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ABSTRACT Flexible job shop scheduling problem (FJSP) is a typical discrete combinatorial optimiza-
tion problem, which can be viewed as an extended version of the classical job shop scheduling problem.
In previous researches, the scheduling problem has historically emphasized the production efficiency.
Recently, scheduling problems with green criterion have been paid great attention by researchers. In this
paper, themathematical model of the low-carbon flexible job shop scheduling problem is established with the
objective of minimizing the sum of the energy consumption cost and the earliness/tardiness cost. For solving
the model, a kind of bi-population based discrete cat swarm optimization algorithm (BDCSO) is presented to
obtain the optimal scheduling scheme in theworkshop. In the framework of the BDCSO, two sub-populations
are used to adjust the machine assignment and operation sequence respectively. At the initialization stage,
a two-component discrete encoding mechanism is first employed to represent each individual, and then a
heuristic method is adopted to generate the initial solutions with good quality and diversity. By considering
the discrete characteristics of the scheduling problem, the modified updating methods are developed for the
seeking and tracing modes to ensure the algorithm work directly in a discrete domain. To coordinate the
global and local search in each sub-population, six adjustment curves are used to change the number of cats
in the seeking and tracing modes, based on which six algorithms are developed, i.e., LBDCSO, SinBDCSO,
CosBDCSO, TanBDCSO, LnBDCSO, and SquareBDCSO. In addition, the information exchanging strategy
is introduced to implement the cooperation of the two sub-populations. Finally, extensive simulation based
on random instances and benchmark instances is carried out. The comparisons results demonstrate the
effectiveness of the proposed algorithms in solving the FJSP under study.

INDEX TERMS Flexible job shop, low-carbon production scheduling, energy consumption, bi-population
based discrete cat swarm optimization algorithm.

I. INTRODUCTION
Nowadays, energy consumption has become a major issue
in the world. The manufacturing industry has been viewed
as an intensive energy consumer, which is responsible for
about one-third of the total energy consumption. Therefore,
many companies are urged or even forced to adopt effec-
tive energy-saving measures to control the energy consump-
tion both for economic and environmental reasons. In the
manufacturing field, production scheduling is crucial for the

manufacturing performance, by which available resources in
the workshop can be properly allocated to tasks. In previous
researches, the scheduling problem has historically empha-
sized the production efficiency, such as makespan, tardi-
ness, lateness, etc. However, green metrics were seldomly
considered, such as energy consumption, CO2 emission,
etc. Until recent ten years, some researchers have real-
ized the importance of scheduling policies in reducing the
energy consumption. Then some environmental metrics are
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considered alongside traditional production indicators in the
energy-conscious optimization scheduling problems.

Mouzon and Yildirim [1] proposed a greedy randomised
multi-objective adaptive search algorithm to minimize total
energy consumption and total tardiness on a single machine.
Yildirim andMouzon [2] developed a multi-objective genetic
algorithm to minimize the energy consumption and the com-
pletion time of a single machine system. Shrouf et al. [3]
adopted a genetic algorithm to optimize the energy con-
sumption costs on a single machine by considering variable
energy prices. Che et al. [4] considered an energy-conscious
single machine scheduling problem under time-of-use (TOU)
strategy, in which electricity prices varies during a day.
Dai et al. [5] built an energy-efficient scheduling model
in a flexible flow shop and proposed a genetic-simulated
annealing algorithm to make a trade-off between makespan
and energy consumption. Ding et al. [6] addressed a carbon-
efficient scheduling problem in a permutation flow shop
with the criterion to minimize the total carbon emission and
makespan.Mansouri andAktas [7] developedmulti-objective
genetic algorithms for a two-machine flow shop scheduling
problem to make a trade-off between energy consumption
and makespan. Luo et al. [8] proposed an any colony opti-
mization algorithm to minimize the production efficiency and
electric power cost under the time-of-use policy. Li et al. [9]
developed an energy-aware multi-objective optimization
algorithm for solving the hybrid flow shop scheduling prob-
lem by considering the setup energy consumptions. Regard-
ing the reviewed literature, most of the energy-conscious
optimization scheduling researches concentrate on the simple
system, e.g., single machine or flow shop. Therefore, fur-
ther researches are needed to be carried out on this issue, and
more complex manufacturing system should be considered.

