated so that
the original spatial information is retained for high spatial
dimensions.

Model-based clustering algorithms [36] are robust
clustering methods that can automatically obtain the
number of clusters through standard statistical methods,
and they can reflect the distribution of data points by
constructing an effective density function. Model-based
clustering methods mainly include statistics-based ones,
which assume that data sets are consistent with the
basic probability distribution, a typical example of which
is COBWEB. COBWEB is a simple and widely used
incremental clustering method. CLASSIT is an improved
method of COBWEB, and it can perform incremental clus-
tering of numerical attributes and save the corresponding
continuous normal distribution for each node. However,
CLASSIT and COBWEB are not suitable for large data
sets.

Traditional clustering analyses are based on a hard divi-
sion concept in which each point belongs to only one clus-
ter out of all. However, many fuzzy attributes cannot be
measured by strict standards; thus, the relative soft division
concept has been proposed. Fuzzy set theory is introduced
into the cluster analysis to solve the cluster with the associ-
ation rule. Subsequently, multiple fuzzy clustering analysis
methods [37] have been proposed, such as those based on
similarity relations, fuzzy relationships, fuzzy equivalence
relations, convex decomposition of data sets, and dynamic
programming. These fuzzy clustering algorithms are math-
ematically sophisticated and hence often time consuming in
calculation. Fuzzy clustering algorithms based on objective
functions have become the focus of fuzzy clustering because
they present advantages in terms of the results and time. The
most commonly used method is the fuzzy C-means clustering
algorithm.
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Ill. A NEW SPATIO-TEMPORAL AIS TRAJECTORY
CLUSTERING METHOD

A. PROPOSED CLUSTERING ALGORITHM

All of the clustering algorithms discussed in the previous
section are suitable for point clustering. Each trajectory con-
sists of many points, and trajectory clustering is different from
traditional point clustering. Trajectory clustering can extract
useful information and is an efficient method for investigating
vessel movement patterns. However, clustering methods that
can directly cluster the whole trajectory are not currently
available.

Each trajectory is composed of a series of points and has a
linear or nonlinear structure over time. The trajectories of ves-
sels have different unique characteristics; therefore, trajectory
clustering is more complex than traditional point clustering.
The literature indicates that two strategies are primarily used
to research trajectory clustering: one method considers the
trajectory as a whole and the other partitions the trajectory
into a set of line segments [38].

Although a number of studies have considered the trajec-
tory as a whole [39], [40], developing a method for selecting
the most suitable similarity measurement method is still a
critical problem. Moreover, developing a selection method
for the number of cluster centers and a clustering algorithm
are also to be explored.

Partitioning methods can divide a trajectory into similar
sub-trajectories based on geometric features and structural
similarities. Then, the sub-trajectories can be clustered by
traditional clustering methods. Many scholars have proposed
methods of clustering small sections of a trajectory [41], [42].
However, the development of methods to determine the
length of a sub-trajectory and selection of the critical points
to represent complex solutions remain to be found.

To extract more useful information from vessel trajectories
with a high accuracy and low computational costs, we pro-
pose a novel clustering method for AIS data exploration.
In this paper, each trajectory is regarded as a whole, and the
spatio-temporal trajectory is mapped into a low-dimensional
spatial representation of points via MDS. Then, commonly
used clustering algorithms can be used to handle these points,
and complex trajectory clustering is transformed into a point
clustering problem. This method can solve the difficulty of
trajectory clustering and greatly reduce the time complexity
without affecting the clustering effect. The purpose of this
paper is to identify customary routes and discern abnormal
trajectories based on data mapping methods and density clus-
tering algorithms.

To improve the efficiency and effectiveness of trajectory
clustering, a novel fusion trajectory-clustering algorithm is
proposed. The distance between trajectories is measured
via MD, which is a robust similarity measurement method
used to measure the similarity between trajectories to obtain
a distance matrix. Then, suitable data mapping and dimen-
sional reduction methods need to be selected. MDS can con-
struct a suitable low-dimensional space to obtain the spatial
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FIGURE 3. Flowchart of the proposed algorithm.

point expression of the similarity between trajectories.
MDS is a classical data visualization and nonlinear data
mapping method that can transform trajectory data into a low-
dimensional point representation. The spatial representation
of trajectories can be mapped into the low-dimensional rep-
resentation of points, which reduces both the dimensional-
ity and time complexity. After the spatial point expression
is received, the most suitable clustering algorithm must be
selected. DBSCAN is a representative density-based spa-
tial clustering algorithm that can find clusters of arbitrary
shapes and remove noisy data. Therefore, the improved
DBSCAN algorithm is used to cluster spatial points to
acquire the optimal clustering results. The fusion among MD,
MDS and the improved DBSCAN algorithm is not sensitive
to undesirable noise, and it can also achieve a better clustering
performance.

The traffic flow patterns detected by the fusion method
from the original trajectory data represent fundamental
knowledge for further traffic flow analysis and decision mak-
ing on traffic management. Experiments on real ordinary
AIS trajectories in a bridge area waterway showed that our
proposed method was more efficient when discovering traffic
flow patterns and discerning customary routes.

The flowchart of the proposed algorithm is shown
in Fig. 3.

