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ABSTRACT Internet-of-Things (IoT) systems are usually composed of thousands of different components
among hardware devices and different software modules. In order to address the design of these complex
systems, different abstraction layers are usually defined. However, as these layers are isolated, high-
level components always have uncertainty about the nature of the low-level components they relate with.
In particular, as low-level component identities are not known by user applications, and current IoT systems
are vulnerable to the injection of new components and to the modification of the behavior of existing ones
(adequate security solutions at the network level for these problems have not been found yet), the reliability
of the received data is generally compromised. In this context, new mechanisms are required to avoid the
interactions or directly remove the malicious components relying on high-level information. This paper
describes a statistical framework to discover IoT components with malicious behaviors, using a hybrid
reputation model. On the one hand, an implicit reputation definition is employed, based on the observations
made by a certain IoT component and other modules it relies on. On the other hand, an explicit reputation
model considers a scheme of recommendations and negative grades. The proposed solution is evaluated in
a simulation scenario by using the NS3 simulator, in order to perform an experimental validation.

INDEX TERMS Information systems, Internet-of-Things, security, reputation, uncertainty, pervasive sens-
ing, knowledge discovery.

I. INTRODUCTION
Nowadays, Internet-of-Things (IoT) is one of the most inter-
esting and promising technological fields, including from
the very popular Cyber-Physical Systems [1] to the well-
known smart cities [2]. In most of these areas, moreover,
first pilots based on IoT technologies have been designed and
deployed [3]. In general, real IoT deployments (such as, for
example, Smart Santander or the smart buildings of the Korea
Electronic Technology Institute -KETI-) are very complex
and heterogeneous architectures where a large number of very
different components (including processing devices, services,
execution engines, communication middleware, etc.) are con-
nected in an ad hoc way. In order to face andmake feasible the
implementation and management of these complex systems,
different abstraction layers are defined: hardware-level, mid-
dleware, final users, etc. [4]. However, the definition of these
abstraction layers also causes that components in various
levels are isolated from the elements located in other tiers.

For example, high-level applications are not usually enabled
to provide Quality-of-Service in IoT systems, as they do not
have enough information about the infrastructure [5].

Furthermore, as IoT solutions are not often standard nowa-
days, relevant information for the system operation cannot be
adequately transferred among the different layers, because of
incompatibilities among the selected technologies. The most
critical example of this situation is the extreme difficulty
of high-level applications to know the identity of the low-
level component they interact with. In fact, this is particularly
problematic as, nowadays, IoT systems are mostly insecure,
and they are vulnerable to the injection of new components
and to the modification of the behavior of existing ones (the
development of adequate security solutions at the network
level for IoT systems is a pending challenge), so, as a result,
the reliability of the received data is generally compromised.

The complexity of real IoT deployments, and overall the
lack of information about the elements which are also present
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in the system, facilitates the appearance (deliberate or not)
of malicious components; providing uncertain data, services,
information, etc. Malicious components may be part of a
cyber-attack (focused on modifying the system operation)
and then they are deliberately introduced into the system. But,
on the contrary, malicious components may also be the result
of a malfunction or a programming bug and, then, they are
not part of a deliberate strategy to attack the system.

In general, IoT architectures merge thousands of
different hardware devices, software components, final
applications. . ., which are often geographically sparse and
conceptually very distant [6]. In this context, low-level infor-
mation produced by hardware devices (usually using a binary
data format) must be collected, aggregated, and transformed
multiple times before escalating to the upper-level final appli-
cations (which, in a typical case, must receive data in a JSON
object or XML document). However, as we said, no meta-
information describing the underlying hardware (e.g. sensor
accuracy or device identities) or the lower-level components
is supplied to the upper layers.

The problem of detecting malicious components in IoT
systems is analyzed by the authors in a previous work [7],
considering that new tools are necessary to generate this lack-
ing information at the top level from the available informa-
tion about the lower level components. In particular, as final
applications lack of knowledge about the system and possess
limited control over the data infrastructure [8]; extremely
important trust parameters in unsecured systems (as some IoT
deployments) cannot be obtained using traditional solutions
(for example, in standard web services, connections not based
on HTTPS protocol are directly tagged as unsecured). Thus,
parameters describing the QoS associated with provided
services, or the uncertainty level associated with received
data must be estimated using new solutions based only on
information available at high-level.

Based on the contribution of our previous work [7], analyz-
ing the estimation of the uncertainty level associated with the
received data, in this paper we propose a statistical framework
for detecting components with a malicious behavior, to pre-
vent user applications to interact with them. Interactions with
these components will be avoided if possible, or (if neces-
sary) an alarm informing about a relevant malfunction in the
systemwill be triggered. The proposal complements previous
estimations with an enhanced statistical framework and a
more sophisticated reputation model based on both implicit
(based on deductions about the performed observation)
and explicit (based on grades and direct recommendations)
conceptions.

The objective of the proposed contribution is solving the
most relevant current limitations of the state of the art. In par-
ticular, the development of this technology ismotivated by the
need of faster cyberattack detection techniques. Trust-based
solutions have been proved to be adequate to be implemented
in IoT deployments (as they are tolerant to complex rela-
tions among components), but existing calculation algorithms
require a large convergence time, so fast cyberattacks can

cause serious damage to IoT systems. The described contri-
bution in this paper aims to address this challenge.

The rest of the paper is organized as follows: Section II
describes the state of the art on reputation models and trust
provision in IoT systems; Section III includes the detailed
description of the hybrid reputation model and some notions
of how the proposed framework is mathematically formal-
ized; Section IV presents an experimental validation in a rele-
vant simulated scenario (representing a real IoT deployment)
in order to test the performance of the proposed solution;
Section V describes the experimental results and Section VI
concludes the paper.

II. STATE OF THE ART
Various Internet-of-Things reputation models have been
reported in the last years [9]. Most of them are related to
the emerging concept of ‘‘social Internet of Things’’, which
refers to the idea that common objects may interact with
other daily living things and create a social network as people
do [10]. Furthermore, very commonly, ‘‘reputation calcula-
tion’’ is only an intermediate step in the obtaining process of
trust models [11] (which are employed to infer the presence
of malicious -untrustworthy- components). In comparison to
the presented proposal in this paper, most works on social
IoT do not offer a practical algorithm to obtain reputation,
they only introduce the concept. On the other hand, although
trust models are valid solutions to detect malicious compo-
nents, they are usually more complex and heavier than repu-
tation models, as the one proposed in this paper. Any case,
from traditional security solutions, to current reputation-
based solutions, all security proposals try to achieve the same
information security objectives: confidentiality, integrity,
availability, etc.

A. TRUST MANAGEMENT AND CALCULATION
Works about security and intrusion detection using reputation
and trust models are divided into two groups. On the one
hand, someworks are focused on trust evaluation. In this case,
researchers try to determine the network and physical param-
eters influencing trust (and/or reputation) in order to calculate
all these parameters using direct observations or indirect
measures (made by components supporting IoT modules)
and some data analysis expressions [12]. Other works related
to this topic define uncertainty taxonomies [13], uncertainty
models [14] and processing algorithms [15]. In general,
to detect a malicious component, a certain trust threshold
is defined, and every component presenting a trust level
below this limit is considered untrustworthy [11]. Some
works employ network parameters such as the packet loss
rate in order to perform the calculations [16], but others select
definitions based on the social network theory [17]. Besides
providing direct and indirect observations, a first idea of
‘‘explicit recommendations’’ is also included.

