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ABSTRACT Image inpainting, a commonly used image editing technique for filling the mask or missing
areas in images, is often adopted to destroy the integrity of images by forgers with ulterior motives.
Compared with the other types of inpainting, the sparsity-based inpainting exploits more general prior
knowledge and has a broader application scope. Although many methods for detecting exemplar-based and
diffusion-based inpainting have been successfully studied in the literature, there is still a lack of effective
schemes for detecting the sparsity-based inpainting. In this paper, to fill this gap, we proposed a novel
algorithm for sparsity-based image inpainting detection. We revealed the potential connection between
sparsity-based inpainting and canonical correlation analysis (CCA). This type of inpainting has a strong
effect on the CCA coefficients. Based on this observation, a modified objective function of CCA and
a corresponding optimization algorithm are further proposed to enhance the inter-class difference in our
feature set. Experimental results on three publicly available data sets demonstrated our method’s superiority
over other competitors. Particularly, compared with previous inpainting detection methods, the proposed
framework yields better performances in the cases of JPEG compression and Gaussian noise addition. The
proposed method also shows promising results when employed to detect other types of inpainting.

INDEX TERMS Image forensics, image inpainting detection, sparse learning, canonical correlation
analysis (CCA).

I. INTRODUCTION
During the past decade, many image editing software, which
is convenient and labor-light, has been made available pub-
licly. Although such editing tools are not designed for tam-
pering images with vicious intentions, non-experts are able to
produce a forged image without noticeable artifact. To fight
against the malicious forgers, image forensics has been
emerging [1]–[3]. Most of the forensic tasks are focused on
one or several specific tampering behaviours, e.g. resampling
detection [4], [5], copy-move detection [6], [7], cameramodel
identification [8], [9], JPEG compression [10], [11], spatial
filtering [12], [13], and contrast enhancement [14], [15].

For a particular type of forgery action, the judicial author-
ity needs to develop novel forensic schemes to defend it.

In recent years, many types of image inpainting algorithms
have been proposed, e.g.GAN-based methods [16], low-rank
based methods [17], diffusion-based methods [18], exemplar-
based methods [19], and sparsity-based methods [20]. While
image inpainting has been drawing increasing research atten-
tion for years, the corresponding image inpainting detection
method has attracted relatively much less attention. Although
malicious tampering is not the original intention of image
inpainting technology, forgers can easily get and use these
image inpainting software to tamper some images with ulte-
rior motives, e.g. object removal [19]. Also inpainting is
ordinarily used as post-processing to retouch the traces left
by other tampering operations. If an image is identified as an
inpainted one, this image can be highly suspicious.
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Researchers investigated the traces of exemplar-based
inpainting for image forensics. Wu et al. [21] introduced the
zero-connectivity features to calculate the matching degree of
test blocks, and made a distinction between original regions
and inpainted regions with the help of fuzzy membership.
Bacchuwar et al. [22] exploited the luminance component
of the image and median comparison of the blocks to pro-
pose the ‘‘Jump Patch Block Match’’ algorithm. It greatly
reduced the computational cost. Chang et al. [23] searched
similar blocks in an image and removed the false positives
caused by uniform areas. Their automatic forgery detection
framework is terminated by identifying forged areas with the
multi-region relation algorithm. Liang et al. [24] integrated
central pixel mapping, greatest zero-connectivity component
labeling and fragment splicing detection into a joint detec-
tion framework with high efficiency. Zhang et al. [25] indi-
cated that post-processing, e.g. JPEG compression, Gaussian
noise addition, destructs the similarity among block pairs and
synchronously disorders the correlations of adjacent pixels.
It was shown that using the joint probability density matrix
of DCT coefficients as a feature set can achieve high perfor-
mance with post-processing.

Li et al. [26] aimed to detect image inpainting in the JPEG
format. They used the first digits of individual alternate cur-
rent modes to reveal the different JPEG compression history
in different image patches. Zhao et al. [27] designed the fea-
ture set by using absolute differences between the test image
and the re-saved images with different JPEG quality factors.
Diffusion-based inpainting detection has been recently stud-
ied by Li et al. [28]. The authors reviewed the process of
this type of inpainting and found that it tends to preserve the
isophote direction. A feature set depending on the changes
in the image Laplacians along the direction of isophote is
extracted. Experimental results show high performance even
under interferences of gamma correction, rotation, scaling
and JPEG compression.