B. TRAJECTORY SIMILARITY MEASUREMENT

Most of the trajectories describing moving objects are curves,
and trajectory similarity measurements are mainly dependent
on the distance between trajectories. The Euclidean distance
represents the straight-line distance between two points, and
it requires an equivalent number of points in different trajec-
tories. Therefore, this method is not suitable for measuring
the similarity of trajectories. Dynamic time warping (DTW)
is an algorithm for measuring the similarity between two time
series, which may differ in time or speed. The essence of
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DTW is to warp the routes from feature to feature. However,
DTW is not robust for subsampling and supersampling.

As a trajectory similarity measurement algorithm with
strong robustness under subsampling and supersampling,
MD represents the shortest merged distance between two
trajectories and can be calculated in quadratic time [19].
Suppose that the trajectory p is composed of a sequence of
time points (x;, y;, t;), pi = (xi, ¥i), where p; is the position
coordinate point and f#;, # < < t, represents the
corresponding time in a chronological order. Thus, the length
of trajectory p is I(p) = }_;d(pi, pi+1), where d(p;, pit1)
represents the distance between point p; and pj1.

MBD denotes the length of the shortest trajectory that is a
supersequence of two trajectories. The detailed calculation
process is as follows.

Suppose that a = {ai,---,apn}, i = 1,---,m and

= {b1, -+, by}, j = 1,---, n are trajectories and A\(B})
is the length of the shortest trajectory that is a supersequence
of a and b, then

j—1
D dy, i) | + dby, av),
Aj k=1
min (A, + d(@-1, @), B, +d(bj, ap).

2<i<m, 1<j<n

i=1,1<j<n

ey

j=11<i<m

i—1
(Z d(ay, ak+1)> + d(a;, by),

B =] k=1 .
“ ] min (Afl +d(ap, b)), B+ d(b1, bj)) ,

2<j<m l<i<m

@)

The time complexity of MD is O(mn), and the length of
the shortest supertrajectory is /(a, b) = min(A},, B};,). Then,
MD(a, b) is as follows.

l(a, b) 2l(a, b)
MD(a, b) = = . 3)
(@) +1b)/2 la)+ 1)
MD is invariant under rigid motions [18]. Thus, MD has
great application potential for the similarity measurement of

the AIS trajectory distance.

C. MULTIDIMENSIONAL SCALING

MDS is a classical nonlinear data mapping method and an
important data visualization method. It can proportionally
scale the relationships between all samples defined in a mul-
tidimensional space to a 2D or 3D space. Then, the similarity
matrix between trajectories can be represented as the distance
of points in two dimensions. The problem is to determine
how to reconstruct their Euclidean coordinates when only
the similarity matrix between objects is known. For example,
if only the distance between each pair of many cities in
a country is known but their latitude and longitude infor-
mation is unknown, then we can express their locations as
a 2D coordinate with MDS [43].
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MDS mainly includes three types: classical MDS, met-
ric MDS and non-metric MDS [44], [45]. Classical
MDS is also called principle coordinates analysis, and it
is used to solve the spatial representation of points when
only the distance matrix between all points is known. Metric
MDS regards the sample distance or (dis)similarity as a quan-
titative measurement, which ensures that the representation in
low-dimensional space maintains this metric relation as far
as possible. Non-metric MDS is also called order ordinary
scaling, and it considers the sample distance or (dis)similarity
relation as a qualitative relationship. Then, the representation
in low-dimensional space only needs to maintain the order of
this relationship.

Therefore, metric MDS is selected to transform the simi-
larity measurement matrix into a quantitative representation
in 2D. The MDS procedure is described as follows.

Find a set of points X that has the same distance as
D based on the Euclidean constraints. To solve X, the
matrix T is introduced, and T = XX7 .

Step 1. T is calculated from D, and it represents a positive
semidefinite matrix, where dj; € D; x;,x; € X;t;; € T. The
average value of X is 0.

"5'=<Xf—x/>2=x3+x»2—2x,~x/;
tij=xixj:>tij=— (d2_x _xz)
a2 = nx,.2+zsz _ZXin, i +ij2;
Z/:dz%:"x +Zx —2xlzx,_nx _|_Zx
idz%:”Zx +an
.

Zy

1 1
2 2 2
tj = _E(dij ; E dkj + ; E dkl)
k k,l

“

Step 2. X is solved based on T, and then the eigenvector
decomposition is used to construct the matrix X.

T = UAUT UAZA2YT = XXT, where the
matrix of eigenvalues is U, A is the vector of eigenvalues, and
X =UA'"2

MBDS is able to transform the similarity matrix into the rel-
ative distance representation of spatial points. A greater input
similarity corresponds to a closer (smaller) relative distance
between points, and vice versa. The trajectories are mapped
into points, and the time complexity is greatly reduced. For
example, the 187 trajectories composed of 29015 points are
mapped into 187 points with MDS. When the abstract point
representation is received, the most suitable point clustering
algorithm should be chosen to solve the clustering problem.

D. IMPROVED DBSCAN

Clustering analysis is a common data mining technique,
which aims to group a set of points into several clusters so
that points in the same cluster are more similar to each other
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than to those in other clusters. DBSCAN can find clusters
of arbitrary shapes and remove noisy data; it needs to search
only once to obtain the final clustering result, and thus, it has
a higher efficiency. The main concept underlying DBSCAN
is that for each point in a cluster, the neighborhood of a given
radius has to contain at least the minimum number of points.