The proposed solution in this paper is based on previous
definitions and understanding presented in the works cited
above. However, it solves some existing problems, such as the
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fast detection of burst, ephemeral or very fast attacks (which
are hard to detect using the previous solutions, based on very
heavy -and slow- algorithms) or the detection of malicious
components which do not affect the network performance
(specially compared to previous works based on network
theory).

Some proposals considering reputation as fuzzy informa-
tion have been also reported. In particular, in these works,
both types of trust (and reputation) are defined: local and
global [11]. This idea is also present in other previous
works [7]. A special type of solution belonging to this first
group consists of low-level reputation algorithms, imple-
mented into hardware nodes and sensors [18].

These solutions are usually very powerful, as very different
malicious behaviors may be detected, and well-founded deci-
sions are taken. However, they require a long time to resolve
if a certain component is malicious or not (as many obser-
vations are needed), and aggressive attacks or the protection
of critical infrastructures are scenarios where these kinds of
proposals fail. This work provides a hybrid model for reputa-
tion calculation (based on explicit and implicit reputation) to
address these problems.

Among all the previously cited works, papers of
Bao et al. [12] and Bao and and Chen [16], [19] are, nowa-
days, a reference for researchers in digital trust (especially
in trust for IoT systems). In these works, trust is obtained
through a reputation model where basic network parameters
(such as the packet loss rate) are employed. Algebraic math-
ematical expressions (based on exponential functions) are
defined to enable a reputation evolution according to social
rules, whose inputs are the selected network parameters.
Because of their relevance, papers of Bao et al. are the most
adequate precedent to compare and evaluate the advances and
contributions to the state of the art.

B. RECOMMENDATION SYSTEMS
As we said, in the context of reputation and IoT systems
(focused on malicious behaviors detection) a second type of
worksmay be found. Theseworks propose a recommendation
framework (similar to which are included in social platforms
as eBay or AirBnB [20]), where IoT components may pub-
lish their opinion about the behavior of other modules [21].
Important facts as the reduction in trust over the distance of
the information source in the social graph are studied and
evaluated in this type of solutions [22].

In service-oriented architectures, works on service reputa-
tion are also found [23]. In particular, models based on user’s
trust evaluation in a service and service classifications [24];
as well as models considering authentication history and
penalty [25] have been reported.

These solutions are much faster, so malicious behaviors are
immediately detected and removed. Nevertheless, the rate of
false positive detections goes up (as the amount of required
information to determine a malicious behavior is lower) and,
also, the critical number of malicious components necessary
to attack the system and break the reputation algorithm is

lower [26]. In this work, a hybrid model is specifically pro-
posed to address these problems, by mixing slow but deep
evaluation of reputation (based on implicit information) with
a lighter calculation method based on recommendations.

In order to equilibrate both visions, in this paper the authors
propose a hybrid solution, where an implicit definition of
reputation based on direct and indirect observations is mixed
with an explicit interpretation calculated from direct rec-
ommendations (or bad grades, depending on the case, see
Section III).

Both definitions are integrated in a common expression,
which tries to equilibrate the negative effects of each view
with the benefits of the other.

III. A HYBRID REPUTATION MODEL
In IoT systems, trust must be more than some mechanisms
that reduce IoT component uncertainty as they interact with
other parts of the system, although such mechanisms are
important in helping components to choose an adequate
remote module to interact with [26]. Besides, in IoT, in order
to face the most recent challenges related to cyber security,
such mechanisms must be able to define trust and reputation
in a dynamic and collaborative way, so malicious components
could be detected in the most efficient and fast manner.

Therefore, in the first part of this work [7] both concepts
were defined: local and global reputation. In local reputation,
only observations made by the IoT component under study
are considered. In global reputation, an average of all local
reputations calculated in the system is obtained.

Figure 1 shows the basic scenario. In this scenario, every
IoT component has a ‘‘trust circle’’ made of the IoT modules
it trusts unconditionally (the reputation of these nodes is not
evaluated as the information provided by them is always
considered trustworthy -for example, because they belong
to the same owner or because they implement additional
security policies-). The trust circle dynamic calculation is
not described in this work, so a configuration design is con-
sidered. It must be noted that these components could also
be the objective of a cyber-attack and, eventually, become
malicious (a critical situation modifying the entire system
operation). Detecting this situation is a relevant challenge,

FIGURE 1. Basic scenario for reputation calculation.
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so future works should investigate an adaptation of the pro-
posed solution based only in direct observations (i.e. only
the implicit reputation is considered) to suppress the trust
circle, evaluate its members and detect and remove possible
malicious nodes.

As can be seen, the component under study (in black) may
directly observe some external components it does not rely on
(in orange). However, information about implicit reputation
(lines in blue) may be also obtained through an indirect proce-
dure. In this case, nodes in the trust circle provide information
to the IoT module under study based on their own direct
observations. Finally, components in the trust circle may
share recommendations about the external modules, which
are employed to obtain the explicit reputation of the external
IoT components.

In this context we understand direct or explicit recommen-
dations as messages where IoT components clearly describe
their knowledge about the behavior of other IoT modules
(no proofs are provided and no knowledge discovering algo-
rithm is needed; it is an explicit description). For example, in
these messages, modules may indicate whether components
are trustworthy or not; or they can indicate a high score
of node trustworthiness. Messages describing bad behav-
iors are negative recommendations, and messages describing
good behaviors are positive recommendations. Contrary to
this notion, implicit reputation is based on the information
inferred from regular data or control messages, which do
not contain in their payload any description about reputa-
tion or system behavior. In that way, implicit reputation is
obtained from implicit information about the IoT modules’
behavior included in every message they generate, process,
transmit, etc.

It is important to note that components in the ‘‘trust circle’’
are not the objective of this proposal. These components
are necessary to generate trustworthy recommendations and
to know about modules not directly connected to the node
under study (black node in Figure 1). However, this ‘‘trust
circle’’, in general, does not include all components required
to allow a regular system operation (it includes only some
selected modules, very special, secured, trustworthy, etc.),
so a mechanism to know about other external nodes (white
nodes in Figure 1) is required.

In this context, we define the reputation R6 of an external
IoT component 6 as the geometric mean of the implicit
reputation Ri

6 and the explicit reputation Re
6 (1).

R6 =

√
Ri
6 · R

e
6 (1)

Implicit reputation is obtained by means of a statisti-
cal knowledge extraction process, from regular interactions
among components. On the other hand, explicit reputation is
obtained from explicit recommendations published by nodes
in the trust circle.

The use of the geometric mean (instead of, for example,
the arithmetic mean) allows the global reputation to follow
the evolution of the reputation value (implicit or explicit)

that detects a change in the system situation in a faster,
stronger and more stable way. In that way, the global repu-
tation presents the same good behavior in situations where
explicit reputation better detects malicious components, as in
situations where implicit reputation offers better results.