In the real-life production, many problems can be viewed
as a job-shop scheduling problem (JSP), such as workshop
scheduling in the industry, departure and arrival times of
logistic problems, the delivery times of orders in a company,
etc. [10]. As the extended version of the JSP, the flexible job
shop problem (FJSP) provides amore closer approximation to
the actual production. Compared with the JSP, the complexity
of the FJSP lies on the addition of the machine selection
for operations. In this paper, the manufacturing system of
a flexible job shop type is selected as the research object
to study the energy consumption optimization scheduling
problem. At present, there are some literature reported by
researchers about this type of problem. Jiang et al. [11]
considered a multi-objective flexible job shop scheduling
problem and proposed a modified non-dominated sorting
genetic algorithm tominimize the makespan, processing cost,
energy consumption and cost-weighted processing quality.
Zhang et al. [12] presented a model of low-carbon flexi-
ble job shop scheduling problem and developed a hybrid
non-dominated sorting genetic algorithm II to optimize both
production factors (makespan and machine workload) and
environmental influence (carbon emission). Lei et al. [13]
considered a FJSP and proposed a shuffled frog-leaping

algorithm to minimize the workload balance and energy
consumption. Yin et al. [14] proposed a new low-carbon
mathematical model to optimize productivity, energy effi-
ciency and noise reduction in the flexible job shop. A multi-
objective genetic algorithm based on a simplex lattice design
is develpoed to solve it. Piroozfard et al. [15] considered
a multi-objective flexible job shop scheduling problem to
minimize total carbon footprint and total late work criterion
and presented an improved multi-objective genetic algorithm
for solving it. Mokhtari and Hasani [16] designed an energy-
efficient scheduling in a flexible job shop and proposed an
enhanced evolutionary algorithm to optimize total comple-
tion time, total availability of the system and total energy
cost. For a energy-conscious optimization scheduling prob-
lem, the introduction of energy consumption increases the
number of variables and constraints, whichmakes the flexible
job shop scheduling problem more complex than the original
one. It is well-known that meta-heuristics is effective for
solving various optimization problems [17], [18]. Especially
for production scheduling problems, the application of meta-
heuristic algorithm has been the research hot spot in the
manufacturing filed.

For a meta-heuristic algorithm, the balance between explo-
ration and exploitation is very important for its searching
ability. As a bio-inspired intelligent algorithm, cat swarm
optimization (CSO) was originally developed by
Chu and Tsai [19], which has been used to solve different
optimization problems [20]–[23]. The main characteristics
of the algorithm is that it consists of two types of searching
modes (seeking and tracing) corresonding to the global and
local seach respectively. In the algorith, the global search
and local search can be conducted simultaneously during
the evolutionary process, which provides an opportunity to
implement the balance between the exploration and exploita-
tion abilities. Therefore, we attempt to design an effective
algorithm for solving the low-carbon FJSP based on the
searching mechnism of CSO. However, in the original CSO,
the evolutionary process is conducted based on the contin-
uous updating of individual positions, which means that the
original CSO cannot be directly used to solve the discrete
production scheduling problem. By considering the feature
of the low-carbon FJSP, we proposed a bi-population based
discrete cat swarm optimization algorithm (BDCSO). The
main contribution of this study are as follows: (1) a parallel
searching mechanism is proposed to divide the population
into two sub-popualtions, which can exchange their informa-
tion to implement the cooperation during the evolutionary
process; (2) a modified discrete updating approaches are
proposed to make the algorithm work directly in a discrete
domain; and (3) six adaptive adjustment curves are employed
to balance the ability of global and local search in each
sub-population. Extensive experimental data demonstrate the
effectiveness of our algorithm for the problem under study.

The rest of this paper is organized as follows: the low-
carbon FJSP scheduling problem is described in Section II.
The overview of the original CSO algorithm is described
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in Section III. The implementation of the bi-population based
discrete cat swarm optimization is addressed in Section IV.
In Section V, we report the experimental results, summarize
the findings of this study.