The essence of density-based clustering algorithms is that
the density of the points in the same cluster is larger than
that of the points in different clusters [46]. The density in the
area of noise is lower than the density of any other clusters.
To find a cluster, DBSCAN starts searching at an arbitrary
object p at all research points and retrieves all points that
are density-reachable from p with respect to Eps and MinPts.
If p is a core object, then the neighborhood of p can be
obtained with respect to Eps and MinPts, where p and the
points in the neighborhood of p belong to a cluster. These
points become seeds in the next circle to expand the cluster,
and this procedure generates a cluster with respect to Eps
and MinPts. If p is a border point and no points are density-
reachable from p, p is temporarily assigned to noise. Then,
DBSCAN handles the next point in the database.

DBSCAN [47] requires the global parameters Eps and
MinPts to be set in advance. The original DBSCAN algorithm
selects the optimal parameters Eps and MinPts via only the
k-nearest neighbor of each point. The improved
DBSCAN algorithm, in contrast, chooses the optimal Eps and
MinPtsbased on the k" distance curves and the first derivative
of the k”* distance curves.

Each row in the distance matrix D is sorted in an ascend-
ing order; then, the new distance matrix S is received. The
k™ distance curve is the ascending order graph of the
column k in S. The k™ distance curve is one of the most
important parameter selection criteria. The first derivative of
the k™ distance curve is the distance difference graph. The
distance differences between the adjacent distances of the
column k in S are computed and sorted in an ascending order.
The sorted k* distance values of every point and the sorted
distance difference are visualized, and then Eps and MinPts
are quickly and accurately calculated. The y-coordinate value
of the inflection point is the optimal Eps, and the k value
is the optimal MinPts. The comparative analysis results of
different Eps and MinPtsvalues are displayed in this paper,
and the optimal parameters Eps and MinPts are chosen.

The pseudocode of the improved DBSCAN is described as
follows.

IV. EXPERIMENTS AND EVALUATION

The development of bridges in navigational routes
(e.g. waterways) is fast, and the inland river navigational
environment also changes with the development of bridges,
which creates certain restrictions and adverse effects for the
navigation of inland waterway vessels. The hydrodynamic
interaction between a bridge and a vessel makes the waterway
beneath a bridge to be a high-risk area. The bridge across
a channel may represent an obstacle to a ship, and ship-
bridge collisions are often catastrophic. Therefore, vessel

VOLUME 6, 2018



H. Li et al.: Spatio-Temporal Vessel Trajectory Clustering Based on Data Mapping and Density

IEEE Access

Algorithm 1 Improved DBSCAN
Input: DG, j), i=1,--- ,m; j=1,---,n
//the distance matrix between the trajectories;
MP // the mapping data set;
Output: the clustering results.

/I Optimal parameter selection. //

Step 1. S(?,}), i= 1,---,m; j=1,---, nisreceived.
/ the ascending order of each row in D;
Step2.7(G,j), i=1,---,m; j=1,---, nisreceived.

/I the ascending order of each column in S;
Step3.0G, k) =TG, k' +1)—TG k), i=1,...,m,
K=1,...,n—1.

// the first derivative of the sorted k* distance values;
Step4. QG k"), i=1,....m, k" =1,...,n—1.

/I the ascending order of the first derivative;

Step S. The comparison curves of T(;, IE), k=3,.-. ,nand
QG k"), k" =3,...,n— 1 are displayed and compared.
/ visualize the parameter value images;
Step 6.Select the optimal Eps and MinPts.
// Mark all points as the core points, boundary points
and noise points. //
Step 7.Choose an arbitrary point p € X,
IF Ngps(p) > MinPts
Neps(p) = {q € O, dist(p, q) < Eps, p # g}
THEN find all the points that are density-reachable
from p to form a cluster;

ELSE

THEN exit this cycle, and select the next point;

Repeat

UNTIL all points are processed.

Step 8. Delete the noise points.

Step 9. Connect the core points of each group to form a
cluster.

Step 10. Assign each boundary point to the associated cluster
of core points.

trajectory clustering and visualization in bridge areas are
areas of focus and are performed to discover customary routes
and detect abnormal behavior to prevent accidents and reduce
the accident rate.

Yangtze River presents the world busiest inland waterway
in the world. The Mississippi River is the largest river in
the United States, which has convenient and cheap naviga-
tional resources, abundant mineral resources and the unique
agricultural resources. Therefore, the complex traffic flow
characteristics and changeable environment conditions make
the Yangtze River and Mississippi River the focus of this
research.

To guarantee the safety of ships sailing in a bridge area
waterway or in other complex waters, research on the Wuhan
section of the Yangtze River and the Mississippi River were
analyzed in this paper. The visualization of original AIS
trajectories was first realized in the experiments; then, tra-
jectory clustering analysis of three clustering algorithms was
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FIGURE 4. Visualization of different types of AIS information: (a) Some
original data samples; and (b) GIS-based and Satellite-based AIS
information.

conducted for the different datasets to verify the effectiveness
of the proposed method. Thus, the obtained clustering results
facilitated the identification of vessel traffic flow patterns and
customary routes.

A. EXPERIMENTAL SETUP

All numerical experiments were performed on a computer
running 64-bit Windows 10 with a 2.60 GHz Intel Core
17-5600 CPU and 8 GB memory. We implemented the data
mapping and clustering methods using MATLAB R2016a.

Extensive experimental analyses on AIS trajectories were
be carried out to verify the effectiveness of our proposed
method. The AIS trajectory data in a bridge area waterway
were collected from the AIS base station in the Wuhan section
of the Yangtze River. The bridge area waterway datasets
include 187 vessel trajectories with 29,015 points. The data
set in Mississippi River includes 106 AIS trajectories, which
is composed of 2,442 points. The visualization of different
types of AIS information is shown in Fig.4.