Although the proposed calculation methods for both types
of reputation are slightly different from the ones described in
other works (to allow a faster and more scalable solution),
the presented understanding of reputation is totally com-
patible with other previous and reference works. Previous
papers consider reputation in IoT systems as ‘‘a measure
derived from direct or indirect knowledge or experiences
on earlier interactions among entities [9]’’. Various rele-
vant works calculate node reputation using information from
interactions among components (implicit reputation, direct
knowledge) [10], recommendations from a set of nodes the
component trusts (explicit reputation, indirect knowledge) [9]
or combinations of these information sources (the global
reputation) [19].

In order to determine if an external component is mali-
cious, it must be evaluated if its reputation is lower than the
trust threshold µ3 (different thresholds may be defined for
various components, considering, for example, the compo-
nent class).

Next sections describe the calculation procedure of both
considered types of reputation.

Any case, the proposed detection procedure (focused on
eventually triggering an isolation process) is a new tool to
reach some protection goals. In fact, although the isolation
process or the actions to be taken when a malicious compo-
nent is detected are not discussed in this paper, the detection
procedure should be always planned considering these
objectives.

A. EXPLICIT REPUTATION CALCULATION
In this work we suppose each IoT component is provided with
a recommendation algorithm, being able to publish grades
and notes regarding the behavior of the external nodes. The
employed procedure to calculate and decide about the rec-
ommendation type which is published at each moment is
not analyzed in this work. However, some useful proposals
may be found in the literature [27], [28]. In respect to the
sharing process, a Publication/Subscription network [29], for
example, could be deployed to publicly send information to
the trust circle.

Using the described infrastructure, an IoT module
(represented in Figure 1 as a black node) receives direct
recommendations from every module in its trust circle (grey
nodes in Figure 1). Recommendations related to the same
external IoT module 6 (orange nodes in Figure 1) are
employed (by the central component, represented in Figure 1
as a black node) to infer the explicit reputation Re

6 of the
external module 6 under study. The evaluation algorithm is
graphically represented on Figure 2.

The proposed algorithm has three steps. First, recom-
mendations are grouped depending on the components they
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FIGURE 2. Graphic representation of the basic explicit reputation
calculation algorithm.

describe. Besides, recommendations related to the same IoT
module are divided into positive and negative recommen-
dations. Before considering received recommendations as
relevant information to modify the explicit reputation of a
node, these messages must be filtered. As IoT systems can
fluctuate, a certain amount of positive and negative recom-
mendations per time unit are tolerated (i.e. they are received,
but the information is not relevant). Only recommendations
(positive and/or negative) that surpass these rates are con-
sidered to obtain a new value for explicit reputation. This
new value is obtained by a decision-making module which
follows a collection of predefined rules to update reputation
depending on the received flows of positive and negative
recommendations.

As can be seen, in this algorithm, we are adapting the con-
cept of ‘‘token bucket’’ [30] defined in the traffic engineering
field. Basically, this model (contrary to other models such as
the leaky bucket) does not force the packet losses appearance
and accepts traffic bursts. However, it establishes certain
limits to the number of received recommendations, consid-
ering them not relevant in a specific time slot. These prop-
erties help us to ensure that decision is based on permanent
(or, at least, perdurable) behaviors, while fast changes may be
also addressed if they are strong enough (accidental events,
as we see, are not taken into account).

Thus, the algorithm considers two different token buck-
ets: the bucket of negative tokens and the one of positive
tokens. Negative tokens are generated at a rate rneg and the
bucket has a maximum capacity of Nneg negative tokens.
In a similar way, positive tokens are generated at a rate rpos
and the bucket has a maximum capacity of Npos positive
tokens. Each time a recommendation related to the same
IoT component is received; it is classified into two different
groups: positive or negative recommendations. Then, the pos-
itive and negative recommendation flows are conformed.
To be conformed, each recommendation in a flow consumes

a token from the corresponding bucket and gets validated
(filtered). If no tokens are available, the recommendation
is not validated. In the token bucket paradigm, each time a
message is received it tries to take a token from the bucket.
A recommendation that obtains a token from the bucket is
said to be validated (filtered). As tokens are unconditionally
generated at the corresponding rate (until the bucket is totally
filled), short bursts of positive or negative recommendations
are tolerated (contrary to leaky bucket filters). Once the
bucket is empty (the maximum acceptable burst duration is
overpassed), only recommendations are validated at the token
generation rate. Any recommendation above this limit is not
validated.

Validated and non-validated recommendations are then
sent to a decision-making module. In this module four dif-
ferent actions may be performed:
• If only validated recommendations are received by the
decision-making module the explicit reputation is not
modified.

• If only non-validated negative recommendations are
received by the decision-making module, explicit rep-
utation is degraded.

• If only non-validated positive recommendations are
received by the decision-making module, explicit rep-
utation is upgraded.

• Finally, if both, non-validated positive and non-validated
negative recommendations are received by the decision-
making module, an ambiguous situation is detected.
Usually, this situation is due to different IoT components
publishing opposite recommendations about a same IoT
module. In this case, the decision-making module may
request additional IoT components (belonging to its trust
circle) for new recommendations and follow the major-
ity criterion (explicit reputation is upgraded if most
recommendations are positive and vice versa). If the
ambiguous situation remains, explicit reputation is not
modified.

The entire algorithm is showed as flowchart in Figure 3.
Then, the explicit reputation may take three different

values (2). In a standard case, where no recommendations
have been received (or all of them have been validated)
explicit reputation is considered equal to implicit reputation.
If positive non-validated recommendations are received rep-
utation is set to 1. If negative non-validated recommendations
are received reputation is set to 0.

Re
6 ∈

{
0,Ri

6, 1
}

(2)

With this design, fluctuations due to punctual problems are
removed, and final reputation is not affected. Furthermore,
a certain rate of negative (or positive) recommendations is
accepted as typically IoT solutions are very unstable systems,
many times based on opportunistic communications (so a
certain fault-tolerance must be considered in those systems).

The use of token buckets also allows considering the pre-
vious reputation for calculation of current reputation. In fact,
explicit reputation model is based in the actualization of the
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FIGURE 3. Detailed flowchart of the basic explicit reputation calculation algorithm.

current reputation to obtain its future value. This approach
could enable the use of predictive systems to select, employ-
ing past information, the most trustworthy communication
channels among sensors.

Only one scenario must be described with more detail: if
both, a non-validated positive and a non-validated negative
recommendation are received. In practical scenarios, it is
very strange to receive at the same instant two notifications;
however, all messages received during a certain time slot
are describing the same situation. Therefore, each time a
recommendation is received, the decision-making module
(before updating the value of the explicit reputation) triggers
a timer Tslot . Until the timer expires, all received recom-
mendations are considered together. Once the timer expires,
the decision-making process starts. If a conflict appears,
then, a consultation procedure is triggered. The IoT node
under study considers the received recommendation, and
asks to the rest of components in its trust circle to send an
explicit recommendation about the external module being
analyzed. If most components (including those which gener-
ated the conflict) send positive recommendations, reputation
is upgraded. On the contrary, if most components send nega-
tive recommendations, reputation is degraded. If the conflict
gets unresolved (because a similar number of positive and
negative recommendations are received, or because compo-
nents send neutral recommendations) no action is performed.

