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ABSTRACT Machine learning (ML) has shown enormous potential in various domains with the wide
variations of underlying data types. Because of the miscellany in the data sets and the features, ML
classifiers often suffer from challenges, such as feature miss-classification, unfit algorithms, low accuracy,
overfitting, underfitting, extreme bias, and high predictive errors. Through the lens of related study and
latest progress in the field, this paper presents a novel scheme to construct logical table (LT) unit with two
internal sub-modules for algorithm blend and feature engineering. The LT unit works in the deepest layer
of an enhanced ML engine engineering (eMLEE) process. eMLEE consists of several low-level modules
to enhance the ML classifier progression. A unique engineering approach is adopted in eMLEE to blend
various algorithms, enhance the feature engineering, construct a weighted performance metric, and augment
the validation process. The LT is an in-memory logical component, that governs the progress of eMLEE,
regulates the model metrics, improves the parallelism, and keep tracks of each module of eMLEE as the
classifier learns. Optimum fitness of the model with parallel ‘“check, validate, insert, delete, and update”
mechanism in 3-D logical space via structured schemas in the LT is obtained. The LT unit is developed in
Python, C#, and R libraries and tested using miscellaneous data sets. Results are created using GraphPad
Prism, SigmaPlot, Plotly, and MS Excel software. To support the built and implementation of the proposed
scheme, complete mathematical models along with the algorithms, and necessary illustrations are provided
in this paper. To show the practicality of the proposed scheme, several simulation results are presented with
a comprehensive analysis of the outcomes for the metrics of the model that the LT regulates with improved
outcomes.

INDEX TERMS Big data, predictive modeling, data mining, machine learning, algorithm, parallel
processing of machine learning metrics reading, model tuning, algorithm blending, optimum fitting, feature
engineering, overfitting, eMLEFE, logical table.

I. INTRODUCTION

A. BACKGROUND

Machine learning (ML) unveils tremendous potential in the
data science and predictive analytics. ML algorithms partic-
ularly in the supervised learning (SL) zones have advanced
into improved modeling of the underlying data for decision
making [1], predictive analytics [2], personality prediction [3]
etc. Great surveys such as [4]-[6] including domains of
the unstructured data [7] and social networking platforms
have shown incredible importance of ML algorithms’ tun-
ing and improvements [8]. Useful techniques such as algo-
rithm boosting [9], optimization [10], conditional densities,
gradient descent, inference [11], parallel processing [12],

and convex minimization have played progressive roles
to improve the classifier learning of the existing tech-
niques in SL.

The latest progress in the research of data mining and
predictive modeling with the relevance of ML have promoted
great opportunities and challenges for future works. Prior to
developing the work presented in this article, we investigated
the application of ML techniques reported in the literature.
We found high relevance in the areas of healthcare domain
applications to predict hospital admissions [13], [14], practi-
cal applications to deal with lethal diseases such as HIV [15],
and biomedical device applications [16]. Other areas
included security, facial recognition, engineering solutions,
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and general modeling such as antenna design opti-
mization [17], image classification [18], and real-world
experiences such as driver safety [19], and algorithm
optimization [20], [21].

Therefore, considering the progresses outlined above, and
the literature study provided in Section II, we see the
necessity of introducing a parallel processing unit in the ML
underlying models. The diversity in the data and features
have motivated us to improve the latest state of ML models
by building enhanced ML engine engineering (eMLEE) pro-
cess specially to address the challenges such as overfitting,
underfitting, bias, low accuracy, poor generalization, and pre-
dictive errors. While the details of ML engine engineering
(i.e., eMLEE) is beyond the scope of this article, LT con-
structs are presented. LT is a vital component of eMLEE.
As shown in Fig. 1, eMLEE is composed of four modules.
The triangular shape emphasizes on the idea of 3D concept
that the model operates on. The thick arrow between eFES,
eABT, and LT module shows core integration than the other
two modules of eMLEE. The major modules of eMLEE are
enhanced Algorithm Blend and Tuning (eABT) and enhanced
Feature Engineering and Tuning (eFES) that are regulated by
LT internal unit.

eABT eFES

Logical
Table
Module

eWPM eCVS

FIGURE 1. This illustration shows the elevated system externals of
eMLEE. LT interacts with eFES and eABT on the deeper level. It coordinates
and regulates the metrics of the learning process in parallel mode.

eMLEE model is based on parallel processing and learns
from its mistakes (i.e., processing and storing the wrong
predictions). Its modules are, i) enhanced algorithm blend
and tuning (i.e., eABT) to optimize the classifier performance,
ii) enhanced feature engineering and selection(i.e., eFES) to
optimize the features handling, iii) enhanced weighted per-
formance metric (eWPM) to validate the fitting of the model,
and iv) enhanced cross validation and split (eCVS) to tune the
validation process. Out of these, eCVS is at infancy of the
research work. Existing research, as discussed in Section II
has shown the limitations of general purpose algorithms in SL
for predictive analytics, decision making, and data mining.
Thus, eMLEE finds its place to fill the gaps that Section II
discusses.

Finally, LT is built to coordinate the internal flow of
eMLEE as introduced briefly in the above paragraph.

B. MOTIVATION AND NOVELTY
The motivation to develop this specialized unit comes
from the uniquely thought, experimented, developed, and
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incorporated parallelism in an enhanced machine learning
process with innovative blending and tuning as discussed
earlier. eMLEE comes in to addressing “No Free Lunch the-
orem’ problem, feature correlation, and selection improve-
ment. It addresses challenges such as overfit, underfit, bias,
predictive errors, and poor generalization. In our experi-
mental tests during the evolution of this research, we felt
the necessity of “inline” unit as a centralized part of this
engine that governs, regulates, and keeps track of machine
learning process on the underlying data. The challenge of
trade-off between vital metrics such as complexity, accu-
racy, speed, etc. becomes also very important and that is
where LT plays a significant role. LT creates parallel pro-
cess for each element in each run governed by 3D object
co-ordinates (x,y and z) and then makes observations in the
real time of classifier learning and updates its logical row in
the table. This approach is novel to the best of our survey and
knowledge.

C. CONTRIBUTIONS
Below are the contributions of the work presented in this
article.

i. The in-memory processing unit is designed and gov-
erned by algorithms, that ensures the model internals
are at maximum performance during blend.

ii. A blended model such as eMLEE will use LT unit to
tune the performance metrics in the real-time. This
feature is built using mathematical constructs.

iii. The 3D logical modeling is used to reserve x (under-
fitting), y (overfitting), and z (optimum-fitting). Algo-
rithms are written to score each dimension during the
learning process. 3D improves the visualization pro-
cess during simulations.

iv. LT also is needed to teach the model to learn from its
mistakes. However, this contribution is left for another
article that elaborates deeply on eABT unit.

v. Improves the trade-off between various metrics such as
complexity, speed, accuracy etc., using real-time evalu-
ation and locating the optimized point for each element
using 3D visualization and recording techniques.

vi. Finally, LT unit is structured as a centralized com-
ponent of blended model, for keeping coordina-
tion between each component regulated with built-in
parallel processing.

D. PARALLELISM

As stated earlier, LT regulates eABT and eFES. LT plays a
key role to introduce an effective parallelism (i.e., parallel
processing) in eMLEE engine. Here we summarize the par-
allel processing of the engine that incorporates the LT unit,
as centralized and vital component of the system for the
proposed enhanced machine learning process.

i) Outer layer to eABT, where eABT unit communi-
cates with other units of the eMLEE such as eABT,
eWPM, eCVS and LT. Parallelism is done through real
time metrics measurement with LT object. Based on
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classifier learning, eABT reacts in the inner layer
(defined next). Other units such as eFES and eCVS
enhance the feature blend and test-training split in par-
allel, while eABT is being trained. In other words, all
four units including eABT regulated by LT unit, are run
in parallel to improve the speed of the learning process
and validation for the blend as processed in eABT unit.
However, eABT can also work without being related
to the other units, if researchers and industrialists may
however choose so.

ii) Inner layer to eABT, where addition and removal of
the algorithm are done in parallel. When the qualifying
algorithm is added, the metrics are measured by the
model to see if fitness improves, and then algorithms
are added or removed one by one to see the effect on
the fitness function. This may be done sequentially, but
parallelism improves the insurance that each algorithm
is evaluated at the same time, the classifier is incor-
porating metrics reading from LT object and speed of
the process improves, especially when a huge dataset is
being processed.