OP represents the original data set, which consists of dif-
ferent trajectories, and MP represents the mapping data set.
The experimental procedure is as follows.

Step 1. Perform original data cleaning and trajectory pre-
processing in OP.

Step 2. Calculate the similarity measurement of AIS trajec-
tories. The distance matrix between trajectories is calculated
by MD using Microsoft Visual Studio 2010.

Step 3. Determine the spatial point representation of trajec-
tories in MP. The low-dimensional representation of trajecto-
ries based on the distance matrix is assessed via MDS.

Step 4. Perform an optimal parameter selection and clus-
tering analysis. The points are clustered by the improved
DBSCAN, and the optimal Eps and MinPts parameters are
chosen. The clustering performance is based on the distance
of trajectories, and the points are compared with each other
to further verify the effectiveness of the proposed method.

58945



IEEE Access

H. Li et al.: Spatio-Temporal Vessel Trajectory Clustering Based on Data Mapping and Density

Step 5. Compare the different clustering algorithms in dif-
ferent data sets. The proposed clustering method is compared
with spectral clustering and affinity propagation clustering
methods using the specified clusters to further verify the
effectiveness of the proposed algorithm.

Step 6. Identify the customary routes and abnormal trajec-
tories based on the clustering analysis.

B. COMPARISONS WITH OTHER CLUSTERING METHODS
Spectral clustering is based on spectral graph partition theory,
which is based on the concept of transforming a data clus-
tering problem into an optimal partition problem. Spectral
clustering can divide a graph into several subgraphs that do
not intersect. The similarity is the highest in the same sub-
graph and the lowest between different subgraphs [48]. Spec-
tral clustering can identify a sample space with an arbitrary
shape and converge to the global optimal solution; however,
it is not suitable for datasets with many clusters. The basic
idea of spectral clustering is to cluster the received feature
vectors according to the similarity matrix of the sample data.
However, spectral clustering is sensitive to the scale param-
eters. The eigenvalue decomposition problem of a large-
scale matrix requires enormous computational costs and an
immense storage capacity.

Affinity propagation clustering [49] is a semi-supervised
clustering algorithm, and the number of clusters k in affin-
ity propagation clustering does not need to be determined
in advance. The algorithm can automatically generate the
appropriate number of clusters during the iterative process.
The algorithm does not have a special requirement for the
similarity matrix, which can be either symmetric or asym-
metric [50]. The results of affinity propagation clustering are
all equivalent when the iteration is repeated, although the
algorithm has a high computational complexity. However,
affinity propagation clustering with a specific number of
clusters can automatically generate an appropriate clustering
result.

C. OPTIMAL PARAMETER SELECTION

DBSCAN is sensitive to the radius Eps and the number
of points MinPts, and thus, parameter optimization is the
research focus. The literature indicates that two strategies
are primarily used to determine the parameters: selecting
the optimal parameters automatically and testing certain val-
ues manually in a predefined parameter range. Then, the
appropriate parameters and satisfactory performance will be
selected and fixed. The performance of different values of
Eps and MinPts is compared based on the sorted k™ distance
of each point and the sorted distance difference map; then,
the optimal parameters Eps and MinPts are selected.

The Eps and MinPts are important parameters that influ-
ence the clustering performance. Experiments were first car-
ried out to determine the optimal MinPts value, and then
the optimal Eps was received from the k" neighbor dis-
tance graph. The two parameters have a significant impact
on the experimental results, and the proper parameters with
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satisfactory performance will be selected and fixed through-
out all experiments. The optimal parameter selection results
based on trajectories and mapping points were compared in
the experiments. To obtain more accurate results, the distance
matrix between points was chosen to find the optimal param-
eter in this paper.

The optimal parameter selection process is designed as
follows.

Step 1. Visualize the sorted k™ distance graph.

Step 2. Visualize the sorted distance difference graph.

Step 3. Compare the results of the different sorted
k™ distance graphs and distance difference graphs and select
the best Eps and MinPts.

Step 4. Select the optimal parameters.

The best k value is MinPts, and the corresponding inflec-
tion point is the best value of Eps.

D. VISUALIZATION OF CLUSTERING RESULTS

IN A BRIDGE AREA WATERWAY

The clustering performance of different algorithms is visual-
ized and analyzed in detail. The experimental process con-
ducted in the bridge area waterway is described in detail as
follows. Data cleansing is the basic step of trajectory visual-
ization, and it can delete erroneous data and repair incomplete
data. The original trajectories are first judged by the trajectory
acquisition time and time interval, and then the incomplete
and invalid trajectory data are deleted.

After data cleansing, 161 vessel trajectories with
25678 coordinate points are preserved. Four trajectories
among the 161 trajectories have an opposite course, and the
points in the four trajectories have a reverse order compared
with those in other trajectories. Therefore, the distances
between the four trajectories and the other 157 trajectories
are perhaps larger. The experiment does not indicate the
directions of the trajectories, and thus, the proposed method
can be tested to determine whether it can identify the reverse
trajectories.

1) VISUALIZATION OF THE SIMILARITY MATRIX
MD was implemented to calculate the distances between the
161 trajectories, and then the distance matrix was calculated.
The 2D visual display of the distance matrix and the statistical
histogram of all distances are shown in Fig. 5.