B. IMPLICIT REPUTATION CALCULATION
As implicit reputation computation is a complex procedure,
we are explaining the proposed method using a particular
scenario. In certain scenarios there are two IoT components
named as 3 and 6. 3 (black node in Figure 1) is calculating
the reputation of 6 using implicit information in the transac-
tions between these two modules.

The implicit reputation computation was briefly described
in our previous work [7], where concepts such as global and
local reputation were presented. In fact, the global implicit
reputation Ri

6 of a given IoT component 6, is defined as the
global perception of the component’s behavior. Particularly,
it is measured if transactions including this component gener-
ally present positive outcomes. This vision, however, is very
difficult to implement in this way, as several actors may
be involved. Therefore, to facilitate this task, the 3−local
implicit reputation of a IoT component was defined. In this
context, the3-local implicit reputation of an IoT component
6, Ri

6 |3, is the local perception of the behavior of the
component6 in a given system’s component3. Particularly,
it is measured if transactions including both components
generally present positive outcomes. With this definition, it is
immediate to define the relation betweenRi

6 andRi
6 |3 as (3),

where C is the set of all components in the system and λ3 the
relative weight of Ri

6 |3.

Ri
6 =

∑
3∈C

λ3 · R
i
6 |3 (3)

As said in Section II, the social Internet of Things is based
on the ability of technology-powered objects to establish
social networks as people do. In fact, in relation to human
social networks, reputation is a very popular concept. Several
works on the factors that allow a person [31] or a com-
pany [32] to estimate their reputation have been reported.
Taking into account these previous works, three main param-
eters may be considered as the main factors that determine
the reputation of an entity:
• Nobleness (N): It refers to the perception of the
component as an honest entity, which provides true
information.

• Solidarity (S): Sometimes it is also named as ‘‘social
responsibility’’. It refers to the perception of the
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component as an entity committed to the objective of
the system (being willing to answer the request of other
components, provide resources if necessary, etc.).

• Relevance (Re): Important components in the sys-
tem have better reputation than entities implementing
very common functionalities. It refers to the specific
weight or importance of a certain component in the
system. In general, in this work, a component is more
important as its functionalities are less redundant in the
system. A component is essential if no other component
has the same capabilities. This definition is coherent
with other previous definitions [16].

Some of the previously cited parameters have been defined
as key elements in reputation calculation in some existing
works. For example, the provided definition for nobleness is
consistent with the idea of ‘‘honesty’’, present in many works
about security and IoT systems. Furthermore, the concept
of ‘‘relevance’’ is included to preserve system availability
anytime (as important or essential components can be rarely
considered malicious and isolated from other components).

Then, considering the results extracted from that previous
analysis, the 3−local implicit reputation may be calculated
as indicated below (4). In this expression, α, β and γ are
dimensionless scalar parameters (or weights) employed to
control the relative importance of the three components of
implicit reputation.

Ri
6 |3 =

[
α β γ

]
·

 N

S

Re

 (4)

In the simplest IoT systems and scenarios each low-level
entity (such as sensors) communicates in a unidirectional way
(e.g. sensors do not receive messages or information, they
generate it) with a final application (see Figure 4(a)). In this
case, relevance and solidarity may be considered null [7],
as components only interact in pairs (no supportive behaviors
are allowed, and relevance has no sense -all the compo-
nents are essential-). However, in this work, we are con-
sidering a more complex scenario, where several low-level
IoT components communicate (e.g. sensors) with the same
final application in a bidirectional way (see Figure 4(b)).
In this scenario, the calculation of nobleness becomes more
complicated (as there are several data flows) and solidarity

FIGURE 4. Scenarios for the implicit reputation calculation.

and relevance are not null. Below, a description about the
calculation process of all these parameters is provided.

The calculation procedure for ‘‘nobleness’’ is the most
complex one. It has been described in a detailed way in
our previous work [7]. In this context, the nobleness N of
an IoT component 6, according to a second component 3,
is defined as the expectancy of 3 to obtain correct informa-
tion from6. This information may be produced data or some
other meta-information (e.g. the offered QoS for a certain
service). Previous experiences affect nobleness calculation.
These experiences are weighted to limit the effect of time-
distant events. Moreover, as said, it is difficult to establish
the nobleness of a component based on a few interactions.
Thus, a threshold Nth must be defined in order to accumulate
a significant number of measurements to start estimating the
nobleness value. Equation (5) represents the mathematical
model for nobleness calculation; where n is the number of
accumulated nobleness measurements and h is the weighted
ratio of the number of times the component behaved nobly
(i.e. it sent correct information).

For this algorithm, operation time is divided into time
slots. For each time slot, information about the behavior
of component 6 is collected. In order to calculate reputa-
tion at the current time slot, not only information collected
during the current slot has to be considered, but also all
previous observations. However, as time passes, previous
observations are less representative of the current reputation.
Therefore, the total percentage of successful transactions
cannot be obtained by adding the percentage obtained for
each time slot, but old information must be firstly weighted
to reduce its influence. h represents this ratio of successful
(i.e. trustworthy) transactions, where old information has
been weighted to reduce its influence.

N =

{
1; n < Nth
√
2 h√

1+h2
; n > Nth

(5)

h =
n∑
j=0

u[−j] · r j+1 (6)

As can be seen, nobleness follows an algebraic function
belonging to the sigmoid class. Thus, N ∈ [0, 1]∀h ∈ [0, 1].
Moreover, the model includes the presumption of nobleness,
as every component is sincere (N = 1) until enough mea-
surements are collected. To calculate the weighted ratio h,
we consider a geometric sum (6); where the common ratio r
can be freely fixed (in order to limit the influence of the past
behaviors, as |r| → 0). As explained before, h represents a
ratio where old information has been weighted to reduce its
influence. As information gets older, the weight coefficient
must be smaller (until reaching zero). The array of employed
coefficients may be defined one by one by the system admin-
istrator (considering the previous indications), but in general
it is possible to obtain a much better performance of the
proposed algorithm if coefficients are defined by following
a pattern. In this case an exponential pattern is proposed.
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A common radio r (smaller than one) must be selected.
Information obtained during each time slot is weighted using
a different power of this common ratio. In fact, as the power
index goes up, the coefficient goes down, weighting old
information by smaller coefficients.

The proposed weighting pattern is selected to be coherent
with previous studies about information propagation and the
value and relevance of information as time passes. Informa-
tion trustworthiness is, in general, proved to decrease expo-
nentially [38] (as represented in geometric series); although
other weighted observation methods (quadratic, for example)
have been reported for specific scenarios, which are not
applicable in the described technology.

The sequence u[·] represents the natural ratio of the num-
ber of times the component behaved honestly in every time
slot. u[j] is defined (7) as the quotient between the times the
component provided correct information in the j-th time slot,
represented by pj , and the total number of transactions in that
time slot, named as t j .

u [j] =
pj
tj

(7)

In order to calculate whether an IoT component has pro-
vided correct information in a certain transaction (interac-
tion or data provision to the component calculating the rep-
utation value -black node in Figure 1-), we are evaluating
the uncertainty level θ associated with the provided informa-
tion. If this level remains below a certain threshold µh the
component is considered to be honest (noble). In some cases,
the uncertainty perceived by the component performing the
calculation is directly caused by the analyzed low-level com-
ponent (e.g. uncertainties can be caused by network prob-
lems). However, from the final applications’ point of view,
the provided information is uncertain, and, in consequence,
the low-level component is considered as not noble.