II. PROBLEM DESCRIPTION
The definition of the classical FJSP can be described that
n jobs to be processed on m machines. Each job consists of
a sequence of operations with known processing times. The
problem aims to achieve the optimal scheduling scheme by
determining the appropriate machine assignment and opera-
tion permutation. The traditional objectives of FJSP involve
the makespan, machine workload and due date, and so on.
Among these indicators, the due date may be more important
for many companies under the just-in-time (JIT) production
environment. Therefore, total earliness/tardiness cost is con-
sidered as one of the objectives in this study. Besides that, the
energy consumption cost is also considered during the pro-
duction process. Here, two types of energy consumption are
considered: the useful and the wasted. The former defines the
energy consumption required for processing jobs. The latter
represents the energy consumption when machines keep no-
load running within the time interval between two successive
jobs.

The scheduling objective is aiming to minimize the sum
of energy consumption cost and total earliness/tardiness cost.
For such a scheduling problem, the machine selection should
be considered because the energy consumption per unit time
will be different when an operation is processed a differ-
ent machine. In addition, the operation permutation on each
machine need to be optimized to reduce the energy consump-
tion of machines for no-load running. To make the problem
more concise, some assumptions should be satisfied as below.

(1) All machines and jobs are available at zero time.
(2) Each machine can process only one operation at a time.
(3) Each job cannot be interrupted once it is started.
(4) Each operation must be processed after its predecessor

is completed.
(5) Setup times of the machines are negligible.
(6) A machine cannot be stopped until all jobs assigned to

it are finished.
To facilitate the understanding of the model, some symbols

and variables are shown as follows:
n : the number of jobs in the workshop;
m : the number of machines in the workshop;
Ji : the number of operations of job i;
Oij : the jth operation of job i;
pijk : the processing time of Oij on machine k;
λijk : the energy consumption cost per unit time of Oijon

machine k;
θk : the energy consumption cost per unit time ofmachine k

on the standby mode;
κi : the earliness/tardiness cost per unit time of job i;
STij : the start time of Oij;
CTij : the completion time of Oij;
ξ : a big constant;

CS : the total cost in the workshop;
Ck : the completion time of machine k;
Wk : the workload of machine k;
yijk : 0-1 variable, ifOij is processed onmachine k , yijk =1;

otherwise, yijk =0;
ziji′j′k : 0-1 variable, if Oij is processed on machine k prior

to Oi′j′ , ziji′j′k =1; otherwise, ziji′j′k =0.

min CS =
n∑
i=1

Ji∑
j=1

m∑
k=1

λijkyijkpijk

+

m∑
k=1

θk (CTk−Wk )+
n∑
i=1

κi|ci−di| (1)

s.t. CTij−STij =
m∑
k=1

yijkpijk ,

i = 1, 2, · · ·, n; j = 1, 2, · · · , Ji (2)

STi(j+1) ≥ CTij, i = 1, 2, · · ·, n; j = 1, 2, · · · , Ji−1

(3)

STi′j′+ξ (1−ziji′j′k ) ≥ CTij, i, i′ = 1, 2, · · · , n;

j, j′ = 1, 2, · · · , Ji; k = 1, 2, · · · ,m (4)

STij+ξziji′j′k ≥ CTi′j′ ,

i, i′ = 1, 2, · · ·, n; j, j′ = 1, 2, · · ·, Ji;

k = 1, 2, · · ·,m (5)
m∑
k=1

yijk =1, i = 1, 2, · · ·, n; j = 1, 2, · · ·, Ji (6)

yijk ∈ {0, 1} , i = 1, 2, · · ·, n;

j = 1, 2, · · ·, Ji; k = 1, 2, · · ·,m (7)

ziji′j′k ∈ {0, 1} , i, i′ = 1, 2, · · ·, n;

j, j′ = 1, 2, · · ·, Ji; k = 1, 2, · · ·,m (8)

(1) addresses the objective of the problem, where the first
item represents the total useful energy consumption cost
for processing all jobs, the second defines the total wasted
energy consumption cost when machines are no-loading
running, and the third is the total earliness/tardiness cost;
(2) means that no preemption is allowed; (3) represents that
the operations of each job have priority constraints; (4) and
(5) ensure that each machine can process only one operation
simultaneously; (6) means that each operation cannot be
assigned to anothermachine once it starts; (7) and (8) presents
0-1 variables.