As shown in Fig. 5 (a), the X-axis and Y-axis represent
trajectory labels, and the different colors express different
values. The 2D visualization of the distance matrix clearly
shows the symmetry of the distance matrix and the distribu-
tion characteristics of the distances. As shown in Fig. 5 (b),
the X-axis represents the distance value and the Y-axis rep-
resents the frequency of the distances, and the distribution of
the distances can be further displayed.

2) VISUALIZATION OF ORIGINAL TRAJECTORIES

AND AFTER MDS

The original AIS trajectories and the spatial point represen-
tation of the trajectories based on MDS are shown in Fig. 6.
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between trajectories.
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FIGURE 6. Original trajectory and data mapping results: (a) original
AIS trajectories; and (b) spatial point representation with MDS.

The visual display of the 161 trajectories in the bridge area
is shown in Fig. 6 (a), which displays three bridge open-
ings and two bridge piers. The vessel trajectories converge
together before entering the bridge opening and after leaving
the bridge opening in the left trajectories. The spatial point
representation based on MDS is shown in Fig. 6 (b), and the
relationship between the points is easily observed. As shown
in Fig. 6 (b), the trajectories are mapped into the points in
the 2D plane. Then, the trajectory clustering problem is trans-
formed into a point clustering problem. The distance between
the points is expressed by the Euclidean distance, which can
greatly reduce the time cost and computation complexity. The
original trajectories consist of 25678 coordinate points, and
MDS mapping reduces this number to only 161 points. There-
fore, MDS represents a useful data mapping and dimensional
reduction method.

3) VISUALIZATION OF THE OPTIMAL PARAMETER
SELECTIONS

The two Eps and MinPts parameters in the improved
DBSCAN are chosen from the sorted k< distance graph of
each point and the distance difference map, and the sorted
k™ distance can clearly show the growth trend. The maxi-
mum value at the inflection point is the optimal value, and
MinPts = the optimal k. To verify the effectiveness and
superiority of the proposed method, the different compari-
son results of the optimal parameter selections between the
original distance matrix based on trajectories and the distance
matrix based on mapping points are shown in Figs. 7 and 8.
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k values.

The ascending order graph of the distance differences for
different column k values (k = 3,4,5,6,7,8,9, 10, 11, 15,
and 20) is shown in Fig. 7 (a), in which the overall trend
is basically the same and that all curves have an inflection
point. To visualize the differences more clearly, a locally
enlarged image of Fig. 7 (a) is displayed in Fig. 7 (b). The
ascending order graph of the different column k values is
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shown in Fig. 7 (¢), and the overall trend is clear. The column
k values in the distance matrix of the trajectory represent
the sorted k™ distance of every point. The Eps values at
different k values are shown in Fig. 7 (d), which shows that
the Eps values vary greatly.

The comparative results of k are clearly shown
in Figs. 7 (b) and (c), and the performance of different
k values is displayed in detail. From the overall trend and
the curves of k = 3,4,5,6,7,8,9, 10, 11, 15, and 20 in
Figs. 7 (b) and (c), we can see that the biggest change occurs
when k = 4 and that the inflection point appears at the
earliest when k = 4. Then, the optimal value of MinPts
is 4. The corresponding value of the inflection point when
MinPts = 4 is the optimal value of Eps; thus, Eps = 0.4803.
Thereafter, the improved DBSCAN can cluster the points
with Eps = 0.4803 and MinPts = 4. However, the trend
of the sorted k™ distance of every point is not very clear,
and two inflection points are shown in Fig. 7 (c). The same
optimal parameter selection process of the distance matrix
based on mapping points is shown in Fig. 8, which can
be used to further verify the effectiveness of the proposed
method. A comparison of Figs. 7 and 8 shows that the graph
of different k£ values in Fig. 8 has a more obvious trend and
that the different Eps have more stable values.

The sorted k”* distance difference is shown in Fig. 8 (a),
and the overall trend is basically the same; all of the curves
have an inflection point. To visualize the difference between
each more clearly, a locally enlarged image is displayed
in Fig. 8 (b). The ascending order graph of the k" distance
is shown in Fig. 8 (c), and the overall trend is clear. Only one
inflection point is shown in Fig. 8 (c). The comparative results
of different k values are clearly shown in Figs. 8 (b) and (c).
The Eps values at different k are shown in Fig. 8 (d), which
shows that the change in Eps is relatively stable.

The overall trend and the curves of k = 3,4,5,6,7, 8,
9,10, 11, 15, and 20 in Figs. 8 (b) and (c) show that the
biggest change occurs and the inflection point appears at the
earliest when k& = 4. The variation trend and the overall
performance in Figs. 8 (b) and (c) are better than those in
Figs. 7 (b) and (c). Thus, the optimal value of MinPts is 4. The
corresponding value of the inflection point when MinPts =4
is the optimal value of Eps; thus, Eps = 0.1026. There-
after, the improved DBSCAN can cluster the points with
Eps = 0.1026 and MinPts = 4.

The comparison results of the optimal parameter selection
are shown in Figs. 7 and 8, which indicate that the distance
matrix based on mapping points presents a superior perfor-
mance. Therefore, the proposed parameter selection method
has improved performance.