Then, to evaluate the uncertainty level θ we propose the
following statistical model. Figure 5 shows the most basic
representation of the scenario under study (although the same
statistical framework may be employed in more complicated
scenarios). A final application received from an information
source (IoT component) a certain information x. In IoT sys-
tems, the uncertainty level associated with x is the addition of
the following two variables: TIT and TPHY .

FIGURE 5. Basic calculation scenario for the uncertainty level.

First, the uncertainties TIT about the equivalence between
the received information x and the information generated
by the information source x̄. In this first case, the relation

between both data may be described as a surjective stochastic
application T [·], as every information x must be the image
of a certain information x̄. These uncertainties are caused
by the IoT infrastructure, so they are IT (information tech-
nologies) uncertainties. And, second, the uncertainties TPHY
about the equivalence between the information generated by
the information source x̄ and the real information existing
in the physical world x. These uncertainties are caused by
physical limitations in the information capture. Therefore,
they are physical uncertainties.

Thus, associated with a received information x there exists
an enumerable set of uncertainty sourcesT = {TPHY ,TIT } =
{ik , k = 1, . . . ,K whose cardinality K may reach the car-
dinality of the natural numbers ℵ0. This uncertainty sources
transform the process of acquiring a certain information x in
a random experiment ε, which takes values from the discrete
sample space �.

Each uncertainty source is described as a bi-varied stochas-
tic process (8), being 9 the sample space of all possible
values (real, considered in protocols, applications, etc.) for
the uncertain event and ψ an element of this sample space.
In these statistical expressions, m represents the time slot
(or time instant),� represents the sample space of all possible
received values (not only real values considered in applica-
tions and protocols, but also erroneous values, incoherent
messages, etc.) and ω is an element of this sample space.

ik � Xk [m;ω,ψ)/ω ∈ �. ψ ∈ 9 (8)

The stochastic processes represented before (8) are discrete
in time, as final applications are cyber components (and,
therefore, digital elements), but the sample space 9 may
be continuous or discrete, depending on the nature of the
uncertainty source. For example, the measurement error has
a continuous nature; however, the possibility of suffering
a cyber-attack is described by a discrete variable. Further-
more, in general, uncertainties’ values change slowly, so these
stochastic processes may be considered stationary during a
time slot. As they are unknown effects, stochastic processes
are expressed in a parametric way, depending, each one,
on a certain parameter ϑk . Three basic probability density
functions or probability distributions may be used to describe
uncertainty sources: uniform distributions, triangular distri-
butions and Gaussian distributions (see Figure 6).

FIGURE 6. Basic probability functions.

Uniform distributions are employed to describe unknown
effects limited to the range [−ϑk , ϑk ]. In data acquisition
processes this is the most general distribution, as the sam-
ple space is bounded. Triangular distributions are employed
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when, besides the variation range, the error probability goes
down as its value goes up. Finally, if more information is
available (for example, if noise is considered) a Gaussian
distribution with typical deviation ϑk can be employed.
Considering F the set of parts of �, and a function

P (A)AεF which fulfills the three Kolmogorov’s probability
axioms, the experiment ε is completely characterized with
the event algebra E = 〈�,F,P(·)〉, which (additionally) is a
σ−algebra. In this context, it is possible to create a partition
5 = {π1, . . . , πp of �, and select a main value δi ∈ πi
representing every cluster. Partitions contain the same ele-
ments as�, but grouped in several sets (homogenous or not).
These partitions, in this proposal, are employed to reduce the
number of possible received values, as each partition or set
is now considered as a unique element, so it is important to
consider them. Then, the process to estimate the uncertainty
level θ [j] in the j-th time slot is as follows.

When certain information x is received, it is included
in the observations vector vj of the current time slot (9).
Considering Figure 4, x represents the real information (the
real value of temperature, for example) and x̄ represents the
information acquired or generated by the hardware platform
(the temperature value obtained by sensors, for example).
However, in this case, we are obtaining reputation from
the information finally obtained by high-level applications,
called observations hereinafter, (representing by x), which is
obtained through processing, composing, etc., the informa-
tion x̄ generated by the hardware platform.

vj =
(
x1, . . . , xm

)
(9)

As these observations are independent, it is possible to
calculate the value of the ϑk parameter for each uncertainty
source using the maximum likelihood estimation (MLE) [33]
algorithm and the vector vj. This method is the most adequate
as prior probability distributions are unknown. Then, the par-
tition πi to which belongs the received information (i.e. the
real message which most probably it represents) is located.
First, for each uncertainty source i and time slot j, the proba-
bility ρji of the information belonging to the partitionπi in that
time slot is calculated (10). In this expression, Xk , x and ψ
maintain the same meaning as before. This expression is a
direct application of the probability calculation from random
variables.

ρ
j
i =

∫
πi

Xk [j; x, ψ]dψ or

ρ
j
i =

∑
ψ∈πi

Xk [j; x, ψ] (10)

Later, in that way, as uncertainty sources are also indepen-
dent, the global probability (considering all possible uncer-
tainty sources) ρj of x to belong to πi during j time slot is
calculated as a probability multiplication (11).

ρj =

K∏
k=1

ρ
j
k (11)

Finally, the information δi (the representative value of the
partition or cluster πi, as defined before) is received with an
uncertainty level θ [j] calculated as indicated in (12).

θ [j] = 1− ρj (12)

In this transaction, the information source is considered
to be honest if it meets the condition explained above
(θ [j] > µh).
In the simplest scenario, the obtained value for nobleness is

directly associatedwith an external IoT component. However,
if various external components are providing information
at the same time (the component under study receives the
aggregation of all these data), this value must be ‘‘divided’’
into all the involved components. To do that, we are applying
a ponderation factor based on the previous estimation of the
nobleness for each node (13).

N6 [n] = Nmeasure [n]

·

(
N6 [n− 1]∑
6 N6 [n− 1]

+

(
1−

N6 [n− 1]∑
6 N6 [n− 1]

)
· δ [Nmeasure [t]− 1]

)
(13)

Basically, this expression calculates the value of the noble-
ness of a certain IoT component N6 [n] from the noble-
ness obtained from the aggregated observations Nmeasure [n].
Then, this value is weighted by a ponderation factor which is
equal to the unit if Nmeasure [n] = 1 (all remote components
are honest if the aggregated perception indicates that), but
which depends on the past value of the nobleness for each
component if Nmeasure [n] 6= 1. In this context δ[·] represents
the Kronecker’s delta function.

Once nobleness is obtained, the solidarity of the external
IoT components must be evaluated.

Solidarity is obtained by employing a similar mathemati-
cal framework to which described in the case of nobleness,
but implies a much simpler statistical analysis (as related
information is directly obtained, not having to be inferred by
means of estimation procedures). In particular, solidarity also
follows an algebraic function (14) belonging to the sigmoid
class (evolving from 0 -minimum value- to 1 -maximum
value-).