III. OVERVIEW OF CAT SWARM OPTIMIZATION
Cat swarm optimization (CSO)was first proposed by Chu and
Tsai [19], which was inspired from the behavior of natural
cats. In the algorithm, each individual can be viewed as a cat,
whose behavior can be classified into twomodes: seeking and
tracing. In the seekingmode, each cat stays in the rest position
but being alert-looking around its surrounding environment
for its next move, which corresponds the global search of
the algorithm. In the tracing mode, the cat moves with a
high speed to chase a prey or any moving target, which
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corresponds the local search of the algorithm. To combine
these two modes, during the searching process, cats are ran-
domly selected from the population according to a mixed
radio (MR) inside [0,1]. The steps of the CSO algorithm can
be described as below.
Step 1: Create a number of cats in the process.
Step 2: Randomly sprinkle the cats into the solution space,

and set the velocity of each cat. Then haphazardly pick
number of cats and set them into seeking and tracing mode
according to the value of MR.
Step 3: Calculate the fitness value of each cat, and find out

the cat with the best one.
Step 4: If the pth cat is in the seeking mode, apply it to the

seeking process; otherwise, apply it to the tracing process.
Step 5: Re-pick number of cats and set them into seeking

and tracing mode according to MR.
Step 6: Check the stopping condition. If met, terminate the

procedure; otherwise, go to Step 3.
The detailed description of the algorithm can be found

in [19].

IV. IMPLEMENT OF THE PROPOSED BDCSO
A. ENCODING APPROACH
Like other intelligence algorithms, the first step of construct-
ing a CSO is to define an appropriate encoding method.
As mentioned above, the energy consumption optimiza-
tion scheduling problem can be also made up of two
sub-problems, i.e., machine selection and operation permuta-
tion. Thus, a two-component discrete encoding mechanism is
adopted in our study. The first component attempts to select
appropriate machines to process operations, and the second
tries to obtain an operation permutation on each machine.

Taking a 3 × 2 FJSP (3 jobs, 2 machines) for exam-
ple, the encoding scheme can be illustrated in Fig.1,
where each job contains two operations to be processed.
In Fig.1, the first component denotes the machine selec-
tion scheme, whose values are stored in a fixed order.
The second component represents the operation permuta-
tion. The scheduling scheme in Fig.1 can be represented
by (O2

11,O
1
31,O

1
21,O

2
22,O

1
12,O

2
32), where O

2
11 represents the

first operation of Job 1 on Machine 2, and so on. Based on
the scheduling scheme, the start time of each operation could
be determined according to the earliest allowable time.

FIGURE 1. Encoding scheme for a 3 × 2 low-carbon FJSP.

B. POPULATION INITIALIZATION
For an intelligent algorithm, the quality of the initial solu-
tions is crucial for the performance of the algorithm. Some
different approach are used to generate the initial solutions
in order to ensure the initial population with good quality

and diversity. According to the characteristics of the problem,
the initialization process can be divided into two phases.
In the first phase, the machine selection is acquired by using
the global selection (GS), local selection (LS) and random
selection (RS) in [24]. In this paper, 40% of initial population
could be generated by GS, 40% by LS, and 20% by RS.
Once the machine selection is determined, all the operations
should be sequenced in the second phase. For each machine
selection, a predefined number of operation permutations are
generated at random. The combination of the two compo-
nents with the best fitness value will be selected as an initial
solution. This procedure will be repeated until all the initial
scheduling solutions are generated.

C. PARALLEL SEARCHING MECHANISM
The parallel searching means that the population of the algo-
rithm should be divided into several sub-populations, each of
which evolves independently and exchanging their informa-
tion during the evolutionary process. This mechanism may
result in the reduction of the population size of each sub-
population, but the cooperation can be implemented. As men-
tioned before, the low-carbon FJSP under study consists of
two sub-problems. Therefore, the objective can be optimized
by adjusting the operation permutation and machine selec-
tion, respectively. However, it may be unnecessary to modify
the two vectors of a certain solution simultaneously in every
iteration, especially for the local search. In the BDCSO,
the initial population is randomly divided into two sub-
populations (P1 andP2) of the same size to adjust themachine
selection and operation permutation respectively. During the
iteration, once the predefined iteration IES is achieved, an
exchanging strategy should be performed to exchange the
information between P1 and P2, which can be described as
follows:
Step 1: Respectively find the best individuals I1 and I2in

the two sub-populations.
Step 2: Apply I1(I2) to replace the worst individual in the

different sub-population I2(I1).
Step 3: End the procedure.