4) VISUALIZATION OF CLUSTERING RESULTS AND
COMPARISON OF DIFFERENT ALGORITHMS

The proposed algorithm is compared with spectral clustering
and affinity propagation clustering using a specific cluster
number, and the experimental comparison results of the three
algorithms are shown in Fig. 9.
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FIGURE 9. Clustering results of the different algorithms: (a) point
clustering results of the improved DBSCAN when Eps = 0.1026 and
MinPts = 4 in the mapping data set MP; (b) corresponding trajectory
clustering results of (a), where the red trajectories represent the opposite
course; (c) clustering results of spectral clustering when the cluster center
is 2; and (d) clustering results of affinity propagation clustering when the
cluster center is 2.

The point clustering result and the corresponding trajectory
clustering results of the improved DBSCAN with Eps =
0.1026 and MinPts = 4 are shown in Figs. 9 (a) and (b).
The point clustering results of the improved DBSCAN are
shown in Fig. 9 (a), in which the blue and green plus signs
represent different clusters and the red points denote noise.
The corresponding trajectory clustering results of the point
clustering results are shown in Fig. 9 (b), in which the blue
and green trajectories denote different clusters, and the red
trajectories represent abnormal trajectories. Further analysis
of the four red trajectories reveals that they are the reverse
trajectories. Compared with the other trajectories, the red
trajectories have an opposite direction. Although the exper-
iment does initially not indicate the course of the trajectories,
the proposed method could still discern the trajectories with
an opposite course.

The clustering results of the spectral clustering method are
shown in Fig. 9 (c), which indicates that the three reverse
trajectories are misclassified. The spectral clustering method
cannot identify the reverse trajectories. The clustering results
of the affinity propagation clustering method are shown
in Fig. 9 (d), in which blue and green also represent dif-
ferent clusters. However, the green trajectories among blue
trajectories are incorrect clustering results and do not rep-
resent reverse trajectories. Therefore, the proposed method
can identify abnormal trajectories automatically and detect
the course of trajectories. The experiments also show that
the performance of the proposed method is better than those
of the affinity propagation clustering and spectral clustering
algorithms.
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FIGURE 11. Image display of distance matrix with MD of 30 down-bound
trajectories: (a) 2D display of the distance matrix; and (b) statistical
histogram of all distances between trajectories.

E. VISUALIZATION OF CLUSTERING RESULTS IN
MISSISSIPPI RIVER

The second experiment data set was associated with the Mis-
sissippi River. The 106 trajectories contain 2,442 points. Data
cleansing is conducted to remove the error data and repair
incomplete data. Then 67 trajectories with 1,532 coordinate
points are preserved after data cleansing. There are 37 trajec-
tories of up-bound vessels and 30 trajectories of down-bound
vessels, and they have the opposite navigation directions.

1) VISUALIZATION OF THE SIMILARITY MATRIX

Fig.10 shows the 2D visual display of the 37 x 37 dimen-
sional distance matrix and the statistical histogram of all
distances.

As shown in Fig. 10(a), the X-axis and Y-axis represent the
trajectory labels, and the different color expresses different
values. The 2D display can clearly show the symmetry of the
distance matrix and the distribution characteristics of the dis-
tances. In Fig. 10(b), the X-axis represents the distance value
and the Y-axis represents the frequency of all the distances.
The statistical histogram of all the distances is conductive to
observing the distribution of the distances.

The 2D visual display of the 30 x 30 distance matrix and
the statistical histogram of all distances are shown in Fig. 11.
In Fig. 11(a), the X-axis and Y-axis represent the trajectory
labels, and 2D display can clearly show the symmetry of
the distance matrix. The X-axis represents the distance value
and the Y-axis represents the frequency of all the distances
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FIGURE 12. Original trajectory and data mapping results: (a) Original
AIS trajectory display of 37 up-bound vessels; and (b) spatial point
representation with MDS.

in Fig. 11(b). The statistical histogram can clearly shows the
distribution of the distances.

2) VISUALIZATION OF ORIGINAL TRAJECTORIES

AND AFTER MDS

The original trajectory and the spatial point representation
of 37 up-bound vessels based on MDS are shown in Fig. 12.
The trajectories are mapping into the points in 2D plane
in Fig. 12(b). Then the trajectory clustering problem is trans-
formed into a point clustering problem. The original trajecto-
ries consist of 744 coordinate points, and these points belong
to the data set OP37. While the spatial points after mapping
only have 37 points, which belong to the data set MP3;.
The distance between the points in MP37 is expressed by
Euclidean distance, which greatly reduces the time and com-
putation complexity.

The original trajectories and the spatial point representa-
tion of 30 down -bound vessels based on MDS are shown
in Fig. 13. The trajectories of 30 down-bound vessels is
displayed in Fig. 13 (a), which clearly shows the trend of
trajectories. The spatial point representation with MDS is
shown in Fig. 13 (b), and the relationship between the points
can be found easily. From Fig. 13 (b), the trajectories are
mapped into the points in 2D plane. The original 30 tra-
jectories consist of 788 coordinate points, while the spatial
points after mapping only have 30 points. OP3( represents
the original 788 coordinate points, while MP3( represents the
30 points after mapping.

3) VISUALIZATION OF CLUSTERING RESULTS AND
COMPARISON OF DIFFERENT ALGORITHMS

The parameter Eps and MinPts are found by the pro-
posed optimal parameter selection algorithm. The parameters
Eps = 0.1739 and MinPts = 3 are the optimal in the
trajectory of the 37 up-bound vessels, and the parameters
Eps = 0.1373 and MinPts = 4 are the optimal in the trajecto-
ries of the 30 down-bound vessels.