Although some pioneers have made many worthwhile
contributions to detect diffusion-based and exemplar-based
inpainting, these two types of image inpainting have limi-
tations in real-world applications. Diffusion-based inpaint-
ing generally can obtain satisfied results in small regions,
however it may cause some blurring artifacts, especially
when missing parts of the image are large or complex
[29], [30]. This type of inpainting tends to reconstruct flat-
looking images due to the lack of semantic texture/structure
synthesis [31]. It performs poorly when adapted to process
images that are continuous by parts (cartoon-like) [32].
Exemplar-based inpainting methods usually can manipu-
late large masks in an image, however they may fail when
there is no strong self-similarity within target images [33].
It is also likely to cause discontinuous edges along the
patches since these methods generally do not check for visual
consistency [34].

Apart from diffusion-based and exemplar-based meth-
ods, sparsity-based inpainting is another complementary type
of inpainting, though it is largely ignored by researchers.

Compared with the above two types of methods, sparsity-
based methods use more general prior knowledge in image
processing and also have a broader scope of applications.
It is shown that sparsity-based inpainting is more robust
to noise [35] and more suitable for filling large texture
areas [36]. Especially in the application of missing block
completion, sparsity-based methods can fill in the missing
region with relatively composite textures and structures effec-
tively [31]. In this paper, we focus on the detection of sparsity-
based image inpainting, a largely ignored research topic in the
current literature.

To better distinguish the forgery image edited by sparsity-
based inpainting, we propose a novel method to detect this
type of inpainting. We study the changes of signal linear
dependence after the inpainting operation.Motivated by these
informative changes, a modified CCA objective function
is proposed to model the changes, and a corresponding
optimization algorithm is proposed by using the Alternat-
ing Direction Method of Multipliers (ADMM). Experiments
show competitive and robust results with different parame-
ters. The main contributions of this paper can be summarized
as follows:

1) We review the fundamental principles of sparsity-based
inpainting to identify the hidden traces in images cre-
ated by this operation. To the best of our knowledge,
it is the first work to detect sparsity-based inpainting.

2) We uncover the relationship between sparsity-based
inpainting and the traditional CCA. To characterize
inpainting signals properly, a modified CCA formula-
tion is presented.We also develop an iterative algorithm
for optimizing the new objective function by ADMM.

3) Experimental results on several public datasets show
that the proposed method achieves significant perfor-
mance improvements. The proposed method shows its
robustness for JPEG compression and Gaussian noise.

The remainder of this paper is organized as follows.
Section II reviews the procedure of sparsity-based image
inpainting and CCA, and illustrates the inpainting effects on
coefficients of CCA. In section III, we formulate the objective
function and present the optimization algorithm. Extensive
experimental results with various parameters are presented
in section IV. Finally, we conclude our paper and outline the
future work in section V.

II. BACKGROUND
A. SPARSITY-BASED IMAGE INPAINTING
Image sparsity priors have attracted research attention for
years in the image processing community. In [20], Elad
pointed out that the image inpainting problem can also be
handled assuming sparsity priors. Generally, a block of an
image can be vectorized into z ∈ Rd1 . Assuming that z can be
represented by a predefined redundant dictionaryD ∈ Rd1×d2

and a sparse vector α ∈ Rd1 , such as ‖α‖0 = k0, z = Dα.
We then define a degradation matrix M ∈ R(p−q)×p that

removes q samples from the signal z. Corresponding to the
mask positions,M is built by removing arbitrary q rows from
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FIGURE 1. An example of sparsity-based image inpainting is presented. (a) an original block. (b) a block with a mask.
(c) an inpainted block.

FIGURE 2. An illustration of sparsity-based image inpainting. There are
two major steps in sparsity-based image inpainting process. (1) Use the
original signals and a part of the predefined dictionary to learn a sparse
vector from sparse learning; and (2) Use the sparse vector and another
part of the predefined dictionary to learn the inpainting signals. It is
assumed in sparsity-based inpainting that both known and unknown
regions share the same sparsity in signals. Therefore, they have the same
sparse vector α� in the sparse learning process.

a p× p identity matrix. The image inpainting problem can be
formulated as:

min
α
‖α‖0 s.t. z =MDα. (1)

In the real inpainting scenarios, the process has two major
steps. The sparse vector α� is first learned by the known part
pixels �K :

min
α�
‖α�‖0 s.t. �K

= DKα�, (2)

where DK
=MD removes the elements of D in each masked

position. Thereafter, the unknown part pixels �U can be
estimated as:

�̂U
= DUα�, (3)

where DU represents the elements in D corresponding to the
positions of unknown pixels.