D. DISCRETE SEEKING MODE
In the original CSO, cats search for the solution by updating
their individual positions in a continuous domain. However,
the solution representation in Fig.1 implies that the problem
possesses the typical discrete characteristics. Therefore, it is
very important to develop a discrete updating mechanism for
individuals in order to make the algorithm directly search in a
discrete domain. Here, four neighborhood structures are used
to serve as the discrete search operators in the seeking mode
to implement the global search of the algorithm.

1) NEIGHBORHOOD STRUCTURES FOR MACHINE
SELECTION

MS1: Randomly select an operation with more than
one alternative machine in the first component of

VOLUME 6, 2018 46349



T. Jiang, G. Deng: Optimizing the Low-Carbon FJSP Considering Energy Consumption

a scheduling solution. Then a different machine is randomly
selected to replace the original one.

MS2: Randomly select an operation with more than one
alternative machine in the first component of a scheduling
solution. Then a machine with the smallest processing time
is selected to replace the original one.

2) NEIGHBORHOOD STRUCTURES FOR OPERATION
PERMUTATION

OP1: Randomly select two operations e1 and e2 belonging
to different jobs in the second component of a scheduling
solution, and then exchange the positions of e1 and e2.
OP2: Randomly select two operations e1and e2 belonging

to different jobs in the second component of a scheduling
solution, and then insert e2 before e1.
For each sub-population, the updating method in the dis-

crete seeking mode can be described as follows:
Step 1: Set p =1.
Step 2: Create η copies of cat p.
Step 3: Randomly perform the neighborhood structures

for machine selection (operation permutation) to each copies
in P1 (P2).
Step 4: Evaluate the fitness values of all copies and find the

copy with the best fitness.
Step 5: If the best copy is better than the original one,

update cat p; otherwise, remain the value of cat p.
Step 6: Set p = p + 1. If p is greater than the size of the

sub-population, end the procedure; Otherwise, go to Step 2.

E. DISCRETE TRACING MODE
For the original CSO, cats move towards the best solution
according to the velocities of each dimension in the trac-
ing mode. However, this method cannot be directly used to
generate a discrete scheduling. Thus, we proposed a modi-
fied discrete updating method based on the crossover oper-
ator between each individual and the current best solution.
If ‘rand’ is smaller than the crossover rate, the different
crossover methods are performed to P1and P2, where ‘rand’
represents a random number inside [0,1]. Here, the multi-
point crossover (MPX) is adopted for the machine selection
in P1 and the precedence preserving order-based crossover
(POX) is employed for the operation permutation in P2.

The detailed steps of the MPX can be illustrated by
Fig.2 and described as follows:
Step 1: Randomly generate a 0-1 set BL.
Step 2: Copy the machine number in the same place with

‘1’ in set BL from Parent 1 to Child 1and from Parent 2 to
Child 2.
Step 3:Exchange the rest machines in Parent 1 and Parent 2

to obtain Child 1 and Child 2.
The detailed steps of the POX can be illustrated by

Fig.3 and described as follows:
Step 1: Generate two subsets SS1 and SS2.
Step 2: Randomly choose jobs into SS1, others are filled

into SS2.

FIGURE 2. MPX crossover operation.

FIGURE 3. POX crossover operation.

TABLE 1. Related parameters for the low-carbon scheduling problems.

Step 3: Copy the jobs in SS1 from Parent 1 to Child 1 and
from Parent 2 to Child 2, and keep their positions unchanged.
Step 4: Copy the jobs in SS2 from Parent 2 to Child 1 and

from Parent 1 to Child 2, and keep their positions unchanged.

F. DYNAMIC ADJUSTMENT METHOD OF MR
As mentioned above, the numbers of cats in the two modes is
determined by MR, which represents the degree of emphasis
on global and local search. It is well-known that the effective
coordination between global search and local search can
help the algorithm avoid the premature and obtain the rapid
convergence. However, in the original CSO, MR is preset
and fixed during the whole evolutionary process. There-
fore, we developed a dynamic adjustment method of MR,
by which cats are encouraged to explore the global search
space at the early stage of the optimization, cluster around
the local optimum and exploit information to converge on
the global optimum at the latter stage. To implement it, six
dynamic adjustment curves of MR are adopted in (9)-(14),
where MRmaxand MRmindefine the maximum and minimum
values of MR, tmax is the maximum iteration. The corre-
sponding algorithms are named as LBDCSO, SinBDCSO,
CosBDCSO, TanBDCSO, LnBDCSO and SquareBDCSO.