E. SIMULATION STRATEGY AND RESULTS PRODUCTION
We provided detailed information about our data sources
and tools in Appendix. Because our research investigated
the ensembling of algorithms (that learn based on different
classifier curves), we considered a very miscellaneous set of
training and testing data to ensure that our blend of algo-
rithms stay in the optimum fitting range for the real-world
experiments and analytics. Similarly, because of the feature
engineering and tuning, it was authoritative to our work using
data with assorted set of features involved.

We also uniquely adopted the following approaches to
make our experiments more reliable, easy to interpret, repro-
duce, and analyze for the model’s validation, integrity and
evaluation.

1. We conducted 100’s of experiments to cover wide range
of datasets that helped achieved in-depth training of
the model to study various ranges of metrics. We then
re-evaluated our math constructs and algorithms to
improve fitness. This way, our math constructs gov-
erned by our algorithms, ensured the integrity of the
model through the lens of real-world data and testing.

2. We also sampled all these experiments and devel-
oped a novel approach of 10-experiemntal rule. This
way, we could present our outcomes and analysis with
improved visualization and interpretation, as presented
in this article.

We used Python and R data analysis packages along with
C# libraries to test our algorithms. We used Prism, SigmaPlot,
and Excel to produce our simulated results. We uniquely
adopted the approach of 3D to have more observational value
to our analysis for the proposed model. This article reports
preliminary results in 3D modeling and matured results in 2D
modeling of the simulations runs for the experiments we have
conducted.
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F. PAPER ANATOMY

The rest of the article is structured as follows. Section II
discusses the related study that supports the contribution of
eMLEE engine, the part of which is the LT, as proposed in
this article. Section III & IV discuss the theory, algorithms,
illustrations, and simulated results of the LT contructs for
eABT and eFES respectively. Section V presents simulated
and experimental results for the L7 unit in depth. Section VI
concludes with final remarks. Appendix and references are
provided at the end.

Key Notations:
A(x,y,7) Algorithms Pool
x’ over-fitness
Yy’ under-fitness
‘2’ optimum-fitness
R Ratio
1 Normalized error
e
err Local error
Error Global Error
kyyz Constant error function
e Regulating factor
LT >05
N Noise
S Signal
B,, Blending Function for
Algorithms
Ty, Tuning Function
C Cost Function
rd Euclidean distance
14 Optimization Factor
Pr(err) Probability on local error
in even distribution space
+F Feature Adder handle
—F Feature Remover handle
Uy Wy, Uy Wy, Uz W, Weights optimization units
in 3D space for each
coordinate
Cor(x,y,z) Correlation function
ss € —f; Markov blanket function for
Probability of the fitness in
each test
M(x,y,z) Net Matrix Function for
each fitness factor in x,y,z

Il. RELATED STUDY

Brief related study is provided in the areas of ML. This explo-
ration of the literature helped and promoted our contribution
of the LT for enhanced ML such as eMLEE.

Tuia et al. [22] provided a survey of active learning
algorithms in the field of remote sensing image classifica-
tion. Mainly focused on SVM algorithm, they discussed the
issue of efficient training set, having high impact on the
expected outcome. Their findings, results, and discussion
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showed that active learning algorithms are making great
progress especially for image classification and the type of
data it involves. However, their contribution was limited to
active learning, especially for image classification and may
not be suitable to apply for a diverse set of data and fea-
tures. Garcia et al. [23] provided a survey on discretization
techniques with empirical analysis in supervised learning.
Discretization is an important approach specially to improve
the underlying algorithm in terms of feature/attribute tuning
and qualitative analysis. They provided in-depth analysis and
guidelines of various methods with taxonomy table of their
findings. Their findings also suggested an ideal selection
of a method for given problem. Their findings and exper-
iments showed accuracy of various ML techniques but did
not provide other metrics that may be of special interest
especially when blend is being engineered for a greater gen-
eralization. Wang et al. [24] discussed the process of pur-
chase decision in subject minds using MRI scanning images
through ML methods. Using recursive cluster elimination
based SVM method, they obtained higher accuracy (71%) as
compared to previous findings as per their research. They
utilized Filter (GML) and wrapping methods (RCE) for fea-
ture selection. Their work though provided great foundation
and motivation for feature processing but did not provide
the in-depth experiments of application of the technique on
neutral subjects where feature may mislead, and algorithm
design must take this into account. Tandon et al. [25] dis-
cussed the importance of machine intelligence in big data
domain towards natural language. Their work provided great
motivation towards mining common sense that can extracted
from words of people, but it did not provide in-depth analysis
of algorithms or features that may impact such intelligence
during learning process. Hernandez et al. [26] discussed
the parallel processing optimization in big data applications.
Their results showed improved recommendations score for
resources and workload but did not address or consider the
parallel processing of various algorithms to see if that could
further improve their work. Dai and Song [27] work was
focused on multiple classifier systems (MCSs) with their con-
tribution of supervised competitive learning algorithm (SCL)
to improve the accuracy of the classifiers. Though their work
showed satisfactory progress for accuracy measurements, did
not consider other metrics of the supervise learning classifier
especially if algorithm blend is intended.

Some of the work in the areas of engineering domains such
as antenna design, wireless communication, chip designs and
other biomedical engineering are using advanced ML tech-
niques with recent availability of digital data. Liu et al. [17]
addressed the low efficiency of evolutionary algorithms in
Electromagnetic(EM) design problems due to the cost, and
thus proposed a new method called surrogate model differ-
ential evolution for antenna synthesis using ML techniques.
Their work was very limited to EM applications and did
not provide the wide applicability to other domains of sim-
ilar challenges in EM or Electrical engineering domains.
Yu et al. [28] focused on weaknesses of semi-supervised
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clustering algorithms and to address these challenges, they
proposed closure based constraint approach and random
bases semi-supervised framework. They used datasets from
medical domains such as cancer patients. Their work lacks
dealing with pairwise constraints and removal of redun-
dant constraints. Such limitation may be addressed by the
work in the feature optimization and engineering as we
propose. Xiao-jian et al. [29] advanced the work in opti-
mization extreme learning machine (OELM) for the error
penalty parameter C. Their work extended the traditional
OELM classifier with the regularized parameter v. Their
work created useful foundation for classifier parameter opti-
mization. However, they lacked to confirm the stability
of optimization if different classifiers were used or tested.
Lara and Labrador [30] provided a survey on ML application
for wearable sensors, based on human activity recognition.
They provided a taxonomy of learning approach and their
related response time on their experiments. Their work also
supported feature extraction as an important phase of ML
process. Their work provides great motivation for feature
engineering and further improvement in feature selection
and optimization. Vergara and Estevez [31] reviewed fea-
ture selection methods. Authors presented updates on results
in unifying framework to retrofit successful heuristic crite-
ria. The goal was to justify the need of feature selection
problem in-depth concepts of relevance and redundancy.
However, their work lacks to address the issues of model
fitting when a diverse set of features are involved in datasets.
Mohsenzadeh et al. [32] utilized a sparse Bayesian learning
approach for feature sample selection. Their proposed rele-
vance sample feature machine (RSFM), is an extension of
RVM algorithm, previously invented. Their results showed
the improvement in removing irrelevant features and pro-
ducing better accuracy in classification, better generalization,
less system complexity, reduced overfitting and computa-
tional cost. Ma et al. [33] utilized Particle Swarm Optimiza-
tion (PSO) algorithm to develop their proposed approach for
detection of falling of elderly people and enhance the selec-
tion of variables (i.e., hidden neurons, input weights, etc.)
Their experiments showed higher sensitivity, specificity, and
accuracy readings. Their work lacked to consider various
algorithms in comparison with PSO to see if it might impact
the modeling of the various metrics.
The following points highlight the weaknesses/gaps out-
lined by the related study and our in-depth literature review.
a) Algorithm and Feature blending for various algorithms
are at infancy state in the research work published and
applied, and thus lack lots of improvements, such as
incorporating each algorithm and feature for maximum
accuracy possible.
b) Algorithms are not taught to learn from their mistakes
and thus LT is needed to fill this gap.
¢) Hidden features, that can be of great predictive value
are often overlooked and thus LT can improve this gap.
Similarly, research related to the removal of irrelevant
and redundant features are rarely found.
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d) A real-time optimization functions are rarely imple-
mented in other models, when the model learns and
may fail to fit. LT, however works in-parallel during
training and testing process to fill this gap.

e) Finally, general-purpose algorithms, such as LT, are
not implemented where new modules like eABT or eFES
can be extended to the existing models, such eMLEE.

lIl. LT THEORY OF eABT MODULE

LT as previously discussed, is a vital central unit of eMLEE.
LT is based on 3D novel concept of optimization to regulate
the metrics and learning progress of the blended model. In this
section, we first discuss each definition in plain English and
then provide the details of building the LT unit mathematical
constructs in conjunction with algorithm definition.