This type of inpainting mainly exploits the sparse priors
in image processing. The general assumption in sparsity-
based image inpainting is that both the known and unknown
regions share the same sparsity in signals. Thus, they have the
same sparse vector α� in the sparse learning process. Fig. 2
illustrates the process of sparsity-based image inpainting.

Compared with other types of image inpainting oper-
ations, e.g. diffusion-based inpainting and exemplar-
based inpainting, sparsity-based inpainting uses more
general prior knowledge in image processing. Conse-
quently, it also has a wider range of practical applica-
tions. No matter in flat image regions or structured texture
areas, sparse learning can preserve signal characteristics
appropriately.

B. CANONICAL CORRELATION ANALYSIS (CCA)
As a result of sparsity-based inpainting, the inpainted sig-
nals are relevant to the same redundant dictionary. This fact
inspired us to uncover the hiding traces of inpainted signals
via CCA that is a measurement of the relationship between
two variables. Suppose we have X ∈ Rn1×n2 and Y ∈
Rn1×n2 with covariances 6XX , 6YY and cross-covariance
6XY respectively. The purpose of CCA is to find two bases
{A,B} to have the maximal correlation between linear com-
binations ATX and BTY:

{A,B} = argmax
A,B

corr(ATX;BTY)

= argmax
A,B

AT6XYB√
AT6XXABT6YYB

. (4)

To solve the above objective function, we add the same
constraints as those in [37]. In this way, it can be simplified
as:

max
A,B

tr(AT6XYB)

s.t. AT6XXA = BT6YYB = I, (5)

where tr(·) indicates the trace of a matrix and I means the
identity matrix.

C. ARTIFACTS OF SPARSITY-BASED IMAGE INPAINTING
ON CCA COEFFICIENTS
As illustrated in Fig. 3, there is a potential connection
between sparsity-based image inpainting and CCA. They
share the similar mathematical formulation and assumption.
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FIGURE 3. The potential connection between sparsity-based image
inpainting and CCA. Their mathematical formulation and assumption are
similar: (1) They are both matrix projection in a mathematical
formulation; and (2) Sparsity-based inpainting assumes that the sparse
vectors are equal for untouched signals and inpainting signals, while
canonical correlation analysis assumes that the canonical variables have
maximum correlations. If the canonical variates are equal, they will have
high correlations.

FIGURE 4. Illustrative effects of the sparsity-based image inpainting
operation on traditional CCA coefficients. We note significant differences
in the magnitude of absolute values after the sparsity-based image
inpainting operation. (a) CCA coefficients of an original image block; and
(b) CCA coefficients of an inpainted image block.

They are both matrix projection in a mathematical formula-
tion. Sparsity-based inpainting assumes that the sparse vec-
tors are equal for untouched signals and inpainting signals,
while CCA assumes that the canonical variables have the
maximum correlations. If the canonical variables are highly
similar, they should have high correlations.

According to [20], in a practical sparsity-based inpainting
process, if a randomly selected row is discarded in D, it may
cause changes in linear dependency. The coefficients in CCA
can reveal the linear relationship in the data. To this end,
we apply the traditional CCA on inpainted image blocks,
and the results are illustrated in Fig. 4. As we can see in the
figure, sparsity-based image inpainting significantly changes
the absolute values of the basis in CCA after inpainting.

Furthermore, in the view of CCA, we can use the rank
of AT and BT to represent the linear dependence of DK and
DU in inpainting process. From this point of view, the rank
of the input data or the basis in CCA can be an effective
feature set to distinguish the inpainted signals. We therefore
further propose a modified CCA formulation with low-rank
constraints. Our scheme will be presented in the following
section. By adjusting the parameter balancing the traditional
CCA item and the low-rank regularization item,we can obtain
an effective feature set.