MR = MRmax − (MRmax −MRmin)t/tmax (9)
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TABLE 2. Comparison results of the six proposed algorithms for low-carbon FJSP.

MR = MRmax − (MRmax −MRmin) sin(tπ/(2tmax)) (10)

MR = (MRmax −MRmin) cos(t/tmax) (11)

MR = MRmax − (MRmax −MRmin)tan(tπ/(4tmax)) (12)

MR = MRmax − (MRmax −MRmin)ln(1+ t(e− 1)/tmax)

(13)

MR = MRmax − (MRmax −MRmin)(t/tmax)2 (14)

G. PROCEDURE OF THE BDCSO
The steps of BDCSO can be illustrated by Fig.4 and described
as follows:
Step 1: Generate the initial population according to the

predefined population size.

TABLE 3. ANOVA table for ARPD of six Different BDCSOs.

Step 2: Randomly split the population into two sub-
populations (P1 and P2) with the same size.
Step 3: For the sub-populations, adjust the machine selec-

tion and operation permutation respectively.
Step 3.1: Separate the sub-population into two groups

according to the value of MR.
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TABLE 4. Effectiveness analysis of the improvement strategy.

TABLE 5. ANOVA table for testing the effectivenss of improvement
strategy.

Step 3.2: If the cat is in the seeking mode, apply it to the
seeking process; otherwise, apply it to the tracing process.
Step 4: Evaluate the fitness values of cats and update the

best individual.
Step 5: Check the information exchanging condition. If it

is met, perform the exchanging procedure.
Step 6: Check the stopping criterion. If met, output the

optimum and end the procedure; otherwise, go to Step 3.

V. RESULTS AND DISCUSSION
To test the performance of the proposed BDCSO, we coded
the algorithm in FORTRAN and run it on VMware Worksta-
tion with 2GB main memory under WinXP.

To evaluate the effectiveness of our presented algorithm for
the low-carbon scheduling, sixteen instances are generated
with the number of machines m ∈ {5, 10, 15, 20}and the
number of jobs n ∈ {20, 50, 80, 100}. Other parameters are
randomly generated following a discrete uniform distribution
in Table 1, where nop represents the number of operations of
each job, andmeq denotes the number of alternativemachines
for each operation. In addition, the due date data is set accord-
ing to the method developed by Demirkol et al. [25], which

can be shown by di =
(
1+ 0.3×n

m

)
×

Ji∑
j=1

pij.

FIGURE 4. The framework of the BDCSO.

We first compared the performance of the six algorithms
with different adjustment curves of MR in Table 2. Parame-
ters of these algorithms are set as follows: the size of each
sub-population is 50, the maximum iteration tmax is 500,
η is 15, the crossover rate is 0.8, the information exchanging
parameter IESis 40. For each instance, ten independent runs
are conducted for each algorithm. ‘Best’ means the best
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TABLE 6. Comparison with the published algorithms for low-carbon FJSP.

value in the ten runs of each algorithm. ‘Avg’ denotes the
average values of the ten runs. ‘Time’ represents the aver-
age computation time (in seconds). ‘ARPD’ is the average
relative percent difference, which can be shown by ARPD =
R∑
r=1

100×(Aolr−Min)
Min /R, where ‘R’ is the number of runs, ‘Min’

is the minimum solution among the all conducted experi-
ments which is represented by boldface, Aolr is the obtained
value in the r th run by the algorithm for each instance.
In addition, ‘Mean’ defines the average results obtained by
each algorithm for the sixteen instances. We can see from
Table 2, CosBDCSO spends a relative longer time, but it
outperforms other algorithms in terms of other computational
performance.

To statistically analyze the results in Table 2, an analysis of
variance (ANOVA) test is conducted in Table 3, whese each

algorithm is considered as a factor and ARPD is viewed as
the response variaerble. The results indicate that there are
significant differences among the algorithms with p-value
very close to zero. In addition, the box plots of the compared
algorithms are shown in Fig. 5.