A. DEFINITIONS IN PLAIN ENGLISH

Definition 1 covers the theory of Adder and Remover func-
tions for the 3D objects formulation based on the progress of
blend of algorithms and features incorporation as the clas-
sifier learning continues. This way each element is cross-
checked in parallel and metrics readings are recorded as a new
logical row or updated as existing row.

Definition 2 covers the theory of specialized factors for
LT unit based on fitness of the classifier learning. These are
used to construct a vital function known as scoring function
that quantifies each factor for 3D evaluation and identifying
signal and noise in the dataset for further optimization.

Definition 3 covers the theory of specialized function as
Error Bound to support rule of optimum fitness. This intro-
duces a novel concept for error regulation in the proposed LT
model. Staying between 20 % and 80 % ensures that model
never over or under learns the data. This has been proved to
be an effective approach in the results being observed by our
study and work.

Definition 4 covers the theory of two vital functions/
constructs: i) Blending, and ii) Tuning function. These con-
structs turned out to be very useful for classification goals.
This definition also constructs the Binary Decomposition
function that LT object uses to formulate and determine the
cost function.

Definition 5 covers the detailed theory of Cost function
based on Def. 4. This cost function plays another vital role
to evaluate the comparing elements in the algorithms and
features and compute the accurate quantification of blending
and tuning functions.

B. MATHEMATICAL CONSTRUCTION OF THE

UNIT’ INTERNALS

LT operates in the memory and is dynamically updated.
It keeps tracks of the algorithms A(x,y,z) = {A1,A2,...
...,An, } as the ML process evolves to accomplish the
final optimum fitting after it has incorporated all the algo-
rithms from the pool. This helps achieve the optimum blend-
ing and tuning. LT stores data based on three dimensions,
where ‘x’ = over-fitness, ‘y’ = under-fitness and ‘7’ =
optimum-fitness. In our model, we will be using ‘“-ness” to
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mathematically phrase the metric for modeling purposes.
At this stage, we refer fitness to be the overall performance of
the model, and our goal is to reduce ‘x’ and ‘y’ to as minimum
as zero and improve ‘7z’ to the highest possible value. ‘R’
is the ratio between the single error from an algorithm and
averaged error of all the algorithms in the blend.’ Nie ‘is the
normalization factor for the error ‘err’. ‘Err’ indicates the
Overall error determined for the blended model.
Let us define constant error function:

1

k = —
T amd

Where, 1 computes all the values of x,y, and z components
during learning.

+ Reapr (H

N
1
L= Z(x,y, 2); @)
=1
1 err 2
R = — _ 3
eABT N, ( err —i—Err) )

Definition 1: Let there be a Adder Function as
‘AddFunc(A(x, y, z))’, that adds each algorithm in the blend
being processed, with Scoring Function as ‘ScoFunc(0:1)’
for each dimension in 3D space. Let there be a Remover
Function as ‘RemFunc(*), that must hold at-least one element
per each test. * indicates the computed dimension.

LT structure uses the grouping and scoring module. Scor-
ing is based on binary number weights as being illustrated
in Fig. 5 and based on the following rule.

Rule 1
If (LTObject.ScoFunc(A(i)>0.5)
Then

Assign ‘‘1”

Else Assign '‘'0”

1 if LT.ScoFunc > 0.5
LT (x,y,2) = {0 if LT.ScoFunc < 0.5 “4)
? Undetermined

By combining Gauss-Markov and Chebyshev methods
[34] we construct adder Function €p as given by

Our rule of thumb was 0.5 or 50 % to see how the model
learns. This way, we can separate the zone of over learn-
ing and under learning from a border line of 50 %. Once
classifier learns the zoning limits, it will decide this number

itself. ] A(z) acts a regulating factor that provides the
LT>0.5
continuous product for each value of z-dimension for which

the BIN function returns the least possible value of x and y.
The removing function is & given by

RemFunc(x) = (A, N Ant1) [%} ©
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It is imperative to validate the Adder and Remover func-
tions at this point, using well known technique of Frobenius
norm [35] form:

M Cx,y, 2)

X Y Z
= keyz | DD Y M2, (AddFunc, RemFunc) (1)
x=1y=1 z=1

Where M shows the matrix and we will elobrate on it in the
later section.

Definition 2: Let Op.F, Un.F, Ov.E, and Bias.F be the
factors for Optimum-fitting, Underfitting, Overfitting, and
Bias respectively of the algorithm under test in 3D model.
There must be an equal random distribution for each till LT
regulates the scoring function (SF) for each metric.

Each metric swings from {0:1} based on the correla-
tion of algorithm during each test. LT object receives the
score for each element while classifier learns in 3D space.
Dimentionality reduction and multivariate classification tech-
niques [36] can be used to construct a function for LT,
as shown in (8) and (9),

LT (z) = ItElement x 1ig15 {SF(Op.F)} ®)
7>0.

X v
SF(x,y.2) = LT() — Y _ Y LT(.}) ©9)
i=1 j=1

[tElement shows the object for LT such as eABT. LT object
creates an entry in the memory for tracking the metrics for
each element such as a particular algorithm under test, and
it assigns the weights (binary based) to each metric as per in

definition 2, for which the following is constructed:

PROCEDURE 1

Execute LT.ScoreMetrics (Un.F, Ov.F)
Compute LT.Quantify(*LT)

Execute LT.Bias(Bias.F, *)

*_Shows the pointer to the LT object.

Clearly, the noise in the data (i.e., the irrelevant or redu-
dant) does not have good predictive value, thus the metrics
stated in the definition 2 are highly affected by it. We build
a loss function in correspondent to Noise (N) and Signal (S)
(i.e., data of predictive value). Thus, we construct our binary
loss function, based on our rule of thumb from the signal and
noise for the training.

L(DS(S(x,y,2),N(x,y,2)

_ 0, &N (x,y,z) >0.5>Sx,y,2) (10)
1L &S, y,2) = 0.5 > N(x, y, 2)

Not likely but loss function tends to get very unstable in a
blend or 2+ algorithms where classifier function has a very
low variant and probability of distribution of fitness function
across z-axis (i.e. fitness model) is very wide. Thus gener-
alization ability of the net model becomes very significant.
The 3-branch diagram in Fig 2. shows the spread of algorithm
in each dimension, that corresponds to L and N component.
An example is shown in rectangular shape for L and N
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FIGURE 2. lllustration of Loss and Noise interoperation based on x, y,
and z dimensions, for algorithms blend.

co-variance, for algorithms blend. Each small circle repre-
sents the occurrence of a big circle on the left.

Definition 3: Let it.Err be the specialized error function
that implements the rule of optimum fitness (RoOpFit) as
0.2 < It.Err < 0.8. Every entry in LT must adhere to this rule.