The point clustering result and the corresponding tra-
jectory clustering result of different algorithms about the
37 up-bound vessels are shown in Fig 14. The point clustering
results of the improved DBSCAN with Eps = 0.1739 and
MinPts = 3 are shown in Fig. 14 (a). As shown in Fig. 14 (a),
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FIGURE 13. Original trajectory and data mapping results: (a) Original
AIS trajectory display of 30 down-bound vessels; and (b) spatial point
representation with MDS.
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FIGURE 14. Clustering results of different algorithms about the

37 up-bound trajectories: (a) point clustering results of the improved
DBSCAN when Eps = 0.1739 and MinPts = 3; (b) corresponding trajectory
clustering results of (a), where the red trajectory represents the abnormal
trajectory; (c) clustering results of spectral clustering when the cluster
center is 3; and (d) The clustering results of the affinity propagation
clustering when the cluster center is 3.

the green, blue, and black colors represent different clusters
and the red represents the noise points. The green, blue, and
black plus signs represent the core points of the different
clusters. The black and green circles denote the border points.
The corresponding trajectory clustering result is shown in
Fig. 14 (b), where the blue, red and green denote different
clusters and the red trajectories represent abnormal trajecto-
ries. The result of spectral clustering is shown in Fig. 14 (c),
and the clustering performance is better than affinity propaga-
tion clustering. However, the spectral clustering cannot iden-
tify the abnormal trajectories. The clustering result of affinity
propagation clustering is shown in Fig. 14 (d), the green, blue,
and black also represent different clusters. However, the blue
trajectories among the black trajectories are the wrong clus-
tering results. By comparing the Fig. 14 (b), Fig. 14 (c) and
Fig. 14 (d), it can be clearly seen that the proposed method
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FIGURE 15. Clustering results of different algorithms about the

30 down-bound trajectories: (a) spatial point clustering results of the
improved DBSCAN when Eps = 0.1373 and MinPts = 4; (b) corresponding
trajectory clustering results of (a); (c) clustering results of spectral
clustering when the cluster center is 3; and (d) The clustering results of
the affinity propagation clustering when the cluster center is 3.

not only recognizes the abnormal trajectories, but also has the
better clustering performance.

The point clustering result of the proposed method and the
corresponding trajectory clustering results of different algo-
rithms about the 30 down-bound vessels are shown in Fig. 15.
The point clustering results of the improved DBSCAN when
Eps = 0.1373 and MinPts = 4 are shown in Fig. 15 (a).
In Fig. 15 (a), the blue and green represent different clusters
and the red expresses noise points. The blue and green plus
signs represent the core points. The corresponding trajectory
clustering result is shown in Fig. 15 (b), the blue and green
trajectories denote different clusters and the red expresses
abnormal trajectories. The red trajectories in the Fig. 15 (b)
represent the possible abnormal trajectories, and the distances
of the red trajectories are relatively larger than those of the
green and blue ones. Then, the abnormal trajectories are
further analyzed by the COG and SOG. The further verifi-
cation indicated that these potentially abnormal trajectories
are actually at a normal navigational state. These potential
anomalies could be the result of a small data sample. The
result of spectral clustering is shown in Fig. 15 (c), where the
clustering performance is better than that of affinity propaga-
tion clustering. Spectral clustering can cluster the trajectories
based on the distance matrix, but cannot identify the abnormal
trajectories. The result of affinity propagation clustering is
shown in Fig. 15 (d), where the blue, red and green trajecto-
ries represent different clusters. However, the red trajectories
among green trajectories are the wrong clustering results.
Spectral clustering and affinity propagation clustering can
only cluster the points, and cannot identify other information.
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TABLE 1. Comparison results of different algorithms.

Proposed Spectral Afﬁmty Method in

Symbol Algorithm | Clusterin; Propagation [38]
g & Clustering

Trc o(n’) O(n*) | O@*logn) | O(n*)
Twmp-B 15.14 min 15.14 min 15.14 min —
Torw.s — — — 8.25 min
Telus-B 2.841 s 2.056 s 3.054 s 1.834 s
RaceuB 100% 98.1% 88.8% 100% (*)
Typoms7 4.28s 4.28s 4.28s —
Torw-msz — — — 5.89s

0.404s+0.
Tetus-m37 392s 1.043s 1.212s 0.836s

=0.796s
Raceums? 100% 97.30% 89.19% 100%
TMD—.\’I}() 6.29s 6.29s 6.29s -
Torw-m30 — — — 2.075s

0.424s+0.
Tclus—.\’[}() 393s 1.239s 1.321s 0.737s

=0.817s
RaceuM30 100% 100% 93.33% 96.67%
IN Yes No No No
IC Yes No No No

Ty represents the time complexity of the involved different algorithms.
Ty indicates the running time of MD. Ty, indicates the running time of
DTW. T, represents the clustering running time of the trajectory in the
bridge area waterway. R, represents the clustering accuracy of the
trajectory in the bridge area waterway. T3, indicates the running time of
MD about 37 up-bound trajectories in the Mississippi River. Ty
indicates the running time of DTW about the 37 up-bound trajectories.
T,us.m37 TEpresents the clustering running time of the 37 up-bound trajectories
in the Mississippi River. R,..,.ws; represents the clustering accuracy of the 37
up-bound trajectories. Typ.30 indicates the running time of MD about the 30
down-bound trajectories in the Mississippi River. Ty indicates the
running time of DTW about the 30 down-bound trajectories. T, a0
represents the clustering running time of the 30 down-bound trajectories.
Rcconmio represents the clustering accuracy of the 30 down-bound trajectories.
IN represents whether the method can identify noise. IC indicates whether the
method can identify the trajectories with the opposite course.