In this paper, some improvement strategies are employed
to enhance the performance of the proposed algorithm. The
heurisitic method is used to improve the quality of the ini-
tial solutions, and the parallel search mechanism is adopted
to implement the cooperation between the sub-population.
Here, the effectiveness of the two improvement strategies
are tested in Table 4, where ‘CosSDCSO’ represents the
algorithm where the bi-population of CosBDCSO is replaced
by a single population. ‘CosBDCSO-RR’ represents the algo-
rithm where the initial solutions are generated by the random
rule.
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FIGURE 5. Box plot of the six diffrent BDCSOs.

FIGURE 6. Box plot of the algorithms in Table 4.

FIGURE 7. Box plot of the algorithms in Table 6.

To facilitate the comparison, the population size of the
CosSDCSO is set to be 100, and other parameters are
the same with the CosBDCSO. The parameters of the
CosBDCSO-RR are the same with the CosBDCSO. From
Table 4, it is clear that CosBDCSO yields the better results
with a little longer time. Thus, it can be concluded that
the heuristic method and the parallel search mechanism
are both effective for improving the performance of the
algorithm.

To statistically analyze the results in Table 4, an analysis of
variance (ANOVA) test is conducted in Table 5. The results
indicate that there are significant differences among the algo-
rithms with p-value very close to zero. The box plots of the
compared algorithms are shown in Fig. 6.

TABLE 7. ANOVA table for the comparison with publlished algorithms.

To further verify the effectiveness of our algorithm,
CosBDCSO is compared with some published algorithms
in Table 6, which are SinGWO [26], HGWO [27], EGA [24]
and MBA [28]. The parameters of the compared algorithms
are set as follows: for SinGWO, the population size is 200,
the maximum iteration the algorithm is 500, the maximum
iteration of the local search is 10; for HGWO, the population
size is 100, the maximum iteration of the algorithm is 500,
the crossover rate is 0.8, the mutation rate is 0.2, the max-
imum iterations of variable neighborhood search and local
search are both 10; for EGA, the population size is 100,
the maximum iteration of the algorithm is 2000, the crossover
rate is 0.8, the mutation rate is 0.1; for MBA, the population
size is 100, the maximum iteration of the algorithm is 500,
the maximum iteration of the local search is 10. See from
Table 6, it is clear that CosBDCSO performs better than other
algorithms with an acceptable time.

To statistically analyze the results in Table 6, an analy-
sis of variance (ANOVA) test is conducted in Table 7. The
results indicate that there are significant differences among
the algorithms with p-value equal to zero. The box plots of
the compared algorithms are shown in Fig. 7.

VI. CONCLUSIONS
In this paper, a kind of bi-population based discrete cat
swarm optimization algorithm (BDCSO) was presented to
solve the low-carbon flexible job shop scheduling problem.
In this framework, the cooperation between the two sub-
populations was implemented by exchanging the informa-
tion during the evolutionary process. At the initialization
phase, a two-component discrete encoding mechanism was
first developed, and a heuristic-based initialization method
was used to ensure the quality and diversity of the initial
population. By considering the discrete characteristics of the
problem, the modified updating approaches were proposed
in the seeking and tracing modes, by which the algorithm can
work directly in a discrete domain. In addition, in order to
balance the global and local search in each sub-population,
six adjustment curves were employed to adjust the number
of cats in the seeking and tracing modes. Consequently,
we obtained six algorithms, i.e., LBDCSO, SinBDCSO, Cos-
BDCSO, TanBDCSO, LnBDCSO and SquareBDCSO.

A number of experiments based on randomly generated
instances and benchmark instances were carried out. The
comparisons results demonstrate that: (1) the parallel search
mechanism is effective for improving the performance of
the algorithm (2) Among the six algorithms with different
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adjustment curves of MR, CosBDCSO can obtain the best
results with an acceptable computational time, whose results
is also better than the published algorithms.

In future work, the low-carbon FJSP will be further studied
by considering some practical constraints, e.g., the adjustable
speeds of machines, time-of-use electricity policy, etc. For
the BDCSO, some novel and effective neighborhood struc-
tures for the low-carbon FJSP should be presented in the
seeking mode. In addition, the application of CSO to other
combination optimization problems may also be a promising
direction.
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