Rule 2
Except random errors, 1lt.Err must be
regulated to stay in between 20 to 80 %
to avoid over and under learning.
If It.err < 0.2

Then : Label it ‘Overlearning’
Elseif lt.err > 0.8

Then:Label it ‘underlearning’

From the literature, we can implement the RMSE function for
error determination, thus, we use our rule to build:
Ne
1
max(e: 0.8) = — Z {(RMSE;) — (100 +0.2)/E} (11)
E i=1
Ne
. 1
min(e : 0.2) = — Z {((RMSE;) — (100 + 0.8)/E}  (12)
E i=1
Using (11,12), we build the RoOpFit to lead towards deter-
mination of [t.Err function. RoOpFit regulates the error that
LT object can trigger for each test. Using kernel density
function [36] and margin limits in Lipschitzness [9], we build

X,y VX

RoOpFit = max < 0.8 Z (A;j) — min > 0.22 A0
LJ Jot

(13)

1_[ —

RoOpFit(z)

It.Err(x,y,2) = [T BN y.2( @A

RoOpFit(z)
(14)

With this error function being constructed, we can easily
see the divergence in the optimum zone of z-axis. As dis-
cussed before, the LT object reads the previous entry and
then based on the data from the training blend classifier,
it updates (i.e., writes or deletes) in its logical structure
(i.e., new or existing row of records).

Definition 4: Let By, be a blending function and Ta, be
a tuning function that LT object must compute (detailed in
algorithm definition). Let BIN((x, v, z)) be a binary decom-
position function for each entry in LT. There must exist a Cost

function as ‘C’.

In SL, the classifier function Classifier(AS (x,y,z)) =
as identified, where AS = {(i01), (i2.02),...
oo (ko) } € Uinput) x O(output))*. Where: I C R,

Z|—
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and for regression: Errors o € R For Classification: o is a
discrete value. In Linear Classification, as generally done in
SVM concept: we can use Lagrange multipliers [37] to present
the problem in equivalent maximization on y :
N I N .
y = argmax Zk:l Ye= 5 Zk,[:l Yevi(okor < i, i >)
15)

In Fig 3, triangle is lying on z-axis, with the direction of
momentum as being engineered in the model. Vd shows the
Euclidean distance between two algorithms under test. The
three Matrices shown are typical values for the sampling of
the several hundred experiments. The encircled values show
the optimized value of each axis for the desired optimization
as LT object stores and reports.

0.71_065 05
My = {0.03 0.04 0.05
001 009 0.1

Direction
Optimized of Op.F

z

021 002 0.03
My = 0.6 012 0.14
0.69 008 0.05

91002 0.13
My = {0.35~0.78024
0.28 0.08~0.6
X

FIGURE 3. - lllustration of optimum fitness logical (x, y, z) triangle.

min (err € Err)

Vd(Ay,A;)

Equation (16) shows that Blend function is composed
of three parts that work on AddFunc, RemFunc and score
for each algorithm in each dimension as LT computes
(See Algorithm 1 definition). Using Regularization in local
minima where error is minimum but lipschitz loss [9] is
unknown, we use vector product to keep the uniformity at
minimum random distribution such that z # 0 AND x,
y < 0.5, thus, we construct

AddFunc(k) Xk
Ba, 0: D= ] Axx|n
k=1 Zk
RemFunc(m) —Xm
+ ] ~ax| -] a6
m=1 +2Zm

Tuning function is constructed using Err and err functions.
As we stated earlier the RoOpF must be followed for blend
to be tuned for improved optimization. LT object ensures
by recording and manipulating the metrics, as per algorithm
structure, discussed later. Thus, we can write:

Ty (0:1) = le ﬁ: —(Bp) — H((Err — (Err + err)z)H

(a7

Definition 5: There must exist a cost function as ltCost,
that must adhere to the minimum distance required between
two algorithm during test, in logical space for ltCost(x,y,z),
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X X X
FIGURE 4. lllustration of Bp, (Blue), Ty, (Red) as it theoretically spread in
optimum space of x, y, z dimensions.

for which the condition ltCost(00,z) € A (Distance(x,y, z) >
0, always exist.

During recognition of hidden patterns or points in datasets,
the loss or cost function (C):

C (f (i : input) , o : output))
1
=§V(i)—0|, ir€l, op €O (18)
LT is built on three constructs: ) to monitor and store the
ratio R4pT, ii) to update the values of x,y, and z components
of each algorithm classifier during training, and iii) to score

the algorithm A,|{0:1},n € (N + 1), using Blending
Function By, (0 : 1), and Tuning Function Ty, (0 : 1).

(5|
éx, _—
P Ba, + Ty,

(19)

N
LT .ABT =Reapr x »_ An(f(x.y.2)

n=1

Fig. 4 shows three adjacent visual concepts. Our goal is to
optimize the Blending and Tuning function with LT objects
such that, it corresponds to high convergence in z-dimension.
Fig. 4 shows three examples of such cases, that may be
expected throughout experimental observation with the real-
world data. As shown in the Fig. 5, the values are updated
based on the function that we built using simple linear regres-
sion, so when we fit a line on the given points, we can estimate
the linearity of the classifier that is being built by the model
as more algorithms are blended (governed by B4, (0 : 1)) and
then tuned (governed by T4,(0 : 1)). We must incorporate
the squared error as [(mx; + a) — yk]z, which translates to
difference between true value and predicted value, Thus:

K

T (m, @) =keye ) [0mx +a) — yi ) (20)
k=1

Fig. 5 shows the internal mechanics of the eABT LT work-
ing model. It is internally based on binary classification tech-
nique. As the logical table grows with the quantized output
as explained above, it decides which algorithm is a good fit
in the blended model. As we can observe, that LT governs
the process at the lowest level of the model being proposed.
It creates the entry for each dimension (X, Y, and Z) as shown.
As a threshold, if the LT value is less than 0.5, it is assigned
binary ‘0’, and if it is > 0.5, it is assigned binary ‘1’. Based
on this, the binary truth table is built, and is used in the
algorithm 1.
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Algorithm 1 Algorithm 1 LT — eABT LT Governance
Goals: It governs LT structure in the memory to keep track
of fitness of the model, for algorithm blend.

Input: A.P = {A],A2,A3,........ ,Ap} /* the algorithms
pool for improving generalization */

Output: NODES,cy, cABT®

Initiate: Create data libraries object as ObjDS, ObjLT

1: Set: x, y, z < ObjDS.RandomValues(0)

2: While (0.2 < err € Err < 0.8) Do

3:  Compute: error constant using equation (1)

4:  Set: u <« N Z (x,y,2);

5:  Compute: R&;E;" using equation (3)

6:  For (each ObjLT.Evaluate(1) in z) Do

7 Set:z <0

8: Compute: T (m, a) using equation (20)

9: Setyellng)l £

10: Update: Probability of Hypothesis:

11: H :I— {-1,+1}

12: If (P41 (k) < 0.5) Then

13: Set: Erre <= 3 yp, i) op Pt (K)

14: Read: ObjDS.Evaluate(Err;, y )

15: Py (k) < P N M ) = o
e’ IfH; (i) # ok

16: Compute: ObjLT.Write(P;+1 (k))

17: Else

18: Set: Err; <— ObjLT .Read(H;, y)

19: Update: ObjLT.Update(err, Err)

20:  EndlIf

21: Set: A(x,y,2) < (Ax+1),(Ay+1),(Az+1)

22: Compute: ERM (3D)

23: Compute: Add/RemFunc based on eq (5,6)

24: Write: ObjLT.Write(ERM(3D))

25: End For

26: Compute: ObjLT.FitnessScore(A(7))
27: Update: ObjLT.Update(err(z), Err(z))
28: For (each node in NODES ;cy) Do

29: If (Score(A; € Ai+1)) > node(i))) Then
30: Update: ObjLT.Zscore(ObjDs, A;)

31: Read: ObjLT.Read(score(z))

32: End If

33: Set: Next node

34: End for

35: Compute: Bp, /* Using Equation (16) */
36: Compute: Ty, /* Usmg Equation (17) */
37: Update: ObjLT. eABTS Ba,, Ta,)

38: End While

39: Return: eABT®

Based on illustration in Fig. 5, we can build our Blending
and Tuning Functions for the LT using in-parallel binary
weight distribution for each algorithm.

Next, we build our empirical risk minimization(ERM)
function based on error-probability function, so we can then
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FIGURE 5. lllustration of eABT Logical Table Internals.

TABLE 1. Tuning and blending function typical observation.