100% (*) indicates that the accuracy of clustering is 100% without
considering the course. However, four trajectories had an opposite direction
relative to the other trajectories.

Our proposed method not only identifies the different clus-
ters, but also detects the anomalous trajectories.

F. TIME COMPLEXITY ANALYSIS COMPARISONS WITH
OTHER CLUSTERING METHODS

The time complexity of the proposed method involves the
calculations by the MD, MDS and the improved DBSCAN
algorithm. The time complexity of the methods are as fol-
lows: MD is O([}_, m;), MDS is 0(n?), and the improved
DBSCAN algorithm is O(n - log n). The affinity propagation
clustering has a complexity of O(n* - logn), and spectral
clustering is O(n?). In the above time complexity expressions,
m; expresses the number of the points in the i-th trajectory,
and n represents the number of AIS trajectories. The time
complexity and the running time of the proposed algorithm,
spectral clustering and affinity propagation clustering in the
bridge area waterway are listed in Table 1.
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All the trajectories in the bridge area waterway have
25678 points in OP. The time complexity of MD is the
product of the sum of the points in every trajectory; therefore,
the running time of MD is 15.14 min. The time complexity
of MD is very large, although the stability of the algorithm
is higher. The running time of the data mapping is 1.569 s,
and the clustering running time is only 1.272 s after applying
MDS. The running time of affinity propagation clustering
is 3.054 s, and the spectral clustering is 2.056 s. The clustering
accuracy of the proposed method is higher than those of the
other two algorithms. Compared with the method in [38],
the proposed algorithm in this paper can identify the course
and achieve a better clustering result.

The trajectories of 37 up-bound vessels in the Mississippi
River data set consist of 744 points, for which the running
time of MD is 4.28s, that of data mapping is 0.404s, and
that of the clustering is only 0.392s. The total running time
is only 0.796s, which is less than the other two algorithms.
The running time of affinity propagation clustering is 1.043s,
and that of spectral clustering is 1.212s. The clustering accu-
racy of the proposed method is higher than the other two
algorithms. All the trajectories of 30 down-bound vessels
have 788 points. The time complexity of MD is the product
of the sum of points in every trajectory; thus, the running
time is 6.29s. For the proposed method, the data mapping
running time is 0.424s, while that of the clustering is 0.393s.
The total running time is only 0.817s, which is less than
the running time of the other two algorithms. The running
time of affinity propagation clustering is 1.239s, and the one
of spectral clustering is 1.321s. The clustering accuracy of
the proposed method is better than that of the other two
algorithms. Compared with the method in [38], the proposed
algorithm identifies the potential anomalies and achieves a
better clustering result.

As a result, the proposed clustering algorithm has higher
clustering accuracy and relatively lower time complexity.
The experiments show that the proposed method can not
only detect the reverse trajectories but also identify abnormal
trajectories automatically.

V. DISCUSSION

The experimental results show that the proposed method
can find trajectories with an opposite course and discern
noisy data. Spectral clustering cannot identify reverse trajec-
tories or abnormal trajectories, and affinity propagation clus-
tering produces incorrect clustering results. The experiments
verify that the performance and accuracy of the proposed
method are better than the performance and accuracy of
spectral clustering and affinity propagation clustering. The
data mapping process from trajectories to points can not only
greatly reduce the time complexity of clustering but also
improve the clustering performance.

The experiments on different data sets confirm the
validity and feasibility of the proposed method in this
paper. As a trajectory similarity measurement algorithm
with strong robustness under subsampling and supersam-
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pling, MD can effectively calculate the distance between
trajectories, and MDS is then used to transform the dis-
tance between trajectories into the distance between points
and construct a spatial point representation of the trajecto-
ries. These data mapping and dimensional reduction meth-
ods greatly reduce the time complexity of trajectory clus-
tering. The experimental results demonstrate the enormous
potential of the proposed method for trajectory clustering.
Moreover, traffic patterns and customary routes can be found
from the clustering results. The fusion among the MD, MDS
and improved DBSCAN algorithm represents the innova-
tion of this paper, and it can automatically determine the
number of clusters based on the distance between map-
ping points and find trajectories that present an opposite
course.

VI. CONCLUSIONS AND FUTURE WORK

Trajectory clustering is different from traditional point clus-
tering, and traditional point data cannot be directly clustered
via clustering algorithms. Instead, we propose a novel conver-
sion method that can transform the trajectory clustering prob-
lem into a point clustering problem. The main contribution
of the novel conversion method is that it takes full advantage
of the distance information between trajectories and greatly
reduces the time complexity while achieving high-quality
clustering results. In the experiments, the clustering time does
not increase with the amount of data because of the MDS data
mapping algorithm. Numerous experiments were carried out
on both a bridge area waterway in the Yangtze River and the
Mississippi River to verify the effectiveness of the proposed
method. The results of comparisons show that the proposed
algorithm performs better than those of spectral clustering
and affinity propagation clustering. The proposed method can
not only detect reverse trajectories but also identify abnormal
trajectories automatically.

To generalize the proposed method in future, we need to
increase the data set sample to realize the big data analysis.
In addition, the parameters in the improved DBSCAN must
be determined according to the distances and differences in
the distances between points. Thus, future relevant studies
should investigate large-scale database research and perform
a more detailed study of the automatic method for parameters
selection based on navigation directions.
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