S =

{
1; n < Nth
√
2 s√

1+s2
; n > Nth

(14)

s =
n∑
j=0

w[−j] · k j+1 (15)

In order to obtain the solidarity value, a weighted ratio s
representing the number of times the component behaved in
solidarity is also defined (15). This ratio employs a geometric
series to aggregate the past results related to solidarity. These
results are represented by w[j]. This parameter is understood
as the natural ratio of the number of times the component
behaved in solidarity in every time slot. Particularly, w[j] is
defined (16) as the quotient between the times the component
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answered in a positive manner to the requests of the IoT node
under study (and it trust circle) in the j-th time slot aj and the
total number of requests performed in that time slot qj.

w [j] =
aj
qj

(16)

If information from various remote components is aggre-
gated in a same high-level datum, then, the obtained evalua-
tion of the solidarity parameter must be divided into all the
involved modules as described before (13).

Finally, obtaining the relevance of an IoT module in a
system is the simplest process. The relevance of an IoT
module in a system for a certain IoT component under study
depends on two variables: the presence of other components
with the same functionalities in the system e; and nl, how
the component is dependent on these capabilities. As both
conditions must be present at the same time for a component
to be relevant, relevance is obtained as the geometric mean of
both amounts (17).

Re =
√
e · nl (17)

The calculation of e parameter is very simple, as it is
defined as a redundancy ratio (18). Where C6 is the set of
components with the same capabilities than 6; and C is the
total set.

e =
card {C6}
card {C}

(18)

On the other hand, nl parameter is obtained as honesty and
solidarity, by means of a natural quotient and considering the
number of times the IoT component under study employs the
capabilities of the remote module and the total number of
performed transactions. The obtained result is weighted using
a geometric series and is included as independent variable in
a sigmoid function.

Relevance, usually, changes slowly, as important changes
in the system should be developed: new components or new
applications, disconnecting some parts of the system, etc.
On the other hand, nobleness and solidarity may change in
a very dynamic way, as more information is received and
collected. Ratios in the geometric series control the effect
of the past observations and, then, the convergence speed
(see Section V).

C. GLOBAL OVERVIEW
Once the calculation of both types of reputation is described,
in this section we are explaining the global meaning of the
entire model.

First, it must be noted that R6 ∈ [0, 1], as every parameter
in the calculation process, is also evaluated in the interval
[0, 1]. In practice, it allows a very fast data interpretation and
aggregation, as well as the integration of our proposal with
other reputation management solutions which, usually, also
define reputation in the interval [0, 1].
The proposed hybrid model works in this way. As time

passes, IoT components collect information by means of

direct and indirect observations, and implicit reputation is
evaluated. However, as a certain amount of information is
required and past events are also considered in this type of
reputation, fast changes and aggressive attacks are perceived
too late. To address this problem, IoT components may also
publish recommendations about external IoT components.
If the rate of received negative recommendations exceeds a
certain limit, the explicit recommendation is degraded. In the
worst case, explicit reputation is equal to zero, and (as reputa-
tion is defined as the geometric mean of both models -implicit
and explicit), the entire reputation gets canceled.

IV. EXPERIMENTAL VALIDATION: A FIRST CASE
STUDY USING SIMULATION TOOLS
An experimental validation based on a simulation scenario
was planned to evaluate the proposed solution. The proposed
validation includes two parts. In the first part, a security anal-
ysis is performed, using various attack scenarios to demon-
strate the proposed technology’s resilience to cyberattacks.
In the second part, the performance of the proposed technique
is evaluated (using simulation tools), and it is compared to
previous similar proposals.

A. SECURITY ANALYSIS
Five different attack scenarios and classic security issues in
IoT deployments [40] are discussed in relation to the pro-
posed technology. In particular the following study cases are
considered:
• Unauthorized device insertion: In this scenario an unau-
thorized device gets access to the systems at physical
and network level, and starts injecting false sensing
information. Although this device may be provided with
valid credential and permissions, the proposed security
solution must identify the new information as erroneous
and isolate the new devices for being malicious.

• Data integrity: In this scenario, data integrity is com-
prised. Causes may be varied: from sensitization nodes
that have been infected and their behavior modified,
to an increase in the electromagnetic interferences or the
packet loss rate. Basically, in this case, authorized
devices are generating and providing information whose
correctness is not guaranteed.

• Replay attack: This attack consists of a malicious device
that impersonates an authorized node. Original data
generated by the authorized node are intercepted and
modified before being sent another time by themalicious
device.

• Unauthorized data collection: This attack is the basic
privacy violation problem. An unauthorized device gets
access to the systems at physical and network level, but
instead of injecting false information or affecting the
data generated by other components, only collects infor-
mation being transmitted in the system. The objective is
to access to the users’ private information.

• Forward and backward security: As the proposed solu-
tion is based on previous experiences to determine the
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FIGURE 7. Simulation scenario.

reputation and trustworthiness of IoT components in
the system, malicious components may try to attack the
system by learning about its behavior. In this scenario,
an attacker collects past information about the system,
to use it as instrument to inject false information in
the system but maintaining a good reputation of the
malicious node.

B. PERFORMACE EVALUATION
Using advanced simulation techniques and the NS3 network
simulator, a real IoT system was implemented including the
proposed solutions. NS3 is a network simulator executing
scenarios and network behavior by some logic programmed
in C++.
The proposed simulation scenario is an adaptation of a real

European deployment (see Figure 7). The selected deploy-
ment belongs to the FIWARE initiative [36]. The objective
of the proposed system is to provide future IoT users with
an environment to deploy their applications, guarantying the
access to IoT platforms. Basically, it consists of a set of
hardware devices whose data and control messages are man-
aged together using a device management middleware. Then,
using specific brokers and a semantic layer, it is possible (in
the highest layer) to host user applications (those which try
to obtain and calculate the reputation of hardware devices).
Although particular details about the proposed architecture
(Figure 7) are not significant, it is important to remark the idea
that information is generated by hardware components, then
it is processed by several components and modules (a device
management middleware, different brokers, a semantic layer,
etc.) and finally it is received by applications; exactly as
described in the motivation scenario.

The proposed architecture contains four different informa-
tion sources. These sources are sensor networks implemented

using various radio access technologies and presenting dif-
ferent data access licenses. In particular, it is considered: two
proprietary networks (based on LoRA and SIGFOX technolo-
gies), a networkmade of public sensors communicating using
any of the existing free technologies (Bluetooth, ZigBee -
although some implementations require paying an annual
fee for usage-), and, finally, an interface to connect existing
legacy systems (traditional industrial solutions) with other
software and high-level components.

Different communication protocols and components are
considered in order to represent a real heterogeneous IoT
deployment. Nevertheless, presented results in Section V are
independent from the employed communication technolo-
gies, as proposed algorithms operate at a very high abstrac-
tion level and independently from the underlying hardware
platform (this is one of the advantages of the proposal,
as very complex infrastructure may be protected using this
technique).

Information sources in the simulation scenario are
geographically sparse, so interferences and delays must be
considered (in this case we are considering the standard con-
figuration offered by the NS3 simulator for these non-ideal
effects).