Functions Theoretical Real/Experimental
Ba, 0.86 0.79
Ta, 0.93 0.87
Ba, U Ta, +0.73 +0.78

TABLE 2. Observance of error functions in typical ratios.

Random err (local Err (global eABTH
minima) minima) Test Observance
x(0.19,0.27,0.38) 0.0013 0.0004 0.39
(0.27,0.39,0.64) 0.0008 0.0032 0.51
z(0.49,0.65,0.69) 0.0082 0.0193 0.73

optimize the fitness space (3D) using LT to logically con-
vert (i.e., move overfitting and underfitting to optimum fitting
space) the invalid fitness score to which algorithm resists to
learn. Error scores are used to measure the degree of success
for an element (such as algorithm) to participate in group for
the blend, especially in the interest of optimum fitting’s. Thus,
we define the following rules:
Rule 3

Pr(err) ~x — (y(@i) # z(i))
Rule 4
Prerrinz(i) ~z— x@+ 1D #Q+1)

On the most inner layers of the learning, the errors can be
considered in two types: training errors and testing error, thus,
to score the ERM, we can assume

ERM (err(train, test)) = —erm,  err(z) <0 (21)
erm, err(z) =0

By definition:
|{i € 0] : 3D(d)) # (d + 1);} |

n

ERM(3D) =

(22)

Where [n] = {1,2,3,4....... N/
Inductive bias and hypothesis (4) class are used to rectify
the problem of overfitting in ERM [35]. Inductive bias is
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considered a set of restrictions where we bias the hypothesis
class towards a predictor that will not overfit and thus, we can
minimize its effect.

ERM (h) € argmin ERM (3D) (23)
heH

C. ALGORITHM DETAILS AND DEFINITION

In this section, we provide complete definition of LT Algo-
rithm for eABT module. This algorithm uses two important
libraries:

i) ObjDS, for general dataset sources in raw or formatted
shape including what Python or R packaged offer, and

ii) ObjLT is an object of the eMLEE API, for LT module
to access the function written for its working. The following
definition is written in standard format for ease of implemen-
tation using standard languages and packages.

Algorithm pool (A.P) represents the 3D array in the mem-
ory that stores the pointers for each dimension of x,y, and z.
Based on the scoring mechanism explained earlier, it holds
the computed values for each algorithm (SL algorithms) as
they are brought into, for testing (Algorithm’ eABT internal
layers). Along with other functions, in conjunctions with
Algorithms as defined next, finally the optimum SL algo-
rithms are identified and weighted accordingly for classifier
blending.

The main while loop at step 2 makes sure that rule 2 is
obeyed. Steps 3-5 compute error functions and Ratio as
constructed in the math model. The first For loop at step 6
ensures the optimum fitness is regulated in the z-dimension.
Steps 7-12 build the probability distribution hypothesis so
the cost function is decentralized for improved labelling of
each element in each row as LT object receives it. If block at
step 13 checks and maintains the probability of the fitness to
be greater than 50 % for more training to be continued and
then we update the LT objects. Step 26 sets the changes in
each dimension for the algorithm element being incorporated
and then updates the global object. In steps 26-28, we com-
pute ERM function and use equation 5&6 to utilize adder and
remover function. In steps 31 to 39, we update the LT objects
for all the ML algorithms incorporated (added or removed)
based on the desired fitness and error ranges as per rules
defined in the module. Steps 40-45 finally compute the blend-
ing and tuner functions as we constructed in the mathematical
model and return the quantized data to the calling function of
the algorithm object.

Fig. 6 shows that it is based on binary weighted classifica-
tion scheme to identify the algorithm for blending and then
assign a binary weight accordingly in LT logical blocks. The
diamond shape shows the err distribution that is observed and
recorded by LT module as new algorithm is added or existing
is removed.

The illustrations shown in Fig. 7,8,9 are the result
of 20-experimental run for over 3000 data samples in our
lab environment for evaluating L7 module in eMLEE infras-
tructure. The simulation uses four colors. Blue, to indicate
extreme overfitting in each dimension. Green and yellow
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FIGURE 6. This illustration shows the concept of LT modular elements in
3-D space as discussed earlier.

FIGURE 7. It shows the LT optimum fitness ability in each dimension.
We noticed error at the negative value.

FIGURE 8. This shows the ideal behavior of the LT optimum fitness
function. As we see, the blue section is virtually absent. And it further
elaborates that z-dimension has the maximum convergence of the
function, as ideally desired.

show that classifier was not able to distinguish between
underfitting and overfitting, and orange color shows the opti-
mum fitting.

IV. LT THEORY OF eFES MIODULE

Very similar to constructs we built for eABT LT unit, this
logical table also operates in the memory and is dynami-
cally updated. It keeps tracks of the features F(x,y,z) =
{Fi,F>,...... , Fp,} as the ML process evolves to accom-
plish the final optimum fitting after it has tried all the features
from the pool. Similarly, it also stores data based on three
dimensions, where ‘x’ = under-fitness, ‘y’ = over-fitness and
‘2’ = optimum-fitness. Features in the given datasets are of
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FIGURE 9. This is the real (experimental) behavior of Figure 8.

several types. They are also known as ‘attributes’ or ‘vari-
ables’. Type includes: /) numeric, such as continuous values
such as time, speed, height and weight or discrete such as
age, counts, and ii) categorical such as Gender, Color, Race,
and Ranks. Some of the categories of features are linguistic,
structural, and contextual.

In this section, we first discuss each definition in plain
English and then we provide the details of building the
LT module mathematical constructs and provide algorithm
definition.

A. DEFINITIONS IN PLAIN ENGLISH

Definition 6 covers the theory for Adder and Remover
function like Def. 1 but for feature engineering as the second
layer of LT unit.

Definition 7 covers the theory of function that quantifies
the score of each feature as it is introduced in the dataset so
the correlation can be improved and decentralized.

Definition 8 as the last theoretical foundation builds the
Irrelevant and Redundant functions so the scoring of each
feature can be done row-wise for each test of the classifier
learning. This way, the model learns to determine the opti-
mized predictive value of each feature, as a part of feature
engineering and optimization that LT object governs and
handles. This way, the right numbers and type of features set
is created.

B. MATHEMATICAL CONSTRUCTION OF THE
UNIT INTERNALS
Definition 6: Let there be two functions, Feature Adder

as +IF, and Feature Remover as —F, based on linearity of the
classifier for each feature under test for which the RoOpF
is valid (as described in Definition 3), and a feature is not
repeated in the group.

eFES LT module builds very important functions at initial
layers for adding a good fit feature and removing a bad fit
feature from the set of features available to it, especially when
algorithm blend is being engineered. Clearly, as we discussed,
not all features will have optimum predictive value and thus
identifying them will count towards optimization. The feature
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adder function is built as:
z
+F(x,y,2) = (Fy U Fyer) ) _(lt.score(i))

i=1
X,y .
+ Zj,k:l (It.score(j, k) (24)

The feature remover function is built as:

X,y
—F(x,y,2) = (F, N Fyp1) Y _ (lt.score(j, k)
jk=1

- Z; (It.score(i)) (25)

Very similar to k-means clustering [38] concept, that is
highly used in unsupervised learning, LT implements feature
weights mechanism(FWM) so it can report a feature with high
relevancy score and non-redundant in a quantized form. Thus,
we define:

FWM (X,Y,Z)

X v z

=3 3 eweuywyuw)(A (x,7.2)  (26)
x=1y=I z=1

A(x,y,2)

L

l_[(uleIx), if z#0, ANDz > (0.5,y)

=1

= qu; € {0, 1},

L

l_[(ulywly),

=1

-1<i<L (27

if z#0, AND z> (0.5, x)

Definition 7: Let there be a Feature Scoring Function as
FScore in LT module for which the correlation between each
feature as accepted is minimum. Let Cor(x,y,z) be a function
to compute the score for the feature sets as grouped in the LT
object.