III. THE PROPOSED METHOD
In this section, we describe the proposed method in detail.
First, we define a modified CCA objective function with
low-rank constraints. Further, an optimization algorithm is
proposed to solve it.

A. FORMULATION OF CCA WITH LOW-RANK
CONSTRAINTS (CCALR)
Inspired by the observations in the previous section,
we attempt to add constraints on the coefficient of the tradi-
tional CCA to improve the classification performance. Hence,
we define the following objective function with low-rank
constraints on A and B:

min
A,B

rank(A)+ rank(B)− δtr(AT6XYB)

s.t. AT6XXA = BT6YYB = I, (6)

where rank(·) is the rank operator of a matrix, δ is
a predefined balance parameter. According to Sylvester’s
inequality [38], if {A,B} ∈ Rm1×m2 , m = min{m1,m2},

rank(A)+ rank(B)− m 6 min{rank(A), rank(B)}. (7)

Without loss of generality, assuming rank(A) 6 rank(B),
we can get

min
A,B

rank(A)− δtr(AT6XYB)

s.t. AT6XXA = BT6YYB = I. (8)

Since Eq.(8) is discontinuous and non-convex because of
the rank(·) operation, it is hard to find an optimal solu-
tion. As a common practice in rank minimization problems,
we relax it to the nuclear norm ‖·‖∗ which is the sum of
singular values of a matrix. In addition, we also relax the
constraint of AT6XXA = I in traditional CCA. Thus, our
objective function becomes a convex optimization problem:

min
A,B
‖A‖∗ − δtr(A

T6XYB)

s.t. BT6YYB = I. (9)

In this format of our objective function, since both the
traditional CCA item δtr(AT6XYB) and the low-rank regu-
larization item ‖A‖∗ are convex, the whole function in Eq.(9)
is also convex [39]–[41]. In the following, we will introduce
an optimization scheme to solve Eq.(9) by ADMM.

B. OPTIMIZATION
In this part, we adopt ADMM [42] to solve the objective
function Eq.(9). ADMM divides a complicated problem into
a couple of separable subproblems, which is widely used in
low-rank optimization.

First, as a common approach for previous solutions of
low-rank optimization, we introduce a relaxed variable C to
substitute A, reformulating Eq.(9) into:

min
A,B,C

‖A‖∗ − δtr(C
T6XYB)

s.t. BT6YYB = I,A = C. (10)
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The augmented Lagrangian function of Eq.(10) can be
written as L:

L(A,B,C,Y1,Y2, µ)

= ‖A‖∗ − δtr(C
T6XYB)

+

〈
Y1,BT6YYB− I

〉
+ 〈Y2,A− C〉

+
µ

2

(∥∥∥BT6YYB− I
∥∥∥2
F
+ ‖A− C‖2F

)
,

= ‖A‖∗ − δtr(C
T6XYB)

+
1
2

∥∥∥∥BT6YYB− I+
Y1

µ

∥∥∥∥2
F
+

1
2

∥∥∥∥A− C+
Y2

µ

∥∥∥∥2
F
,

(11)

where 〈·, ·〉 denotes the trace of inner product, ‖·‖F is the
Frobenius norm, Y1 and Y2 are two Lagrange multipliers, µ
is a penalty parameter.

For better explanation, we use t to indicate the tth iteration
step in ADMM. At ,Bt ,Ct ,Y1,t ,Y2,t and µt are defined as
the variables updated in the tth iteration. Hence, each variable
in the t + 1 iteration can be calculated as follows:

(1) For A:
By fixing Bt ,Ct ,Y1,t ,Y2,t , µt and eliminating irrelevant

terms, At+1 can be optimized by:

At+1 = argmin
A

L(A,Bt ,Ct ,Y1,t ,Y2,t , µt )

= argmin
A

1
2

∥∥∥∥A− (Ct −
Y2,t

µt
)

∥∥∥∥2
F
+ ‖A‖∗. (12)

Since Eq.(12) is strictly convex, there exists a unique solution.
It is also a standard form of the Singular Value Threshold-
ing Algorithm [43] with a closed form solution. Under the
framework in [43], we first define 8 = Ct − Y2,t/µt and
perform the Singular Value Decomposition (SVD) as 8 =
U2VT , 2 = diag({σi}ri=1). The matrices U and V are left-
singular and right-singular matrices respectively, and r is the
rank of 8. Accordingly the optimal At+1 can be updated
as:

At+1 = D1(8), (13)

where the singular value shrinkage operator is utilized by
D1(8) = UD1(2)VT , D1(2) = diag({σi − 1}+) and the
subscript ‘‘+’’ denotes the positive part of {σi − 1}.
(2) For B:
While keeping the variables At ,Ct ,Y1,t ,Y2,t , µt fixed,

the optimization of Bt+1 can be reformulated by:

Bt+1 = argmin
B

L(At ,B,Ct ,Y1,t ,Y2,t , µt )

= argmin
B
{ − δtr(CT

t 6XYB)

+
1
2

∥∥∥∥BT6YYB− I+
Y1,t

µt

∥∥∥∥2
F
} . (14)

To solve Eq.(14), we calculate the derivative of Eq.(11) with
respect to B, and obtain:

∂L
∂B
= 6YYB

YT
1,t

µt
+6T

YYB
Y1,t

µt
− δ6T

XYCt . (15)

By setting this partial derivative of Eq.(11) to be zero, Bt+1
can be updated as:

Bt+1 = δµt6−1YY6
T
XYCt ·

(
YT
1,t + Y1,t

)−1
. (16)

(3) For C:
Similarly, by ignoring the terms independent of C in

Eq.(11), the solution of Ct+1 can be rewritten as:

Ct+1 = argmin
C

L(At ,Bt ,C,Y1,t ,Y2,t , µt )

= argmin
C
{ − δtr(CT6XYBt )

+
1
2

∥∥∥∥At − C+
Y2,t

µt

∥∥∥∥2
F
} . (17)

Dropping the constant terms, the derivative of Eq.(11) with
respect to C is computed as:

∂L
∂C
= C− At −

Y2,t

µt
− δ6XYBt . (18)

Setting this partial derivative of Eq.(11) to be zero, we can
derive:

Ct+1 = At +
Y2,t

µt
+ δ6XYBt . (19)

(4) For Y1, Y2 and µ:
Finally, the Lagrange multipliers Y1, Y2 and penalty

parameter µ can be updated as:

Y1,t+1 = Y1,t + µt

(
BTt 6YYBt − I

)
Y2,t+1 = Y2,t + µt (At − Ct)

µt+1 = min(ρµt , µmax), (20)

where µmax is the upper bound of µ, and ρ is a constant
chosen in advance.

To clearly describe the above proposed framework (e.g.,
the initialization step), its main steps are given inAlgorithm 1.

IV. EXPERIMENTAL RESULTS
In this section, we carry out experiments under different cir-
cumstances to demonstrate the performance of the proposed
method. We give a detailed description of datasets and the
experimental setup. Then convergence and parameter sensi-
tivity are taken into consideration. Finally, the performance of
synthetic inpainted images with and without post-processing
is shown.

A. DATASETS AND EXPERIMENTAL SETUP
In this paper, we evaluate different methods on three widely
used forensic datasets:
• Uncompressed Color Image Database (UCID) [44]:
It is a commonly used dataset which consists
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Algorithm 1 The Proposed Algorithm
Require:

Inpainted signals X, Y, the balance parameter δ;
Ensure:

The bases of CCALR, A, B;
1: Initialize t = 0,A0 and B0 as two random matrices,

C0 = A0,Y1,0 = Y2,0 = 0;
2: Initialize ρ = 1.9, µ0 = 10−3, µmax = 106;
3: while not converged do
4: Fix others and update At+1 by Eq.(13):

At+1← D1(8);
5: Fix others and update Bt+1 by Eq.(16):

Bt+1← δµt6
−1
YY6

T
XYCt ·

(
YT
1,t + Y1,t

)−1
;

6: Fix others and update Ct+1 by Eq.(19):
Ct+1← At + Y2,t/µt + δ6XYBt ;

7: Update the multipliers Y1,t+1 and Y2,t+1 by Eq.(20):
Y1,t+1← Y1,t + µt

(
BTt 6YYBt − I

)
Y2,t+1← Y2,t + µt (At − Ct);

8: Update the parameter µt+1 by:
µt+1← min(ρµt , µmax);

9: Check the convergence conditions;
10: Update the iteration variable using t = t + 1;
11: end while

of 1,338 uncompressed TIFF images on a variety of
topics including natural scenes and man-made objects,
both indoors, and outdoors.1 The typical image sizes
are 512 × 384 or 384 × 512. We use this dataset to
demonstrate the effectiveness of our method in low-
resolution formats.