This proposed basic scenario change during simulations
but at a quite low speed. Components with a good behavior
turn malicious and vice versa. Besides, some components
may get isolated by electromagnetic interferences, packet
losses, etc. The proposed solution, as it is continuously mon-
itoring the systems, must be able to detect these changes after
a certain converge time (required to update the trust estima-
tions of IoT components). Expressions (5) and (6) shows the
actualization rules.

In this simulations scenario, the four low-level sensor net-
works were designed to present one hundred and fifty (150)
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components each. Besides, inside each network, ten (10)
components were forced to behave in a malicious way.
Malicious components were infected in a random way. Any
malicious component could become non-malicious in another
moment, also, in a random way. The percentage of malicious
components in a system at each moment during a simula-
tion was always between 0% and 7%. In order to reach a
malicious behavior, basically, various attacks were performed
(an intruder was supposed to control the component, causing
this component to provide erroneous information) and some
harmful effects were activated: the precision of the instru-
ments was reduced; the electromagnetic interferences were
maximized, and the packet losses were strengthened.

In this context (Wireless Sensor Networks), the erroneous
information is formally defined as information which does
not represent the real current state of the physical world.
In the proposed simulation scenario, the malicious compo-
nents replace results obtained from the implemented physical
model for temperature, humidity, etc., for random values. The
objective of the validation is to prove that sources with this
behavior are correctly identified using the proposed tech-
nology, which considers values generated by other devices,
previous information accepted as correct, etc.

The duration of malicious behaviors was selected in a ran-
domway (during the setup of each simulation). Any case, this
time period was between 0.5% and 100% of the simulation
time. Sensors in these network generated data with a rate 1000
messages per hour.

The causes for a component to become malicious in real
systems are very different: from cyber-attacks to hardware
malfunctions. Any malicious behavior, any case, has a com-
mon characteristic: at the end, the result is the provision of
false or uncertain information to user applications. In that
way, the proposed simulation model for malicious behavior
fulfills this requirement.

Although the performance of the proposed solution in a
real environment may be different from the performance in a
simulated scenario, the described simulation is close enough
to a real deployment, being an acceptable first experimental
validation. In particular, the most important and represen-
tative aspects of IoT systems are included in the proposed
simulation (their heterogeneity and the high density of
devices at their lowest level). These characteristics, in fact,
must be replicated in a very precise way, as they are the
most influencing variables in the proposal’s performance.
Actually, real IoT deployments, such as SmartSantander [36],
present similar architectures, system heterogeneity, device
density and employ (among other important aspects)
equal wireless technologies to the presented simulation
scenario.

Besides, in the proposed simulation scenario, we consider
a final application containing only simple graphic algorithms
calculating reputation values. This application was hosted in
the ecosystem of the proposed scenario (based on FI-WARE
European initiative [34]). Other four final applications (iden-
tical to the first one) were deployed to create the needed

trust circle. Every final application in the simulation scenario
was provided with the proposed hybrid reputation model and
calculation method.

To be able to perform the described simulation, final appli-
cations must run in a different virtual machine from the one
executing the simulation. Virtual machines must be embed-
ded into the simulation scenario. To do that, different TAP
bridges (or ghost nodes) [29] connecting virtual machines
to the NS3 simulator were defined. Virtual machines were
automatically generated and deployed through the Libvirt
interface [37]. For all experiments, all machines implemented
the operating system Linux Ubuntu 16.0.

The proposed simulation scheme employs the par-
avirtualization paradigm which allows a virtual machine
(i.e. a NS3 node) to behave as an independent computer,
providing all the configuration possibilities of a real machine.
NS3 simulator provides support for the first three levels of
this scheme. In that way, NS3 nodes can exchange messages
with the real world and the host computer.

Using this scenario three different experiments were
planned and performed. During the first experiment, the suc-
cess rate on detecting malicious behaviors is evaluated. At the
same time, the convergence speed is measured. During this
experiment, parameters in the reputation model were fixed to
the values indicated in Table 1.

Values in Table 1 have been selected to generate the
results from the experimental validation, comparable to
results obtained by previous proposals [12], [16], [19]. Other
parameters (such as the ones related to the explicit reputation
estimation algorithm) are configured to adapt to the average
behavior of, for example, recommendation systems [39].
In future applications, different values for these parameters
may be selected, according to the characteristics of the
scenario.

In the second experiment, the success rate is evaluated,
depending on the value of two parameters: the ratio in the
geometric series defining the three parameters involved in
implicit reputation calculation; and the token generation rate
in the explicit reputation calculation algorithm.

Finally, during the third experiment, in order to evaluate
the detection process, the proposed solution is compared to
one of the existing proposals in the literature [16].

The proposed experiments are designed to, first, offer gen-
eral results and proofs about the global performance of the
proposed solution (i.e. the proposed contribution achieves its
primary objective: detecting malicious components in IoT
systems). In order to achieve these objectives first and second
experiments are important. The first one evaluates if the
proposed solution may detect malicious components success-
fully, and second one evaluates some quality parameters of its
performance. Once the proposal is demonstrated to be a valid
solution, then, its performance is compared to themost known
and employed reputation models nowadays, in order to pro-
vide evidences that the proposed technique improves current
state of the art. Third experiment is designed to support this
objective.
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TABLE 1. Configuration parameters during the experimental validation.

V. RESULTS
In this section, results for the described experimental valida-
tion in Section IV are presented. The first subsection includes
results for the security analysis, and the second subsection
describes the obtained results for the performance evaluation.

A. SECURITY ANALYSIS
The first case to be studied is the unauthorized device inser-
tion. Although the devices may be provided with valid cre-
dentials, the proposed solution is independent from the device
configuration, permissions, type, etc., so this situation does
not make easier the attack. On the other hand, these devices
can never be essential for the system (as essential compo-
nents will be directly deployed by the system administrator),

so their importance is low. Besides, they are detected as
untrustworthy devices, as they provide false information; and
negative recommendations will grow as the number of autho-
rized devices the malicious component interacts with (attacks
will try to maximize this number to increase the damage to
the system). In conclusion, both implicit and explicit repu-
tation will decrease very fast, and the attack fails as inserted
unauthorized devices would be isolated almost immediately.

With respect to the second scenario, data integrity, the pro-
posed solution is independent from the causes that affect the
correctness of data. In this case, data would be detected as
untrustworthy by the nobleness calculation algorithm during
the implicit reputation estimation. Besides, components com-
municating with the infected node generate negative recom-
mendations and, after the convergence time, the component
gets isolated for being malicious. The same behavior will be
found if integrity is compromised by an increase in the packet
loss rate in the electromagnetic interferences.

The third described attack, formally, is equivalent to the
second one. However, in this case, the proposed technology
behaves in a very intelligent manner. As reputation is cal-
culated both, locally and globally, the replay attack (if only
affecting one communication channel) will be stopped with-
out removing the original and authorized component. In fact,
once a component detects that false information is received
though a communication channel, this one is being pruned.
However, the source device is not isolated if globally the
reputation is above the proposed threshold. In that way,
components which related with the original components, but
not with the malicious elements that impersonates it, may
continue operating as regular.