FScore(x,y,z) and Cor(x,y,z) are functions on the second
layer that ensure each entry is recorded in the LT object as
the process continues. We build,

FScore (x,y,2) = / (FilX, Y, Z)pidVy y., (28)
D;
H (f)) — H(filfi+1)
Cor(x,y,2) = {H(fix1 — H{fir1lf) 29)

H (i) + H (fir1) — H(fi, fi+1)

PROCEDURE 2
Import Features: a finite number of features
Set F in n > 0, Integer T >0
Initialization: Define the categorical or
numerical values, and set F(n) = Constant value
For F = {F1,F2,F3, ... ,Fn,}
Select F(n) based on random function and

define the distribution in space, DHKTNF(“)]E
9 F(F (™))

Update each f € F(, for which f, > F{0.85,0:1} is
valid
Return fy, fy,f;
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FIGURE 10. This test shows the variance of the LT module for the cost
function for all three co-ordinates and then z (optimum-fitness). This is
the ideal behavior.
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FIGURE 11. This test shows the real (experimental) behavior.

H(f i) fi+1))

H(fif i) w

H(f )

FIGURE 12. Demonstration to illustrate the entropy-based feature
distribution in space based on binary system.

H(f (i+1))

Fig. 12 shows two colors (yellow and green) for same func-
tion related to each feature (i) and (i + 1). Thus, the entropy
function is calculated in the inner layer of LT object as the
features are added or removed based on matching scoring
function.

Definition 8: Let It.IrrF and It.RedF be two functions
to store the irrelevancy and redundancy score of each fea-
ture for a given data set in LT object and then correlates
it for each test in blend of algorithms using It.BlendAlgo
Function, such that each feature obeys the condition 0.3 >
It .BlendAlgo (It IrrF, It .RedF) > 0.7}.

To construct Irr. F and Red.F, we implement Markov Blan-
ket method in which we apply sequential filters to remove
the feature one by one for higher Red.F and Irr.F. We alter
the values between {—1 to +1) for theoretical consideration.
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TABLE 3. Observance of error functions in typical ratios.

Random err (local Err (global eFESH
minima) minima) Test Observance
x(0.11,0.21,0.32) 0.0023 0.0003 0.28
¥(0.27,0.39,0.64) 0.0018 0.0044 0.61
z(0.49,0.65,0.69) 0.0087 0.0173 0.83
z fi:l_ FullTzn)X ,W‘
=t Ty T
fullTzn)Z
Local and Global
error estimation
Function 0&\0(\5
<

FIGURE 13. lllustrates of the N-experimental iteration of the conceptual
flow.

It must be noted, that the values between {0 to 1} are realistic
and mathematically possible. We build a mutual informa-
tion (MI) function [31] so we can quantify the relevance of
a feature upon other in the random set. This information is
used to build the construct for Irr.F, as the classifier learns,
it will mature the Irr.F learning module as defined in the
algorithm /.

MI(Irr . F(x,y, DIfi, fi+1)

N N
;;W@fM)%memm G0
Irr .F

_ ZK: {fii Jij }
r Jii fji
MI (f;; Irr . F) > 0.5 Strong Relevant Feature
MI (f;; Irr .F) < 0.5 Weak Relevant Feature  (31)

MI (f;; Irr .F) = 0.5 Neutral Relevant Feature

We use the (31) to develop the relation of ‘Irr.F’ and MI
to show the irrelevancy factor and redundant factor based on
binary correlation and conflict. Redundancy is another impor-
tant quantity to compute for feature correlation, especially in
classification problems. We use Markov Blanket [31], [39]
to make the following assumptions, ss < —f; is Markov
Blanket, if

pUF{fi, sstifi, (e, v, ) = p(F{fi, ssH{fih) - (32)

Fig. 13 illustrates the N -experimental iteration of the con-
ceptual flow shown. As we can observe, that LT governs the
process at the lowest level. It creates the entry for each dimen-
sion (X, Y, and Z) .As a threshold, if the LT value is less than
0.5, it is assigned binary ‘0’, and if it is > 0.5, it assigns ‘1°.
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FIGURE 14. This illustrates the ideal outcome of eFES LT fitness function
in 3D space. Notice the z-axis has the least blue color.

This shows the mechanics of the logical design of the algo-
rithm being proposed. It shows that it may take N number of
iterations to tune the table function. As discussed earlier, LT
keeps track of the feature engineering for optimum fitting and
outlier detection for a model being trained. Threshold is set to
50 % for LT function return value. This shows that as features
are added, the LT stays above 0.5, or features may need to be
removed. The two-dimensional figures in Fig. 13(with blue
and orange lines) demonstrate the underfitting and overfitting
as the model encounters and reports back to the LT object.
Finally, we build our cost and matrix function as follows:

| X(teT) YX(teT)
Cost (LT, Elt) = T 2} 2}
x= y=

ZX(teT)
XY (Elf)y, x My, My, M, (33)
z=1

M (.7, 2) = M (x) x M () — M)

€ min (M(x,y))
z—>max

X11 oo Xln
ME =11 -
Xnl e Xnn
Y11 <o JVin
Me) =1 i
Ynl o Ynn
211 ce Zln
M@=1:1 " (34)
Znl ce Znn

Equation (34) supports the functionality of Fig. 7. Next,
we define LT algorithm for eFES module. The information
related to accessing common libraries have been stated in the
opening remarks of algorithm LT-eABT already in the earlier
section.

C. ALGORITHM DETAILS AND DEFINITION

In this section, we provide detail of eFES LT algorithm based
on the mathematical model and associated libraries.
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FIGURE 15. This illustrates the real(experimental) analysis of the test,
we performed on validation eFES module.
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FIGURE 16. This test shows the three metrics (Underfitting (UF),
Overfitting (UF), and optimum-fitting (OpF) for 500 experimental-run.

LT module successfully identified and process the features that contribute
to each metric accordingly.

100+
504
-o- Correlated Random
0 r n
V] 5 10

10-Experimental Run

FIGURE 17. This test shows the matching function built in eFES algorithm
for random vs correlated data points. As we observed, it shows the
promising behavior (expected) when it is highly correlated than just the
random test.

Step 1 initializes the optimum fitness factor. Step 2 begins
the while loop to check for Ratio that is governed by local and
global errors correlation, so the function remains in-bounds of
over-learning and under-learning logical 3D space. Steps 3-4
compute the global Error and hypothesis function for even
probability distribution as discussed in the mathematical
model. Step 5 starts the For loop to evaluate each feature and
quantifies x,y, and z as it spreads in space using 3D logical
elements, so the row can be updated accordingly. Steps 20-23
compute the Ratio function so the local error can be regulated
and then update the LT object in the library call. Then it
resets each co-ordinate for next run in the loop. Steps 24-28
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build the references for computing Feature Adder and Feature
Remover function for feature grouping function using LT
parallel evaluation technique as explained earlier in the model
build of Section 4. In Steps 29-33, the If block checks for
each algorithm entry so the Ratio can be re-calculated and this
way, the No Free Lunch Theorem problem is also addressed.
Finally steps 34-38 compute the main eFES function after
updating the central probability function, so the bias can be
minimized for each feature before adding to the group. Then
in last step, the function reference is returned to the calling
pointer of the algorithm.
PROCEDURE 3
For (each node in tree) Do

Execute: Add Function for new element

Update each node for maximum points

If (t <= 0.5~in absolute T) Then
Read next node

Move to next node in tree and add
the previous node to the LT Object

End If
Set: x,y and z values from node to LT object
Update LT

Execute the Algorithm~LT eABT
While (there are more algorithms to test)
Do
Compute the CF for each algorithm
Run the optimization test as shown
in~Figure~18
Update the results
Find new~ (t)
t++ (increment)
Update x,y, and z
End While
Execute Algorithm~LT eFES
For (each feature in the set) Do
Execute the Adder and Remover function
Find new~ (t)
t-—- (decrement)
Update the CF Function
End For
End For

With the results shown for eABT and eFES LT modules in
the lowest level of eMLEE infrastructure, we show our low-
level framework for the LT mechanism in Fig. 18. We first
develop the cost function for each node as shown in the illus-
tration for each dimension in 3-D logical space. As shown
that z can vary from 1 to n values depending upon how many
iterations will it take to achieve the optimum fitting of the
model with LT object. ¢ € T indicates all the values of tuning
function in the unit terms during training of LT object. These
values can vary both in negative and positive because LT
object keeps track of both underfitting and overfitting of the
model in its logical layers and rows.