• Raw Images Dataset (RAISE) [45]: It is a new col-
lection of untouched and diverse data which covers
8,156 raw images including a wide variety of both
semantic contents and technical parameters.2 We con-
duct experiments on this dataset to show our method’s
performance on high-resolution images.

• Dresden Image Database (DID) [46]: It is a traditional
dataset for forensics with more than 14,000 images
covering different camera settings, environments and
specific scenes.3 This dataset is often used for camera
identification by many previous researchers since it con-
tains images captured by various camera brands, models,
and settings. We use this dataset to show the reliability
of our method for different camera models.

In [20], Elad summarized the fundamental theory of
sparsity-based image inpainting and provided open source
codes for implementing his sparsity-based type of inpainting.
Compared with other work of sparsity-based inpainting, this
work [20] is more general and more suitable for images
with moderate missing regions. Detection of the work [20]
is meaningful in practical applications. In the experiments,

1http://vision.doc.ntu.ac.uk/
2http://mmlab.science.unitn.it/RAISE/
3http://forensics.inf.tu-dresden.de/ddimgdb/

we use the codes in Elad’s work [20] for inpainting the
images.4 An example of an inpainted image by his code is
shown in Fig. 1.
Given an RGB color image, the test image is cut into blocks

with size b, e.g. 32 × 32, 64 × 64, and then mask locations
are chosen randomly. We repeat the same inpainteing process
for three RGB channels respectively and then merge them
together to create an inpainted RGB image. As Fig. 1 shows,
the sparsity-based inpainting can fill the mask perfectly when
the dictionary is redundant and the reconstruction error σ is
selected properly.

The left and right parts of a test block are taken as the
input matrices X and Y in our method. Specifically, for each
color channel, we use the im2col() function in Matlab
to rearrange each distinct 4-by-4 patch in the left or right
part of the input block into a column of 16 elements. Then,
we concatenate all three channels as columns of the matrices
X and Y. Finally, we obtain our input matrices {X,Y} ∈
R16×(3b2/16). In the view of CCA, 16 denotes the number of
observations (rows), while (3b2/16) represents the number of
variables (columns).

In our preliminary experiments, the CCA coefficients and
the rank of these coefficients are extracted as the feature
set separately. We find that both of them are effective to
distinguish the inpainted and original blocks. In the following
results, a test block is classified as inpainted when it is
classified as inpainted by both the CCA coefficients and the
rank of these coefficients.
Here the widely used libSVM [47] is employed for clas-

sification. The performance is generally evaluated by the
following three criteria, where TP (True Positive), FP (False
Positive), FN (False Negative), TN (True Negative) represent
the corresponding number of blocks respectively:

• Accuracy: A measure indicates the fraction of true sam-
ples which are classified correctly among all samples.

Accuracy =
TP+ TN

TP+ FP+ TN + FN
. (21)

• Recall (or Sensitivity): A measure denotes the pro-
portion of correctly detected positive results among all
positive results.

Recall =
TP

TP+ FN
. (22)

• F1-score: A measure that combines precision and recall
is the harmonic mean of precision and recall.

F1 =
2TP

2TP+ FN + FP
. (23)

Our experiments were implemented on the machine which
includes 16 GB of RAM and an Intel Core i7-3770 CPU.
The average results of 5 trials are presented as the final
experimental results.

4Matlab codes and supplementary materials for his work are available at
http://www.cs.technion.ac.il/∼elad/software/
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FIGURE 5. Histogram distributions of rank(A) corresponding to original blocks and tampered blocks respectively. We collected 2,500 original and
inpainted blocks of size 32 × 32. The first row represent the original data case, while the second row represents the inpainted data. As the parameter δ
changes, there are significant differences between them. (a) original blocks, traditional CCA. (b) original blocks, δ=10. (c) original blocks, δ=100.
(d) original blocks, δ=200. (e) inpainted blocks, traditional CCA. (f) inpainted blocks, δ=10. (g) inpainted blocks, δ=100. (h) inpainted blocks, δ=200.