With respect to the unauthorized data collection attack, all
communications must be encrypted, as the convergence time
required by trust-based and reputation-based techniques (as
the proposed solution) enable attackers to collect a certain
amount of information before stopping the attack. The pro-
posed solution (as we are seeing in the next subsection) is
faster than any previous proposal, but it still requires a certain
convergence time. Components only collecting information
are not solidary with other elements in the system and have
no importance in the deployment. In that way, implicit repu-
tation goes down, and as global reputation is obtained as the
geometric average of explicit and implicit reputation, finally
the component is detected as malicious.

Finally, the forward and backward security is guaranteed,
as past events and information is weighted to reduce their
importance (see expression (6)). In that way, although a
malicious component tries to imitate an acceptable behavior
in such a way it can inject false data but maintain a good
reputation, as past events each time are less important, finally
the reputation of these malicious elements falls below the
security threshold.

In order to prove the resilience of the proposed solution
to cyberattacks, Figure 8 shows the percentage of erroneous
information and transactions in the IoT system at each time
for the five relevant scenarios described above. In this work
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FIGURE 8. Resiliency to cyberattacks of the proposed framework.

we are considering a cyberattack is active if this percentage
is above 2%. The employed configuration is the same as
described in Section IV.B.

B. PERFORMACE EVALUATION
Each one of the described experiments was based on five
simulations representing each one of them two hundred and
forty (240) hours of operation.

Figure 9 shows the results of the first experiment. For the
preparation of these results the concept of ‘‘success rate’’
was defined as the quotient between the number of times the
proposed reputation model detected a real malicious compo-
nent or behavior and the total number of times the algorithm
was executed. As can be seen, the success rate is around 94%.

FIGURE 9. Results of the first experiment.

On the other hand, approximately in 6% of cases, the pro-
posed algorithm fails. A study about the causes of these
fails shows that most of them are due to fast attacks
(i.e. components present a malicious behavior during a very
limit amount of time, so the proposed solution cannot detect
the situation fast enough). An explicit reputationmodel where
a lower number of negative recommendations were admitted
could be a possible solution. In fact, analyzing errors of the
proposed algorithm shows that around 70% of fails are false
negatives (corresponding to situation where too many neg-
ative recommendations were considered not relevant). False
positives (around 30% of failures) usually correspond to situ-
ations where the statistical framework employed to calculate
implicit reputation does not work properly. Particular causes
and possible solutions should be analyzed in future works.

During this experiment, the convergence time has been also
analyzed. Figure 10 shows that explicit reputation presents
a much faster convergence time, as no information must
be collected and accumulated (a reduction around 50% in
the detection time is reached). A global reputation model
based only on recommendations, however, is very vulnerable
to all kinds of attacks [16], so implicit reputation must be
considered in order to obtain a real picture about the system
situation.

FIGURE 10. Study about the convergence time.

In our model, first, all components present a good reputa-
tion which is reduced if a malicious behavior is detected. The
convergence speed would depend on the number of interac-
tions the IoT components do, as well as the message creation
speed (information is collected in few time). In order to
compensate the effects of these variables, explicit reputation
allows all the components in an IoT system to act in the same
way as the component containing more information.

It is important to take into account that reputation,
as defined in this work, is a normalized measure -see expres-
sion (2)-; however, as can be seen in Figure 10, implicit and
explicit reputations are slightly over the unit (only some hun-
dredths) in the first hours. This situation must be understood
as a spurious effect caused by numerical errors in practical
calculations.
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Second experiment evaluates the influence of the two most
critical parameters in our model in the convergence speed.
Figure 10 shows the percentage of successfully performed
detections depending on the ratio employed in the series to
calculate the implicit reputation.

As can be seen, there is an optimum value for the com-
mon r around r = 0, 5. In fact, for very low values of
this parameter, past observations are practically negligible
in comparison to the observations in the current time slot,
and information is not considered in an adequate way. In a
similar way, if past information has a very high influence
(r is too high), new observations are almost not considered
in the calculation process and the implicit reputation is not
updated as desired. Consequently, see Figure 11, equilibrium
between both information sources (past and present observa-
tions) must be reached in order to maximize the benefits of
the proposed solution.

FIGURE 11. Results of the second experiment (study of the ratio in series).

Figure 12 shows the results of the study considering the
token generation rate as independent variable. As can be
seen, the ratio of successfully detected malicious components
strongly depends on the common ratio but weakly depends on
the token generation rate.

FIGURE 12. Results of the second experiment (study of token generation
rate).

As can be seen, there is also an optimum value for the token
generation rate (around 1 token per hour), but the graphic

has a support on the value of 20% for the success rate. This
phenomenon is due to the inclusion of two token buckets,
one with positive tokens, and another one with negative
tokens. Thus, if a decompensation or fluctuation appears in
the system (causing all the components and elements to gen-
erate unprecise data, including recommendations) the explicit
reputation algorithm is not affected. In fact, as two buckets
are defined, their effects tend to cancel each other in this
kind of situations (a conflict resolution procedure is triggered,
as viewed in Section III.A). Finally, Figure 13 shows the
results of the third experiment, where the proposed solu-
tion is compared to an existing proposal [16]. In particular,
the work of Bao et al. is employed as reference, as it is the
most relevant work about trust and reputation in IoT systems
(see Section II).

FIGURE 13. Results of the third experiment.

Both solutions behave in a similar way. However, if, in our
proposal, all nodes are considered to have a good reputation
by default, the considered previous proposal establishes the
reputation threshold as default value. In that way, as previous
proposals are based only on observations, the required time to
detect a malicious behavior is higher. However, as the initial
value is lower, the detection time (time required to obtain a
reputation value for a malicious component below the trust
threshold) is almost equal in both solutions. Nevertheless,
as can be seen, an improvement close to 20% in the detection
time is obtained by employing our solution.

VI. CONCLUSIONS
In this article, a hybrid reputation model based on both an
implicit reputation calculation and an explicit definition of
reputation is presented. Both amounts are considered in a geo-
metric mean. Explicit reputation is obtained from explicit rec-
ommendations made by IoT components trusted by the mod-
ule under study. Recommendations are processed through an
algorithm based on the token bucket paradigm.

On the other hand, direct and indirect observations about
external IoT components are employed to obtain an esti-
mation of the implicit reputation. This second definition
is calculated as the addition of three properties: solidarity,

47486 VOLUME 6, 2018



B. Bordel et al.: Securing IoTs Systems Through Implicit and Explicit Reputation Models

nobleness and relevance. Using a statistical framework, these
three parameters are estimated.

An experimental validation is also provided, evaluating the
performance of the proposed solution. Obtained results show
that the proposed technology is a valid approach to secure
IoT systems, and prove the described algorithms are faster
than similar previous exiting techniques. Results also show
that the proposed solution must be complemented with other
private information protection technologies, as the required
convergence time by trust-based security policies allows the
theft of a certain amount of information, until the components
are identified as malicious. Besides, the proposed validation
scenario only considers a quite permanent IoT deployment.
It is important to consider that very dynamic systems might
generate other results depending on the system change speed
and the convergence time.

Future works should evaluate the performance of the pro-
posed solution in very dynamic systems and collaborative
environments, where devices composing the IoT deployment
usually and randomly vary.
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