V. RESULTS AND ANALYSIS

A. EXPERIMENTAL SETUP

The various datasets were used to improve the generalization
of the model. The details of datasets are listed in Appendix.
Datasets were divided in three sections, as a standard prac-
tice, i) Train, ii) Test, and iii) Validation. However, we also
uniquely split the data (as defined in the algorithm) governed
by the real-time metrics using LT object. In this process,
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Algorithm 2 LT—-eFES Logical Table Governance

Goals: It governs LT structure in the memory to keep track
of fitness of the model.

Input: A.P = {A|,A2,A3,........ ,Ap} /* the algorithms
pool for improving generalization*/ Raw Feature Set
F(x,y,2z) = {F| € Fy}

Output: NODEScy, eFES®

1: Set: {Op.F < 0, F (x.y,z) < (0,0, 0)}

2: While (R.ap7) < (r(e + E)) Do

3:  Compute: Err; < > Pi(k)
k:Hy (i) 0k
4: Compute: Hypothesis: H; : I — {—1, +1}
5.  For(# of F in Set) Do
6: Set:  y <« %ln (]?’
7: Compute: x,y, and z for ObjLT.Random
8: Update: ObjLT.Update(x,y,z, y)
9: Ifty <(y — 1)) Then
10: Set:y <~ (y+ 1)
11: Read: ObjLT.Read (x,y,2)
12: Compute: : Pyy (k) < I%tk)
13: Else
14: Set: y < (y—1)
15: Update: ObjLT.Update(x,y,z, ¥)
16: End If 5
17: Compute: Rorgs < ng ( =z
18: Update: ObjDS.Update(R.rgs, ObjLT)
19: Settx <~ (x+1),y<@+1),z2«< (z—1)
20:  End For

21: Write: ObjDS.Write(x,y,z, ObjLT)

22:  Compute: +F/* Using equation (24) */
23:  Compute: —IF/* Using equation (25) */
24:  Update: Scores for each algorithm, and

25: creates Nodes NODES ;cn

26: For (each node in NODES ;cy) Do

27:  If(SCORE(A; € A(it1)) > node(i)) Then

28: Add: entry to LT

29: Re-compute: Reapr
30: Update: LT

31: EndlIf

32: Finally Update: P;+1 (k)
33: Compute: eFES(x, y, z) <

34:  ObjLT .Optimize(Reapr, Ba,, Ta,)
35: End While
36: Return: NODES <y, eFES

the random slices of data were created and then they were
flipped to elevate the predictive errors temporarily. This way,
LT objects learn on maximum possible errors and then tune
itself (i.e., algorithm) to improve the slice in the next run
and so on. This is also supported in LT mathematical model
(i.e., Definitions). This also chains the ideas of enhanced
validation and parallelism as we stated in the Introduction
section.
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TABLE 4. LT metrics for eFES and eABT.

Experiments  Accuracyrreasr CFLreapr CITLTeABT Errireanr CITLTeFES Errireres Accuracyyreres CFureres
1 0.102193 0.123183 0.897193 0.874731 0.737103 0.855492 0.225609 0.079028
2 0.114734 0.134734 0.737134 0.861543 0.626132 0.806411 0.275681 0.151088
3 0.143159 0.153159 0.743884 0.814910 0.603924 0.757090 0.378429 0.237126
4 0.181294 0.171794 0.527183 0.724807 0.577191 0.705442 0.481349 0.339088
3 0.306104 0.306804 0.332956 0.554672 0.528241 0.637021 0.474050 0.397934
6 0.340422 0.643059 0.371304 0.423340 0.511601 0.562172 0.547503 0.440004
7 0.537183 0.684847 0.316205 0.407649 0.446501 0.474173 0.637512 0.486617
8 0.757184 0.741634 0.304050 0.326716 0.334050 0.316478 0.662501 0.537134
9 0.839894 0.882090 0.231674 0.264370 0.321791 0.297144 0.696033 0.683194
10 0.941431 0.972132 0.218934 0.238912 0.201290 0.261134 0.732907 0.781943
TABLE 5. X observations.
+z(n) LT Optimization
Continues
(n iterations) Dim Theoretical Experimental
CF 0.23 0.44
Err 0.90 0.81
-z(n) Acc 0.83 +0.76
TABLE 6. Y observations.
Dim Theoretical Experimental
CF 0.17 0.53
Err 0.89 0.82
Acc 0.77 0.61
+z
TABLE 7. Z observations.
LT
Optimization Dim Theoretical Experimental
Begins CF 0.98 0.87
Err 0.25 0.31
Acc 0.95 0.87

FIGURE 18. LT framework at low-level.

Validation datasets split tested how well the model was
learning (i.e., learned skill) and testing datasets substantiated
the bias of the model, as it learned. In main model of eMLEE
several ML algorithms such as Support Vector Machines,
Decision trees, Logistic Regression, Multiple Linear Regres-
sion, Bayes networks, etc., were used to test the model via
the blending mechanism (i.e., eMLEE internals). However,
the eMLEE underlying proposed algorithms, outside of the
scope of this article, allow researchers to incorporate any
supervised learning algorithm of their choice, to overcome
the challenge of “No Free Lunch theory” as we discussed
in the introduction section. That is the beauty and novelty
of this model based on LT. We have used existing libraries
of Python and R scientific packages on the exact datasets
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that we setup for our experiments so we could draw com-
parison charts and record tabular data. However, the compar-
ison details of eMLEE are also outside of the scope of this
paper.

Appendix lists the details of the libraries we have used
to implement the mathematical model and algorithm as pro-
posed in the article. However, end users are free to use the
language of their choice to build it.

B. RESULTS PRESENTATION AND DISCUSSION

Table 4 lists the average outcome of 10-experimental process
that was adopted as a part of the experimental validation
of the constructs. Several experiments were performed on a
diverse set of data to improve the generalization of the model
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FIGURE 19. Experiments (A) to (C) shows the poor optimization for z with CF without using LT objects. However, we observe in (D) to (F) that model
is learning to optimize itself for optimum CF for z-dimension using LT objects. The spike noticed in (F) is suspected to be error and will need future
investigation. (A) through (C) were conducted using standard procedure where LT objects were not used.
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FIGURE 20. The outcome shown here exhibits the model behavior for
ratio R in terms of each dimension of x,y and z. It is observed that
regression is relatively higher for each dimension and is considered
pre-mature learning of the model.

and then 10 experiments were sampled to show the learning
process of the model. As we observe (as expected) that the
metrics are improved as we conducted more experiments.
The experiment number indicates the sampling range of the
total statistics. Err corresponds to overall error for a single
experiment once the learner process stabilizes and err corre-
sponds to local err or per experiment during a single training
period. It is noted that Correlating Factor (CF) improves as
the process learns with more experiments and data.

Fig 20 to 25 provide the experimental outcomes of the vital
functions such as Ratio (R), Adder, Remover, and various
metrics to further validate the stability and optimum fitness
of the proposed model. Some cases as shown also compare
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FIGURE 21. The observation here shows improvement and considered
mature classifier learning of the LT process. As we noticed that
z-dimension (as hoped in the design of the model) is depreciating with
respect of the error ratio R.

the ideal and real behavior of the model so it can be seen very
clearly how close the model stays with the real-world test,
specially when it is exhausted by the diverse set of data.

Table 5, 6 and 7 show the typical results of the 3-D mea-
sures. The snapshot of the results shows the difference of
model behavior for theoretical (what we thought it will be)
and experimental (what it turned out to be). These results are
reported to support the model’s stability in real the world data
in line with testing data.

Fig 19 shows six experimental studies of the proposed
model. As discussed earlier, the model aims to achieve the
fitness space optimization in z-dimension while it swings via
its logical learning process between two extremes for underfit
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FIGURE 22. Adder real and ideal function is shown here. We observe that
when experiment size is at lower end, it shows higher % and as the
experiment size increases, the function outcomes drop and this behavior
is in line with model internals as expected. The triangular spike is a
training error.
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FIGURE 23. Remover real and ideal function is shown here. It shows that
model exhibited theoretical stability of its internals.
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FIGURE 24. This test shows the matching function built in eFES algorithm
for random vs correlated data points. As we observed, it shows the
promising behavior (expected) when it is highly correlated than just the
random test without using LT objects.

and overfit (x,y). It must be noted, as we stated earlier that we
are providing the sub-set of our diverse set of experiments for
this article. We attempted to validate our model so that the
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FIGURE 25. This test shows the candle stick analysis commonly used for
stocks predictions. True Positive (TP), False Positive (FP), Fitness

Factor (FF), Correlating Factor (FF), Bias Factor (BF) shows the move
between 0 to 100 % for 20 experimental-run tests. This analysis helps
particularly in understanding the direction of the move of the metric
when classifier learns. For example, if we can consider the speed of the
process, we can see the move in green candle from almost 0 to 98 %
throughout the process.

reported simulations and experimental outcomes represent
the model behavior, integrity, and stability in the real
world.

VI. CLOSING REMARKS

A. CONCLUSION

This article presented vital component as a Logical Table (LT)
unit and its constructs in the internals of enhanced Machine
Learning Engine Engineering (eMLEE) Model. LT worked
at the lowest level of this engine and regulated the entire
processing when model was blending and tuning various
good fit algorithms. It enhanced the feature selection and opti-
mization for optimum-fitting of the Machine Learning (ML)
process for predictive analytics. LT constructs introduced the
novel parallelism for the enhanced algorithm blend classifier
learning. LT constructs provided a logical way of recording
the metrics of the classifier learning for 3D objects focused on
overfit, underfit, and optimum fit for each algorithm’ and fea-
ture’ incorporation during real time training. This approach
uniquely supported the enhancement towards improved accu-
racy, reduced errors, bias and overfitting.

Experimental datasets were split into test, train and valida-
tion sets so the model learning and bias can be evaluated in a
parallel fashion.

Overfitting, poor generalization, higher errors, low accu-
racy, and bias became significant when blend was being engi-
neered such as eMLEE. Thus, LT structure was invented as a
part of eMLEE development to provide in-parallel regulation
and governance of the metrics that needed to be recorded
during the learning process. This approach also aided to the
solution of addressing ‘No Free Lunch Theorem’ problem
which generally does not ensure that a good fit algorithm is
not left untested.
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Related study was discussed to highlight the importance of
ML latest progress in the research and to justify the invention
of LT for eMLEE.

This article was accompanied with simulated results
(produced in Graphpad, SigmaPlot, MS Excel, and Plotly
software’s), mathematical equations/constructs, underlying
algorithms, and necessary illustrations to elaborate the con-
ceptual details of the proposed constructs and the promising
outcomes.

LT model addressed the challenge of trade-off between
vital metrics such as complexity, accuracy, speed, etc.LT cre-
ated parallel processes for each element in each run governed
by 3D object co-ordinates (x, y and z) and then made obser-
vations in the real-time of classifier learning and updated its
logical rows in the table. This approach was found to be novel
to the best of our survey and knowledge.

LT model presented in this article was also accompanied
by eight mathematical definitions, three sub-procedures, and
two by-design algorithms. This article also presented several
visuals and frameworks to clarify the mechanics of the pro-
posed unit along with promising results in conjunction with
tabular data to draw useful observations.

Finally, it was concluded that LT worked efficiently as a
centralized module/unit of eMLEE to improve the metrics
coordination and learning process for ML. The experimen-
tal results were included in this article to support the LT
progress at this stage, and it showed that metric correlation
and observations were found improved as compared to the
learner process that was not trained using LT.

B. FUTURE WORKS

A progress and further development is in progress for eMLEE
modules and algorithms. More data is planned to be tested
for improving the generalization and stability of the model.
Once results are ready with improved outcomes, articles will
be prepared and submitted to the journals in line with the
latest works of ours and others. We will be developing/testing
more algorithms, especially in the domains of unsupervised
learning. We are improving/developing a model known as
“Predicting Educational Relevance For an Efficient Classi-
fication of Talent (PERFECT) algorithm Engine (PAE). PAE
is based on eMLEFE and incorporates three algorithms known
as Noise Removal and Structured Data Detection (NR-SDD),
Good Fit Student (GFS), and Good Fit job Candidate (GFC).
We have published the preliminary results [40] and are work-
ing to apply LT model in its latest form to study, explore, and
validate further enhancements.

C. COMPARISON MEMO

Because of the novelty of the concept and unit’s mechanics
introduced and built in this article, we could not find exact
relevant model or technique in the literature we surveyed.
However, as we stated earlier in Section I that LT unit
worked as a centralized module in eMLEE. It controlled and
regulated the parallelism of the entire ML process, and it
showed promising improvements in several experiments and
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validation process of the classifier learning specially in the
ensembling and boosted approach (i.e., eMLEE). We have
recently published an article [41] about enhanced Feature
Engineering and Selection (eFES) that consumed LT In that
article, we have provided several evaluation tables with rele-
vant experimental quantified data for eFES comparison with
other existing techniques.

APPENDIX

A. DATA SET

We have utilized the data from the following domains listed
below. Some datasets were raw, CSV, and SQL lite format
with parameters and field definitions. We transformed all
our input data into the SQL Server data warehouse. Some
of datasets are found to be ideal for doing healthcare pre-
ventive medicine, stock market, epidemic, and crime control
prediction.

1. http://www.Kaggle.com - Credit Card Fraud Detection,
Iris species, Human Resource Analytics, 2015 Flight
Delays and Cancellations, Daily news for Stock Mar-
ket Prediction, 1.88 Million US Wildfires, SMS Spam
Collection Dataset, Twitter User Gender Classifica-
tion, Brest Cancer Wisconsin Data Set, Retail Data
Analytics, US Dept. of Education: College Score-
board, Death in the United States, US Mass Shoot-
ings, Adult Census income, Fatal Police Shootings,
Exercise Pattern Prediction, Netflix Prize Data, Pima
Indians Diabetes Database, WUZZUF Job Posts, Stu-
dent Survey, FiveThirtyEight, S&P 500 stock Data,
Zika Virus epidemic, Student Alcohol Consumption,
Education Statistics, Storm Prediction center.

2. http://snap.standford.edu — Facebook, Twitter, Wiki
and bitcoin data set.

3. https://docs.google.com/forms/d/1157Un32YH6S
kltntirUeLVpgfn33BfJuFLcYupg43oE/viewform?
edit_requested=true - online questionnaire from stu-
dents across 12 campuses in the world

4. http://archive.ics.uci.edu/ml/index.php - Iris, Car Eval-
uation, Heart disease data set, Bank Marketing Data

5. https://aws.amazon.com/datasets/ - Enron Email Data,
Japan Census data, 1000 Genomics Project,

6. https://cloud.google.com/bigquery/public-data/ - We
are experimenting it using BigQuery in our Sandbox
environment and will publish results in the future.

7. https://www.reddit.com/r/bigquery/wiki/das -

8. https://docs.microsoft.com/en-us/azure/sql-database/
sql-database-public-data-sets

B. TOOLS

Due to the years of background in databases and data archi-
tecture, we selected the Microsoft SQL Server [42] (Business
Intelligence, SQL Server Analysis Services, and Data min-
ing) as our data warehouse. Preliminary work was conducted
in Microsoft Azure ML tools. We used Microsoft Excel
data mining tools [43]. Due to our programing background,
we used Microsoft C# (mostly for learning in the beginning)
and Python and R language for the primary building of this
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model, and algorithms. There are various popular and useful
Python data analysis and scientific libraries' such as Pandas,
Numpy, SciPy?, Matplotlib, scikit-learn, Statsmodels, Scien-
tificPython, Fuel, SKdata, Fuel, MILK, etc. For R 1anguage3,
there are various libraries such as gbm, KlaR, tree, RWeka,
ipred, CORELearn, MICE Package, rpart, PARTY, CARET,
randomForest. We used some of them as were relevant to our
work and we are in the process of learning, experimenting
and using them for the future work. We also used GraphPad
Prism* to produce simulated results.
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