FIGURE 6. A typical convergence curve of our proposed method. The
horizontal axis represents the index of iterations and the vertical axis is
the divergence between two consecutive objective function values.

B. PERFORMANCE EVALUATION
Before reporting the detection performances on inpainted
images, we evaluate our objective function and optimization
algorithm in terms of convergence, parameter, and inter-class
discrimination.

1) EVALUATION ON CONVERGENCE
In this part, we evaluate the convergence of our objective
function and randomly select a trial to report the results.
To guarantee that the final results are steady, we define the
difference of the objective functions from two consecutive
iterations as the convergence condition:

Dt = |Ft − Ft−1|, (24)

where Ft and Ft−1 represent the objective functions at the t
and t + 1 iterations, respectively. Fig. 6 shows the absolute
value of the difference at different iterations. As the index of
the iteration increases, the value decreases rapidly. Based on

previous studies, it is critical to choose an appropriate con-
vergence condition for an optimization problem. We set the
stopping criteria as follows: the relative change between two
iterations is below the threshold of 1e-6 and the maximum
number of iterations is 100.

2) PARAMETER SENSITIVITY ANALYSIS
In this subsection, we conduct experiments to investigate the
effect of the balance parameter δ. As shown in Eq.(9), δ is
used for balancing the traditional CCA item and the low-rank
regularization item. An appropriate parameter has a great
effect on final results. The histograms of rank(A) are taken as
an example in Fig 5. The horizontal axis represents the rank
of data, and the vertical axis is the relative probability. Brown
represents the original data, while blue stands for inpainted
data. Under different parameters, the extracted features have
different discriminative characteristics.

To find a good parameter δ, we select 2,500 image blocks
from UCID, RAISE and DID respectively. The block size is
set to be 32× 32. Detection accuracy is shown in Table 1 with
various δ. Although images from different datasets have dif-
ferent resolutions and sensor noises, the detection algorithm
has the best performance when δ equals to 200, among all
datasets. Notably, in this preliminary experiment, the results
of our proposed method in RAISE, a dataset with higher
resolution, is better than that in other datasets.

C. PERFORMANCE OF SYNTHETIC INPAINTED IMAGES
In this experiment, 100 images are selected from the above
three datasets respectively. Specifically, the central parts
are selected and then divided into 9 blocks (3 × 3). The
sparsity-based inpainting operation [20] is implemented to
those blocks. Finally, we obtain 900 positive samples and
900 negative samples in each dataset. In our experimental
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FIGURE 7. Performance comparisons of different methods on three datasets. (a) Block size = 32 × 32. (b) Block size = 64 × 64.
(c) Block size = 128 × 128. (d) Block size = 32 × 32. (e) Block size = 64 × 64. (f) Block size = 128 × 128. (g) Block size = 32 × 32.
(h) Block size = 64 × 64. (i) Block size = 128 × 128.

TABLE 1. Accuracy comparison with different δ values on the proposed
framework.

setting, 80% of the database is used for training, and the rest
for testing.

We compared our method with four related methods,
and these methods can be classified into three groups:
1) traditional image forensics: median filtering detection
(MFD) [48]; 2) state-of-the-art detection for other types of
inpainting: exemplar-based inpainting detection (EBID) [24],
diffusion-based inpainting detection (DBID) [28]; and 3) the
traditional CCA. All of the above 4 forensic methods achieve
state-of-the-art performances for their own specialized tasks.
The default parameters in these methods are used here.

Since inpainting creates blur areas, it is supposed that
median filtering detection can distinguish them to some
extent. However, traditional image forensics might fail for
detecting sparsity-based inpainting because their tamper-
ing processes are obviously different. For the same reason,
exemplar-based inpainting detection methods are also not
ideal in the case of sparsity-based inpainting detection.

Li et al. [28] proposed a comprehensive study on diffusion-
based inpainting detection and achieved promising perfor-
mance for this type of inpainting detection. The feature
extraction mainly depends on the changes in the image Lapla-
cians along the direction of isophote. Since diffusion-based
inpainting aims to preserve the isophote direction, their pro-
posed feature set can properly characterize the traces of this
type of image inpainting.

However, the inpainting principles and the traces left in
inpainted images can be completely different between dif-
ferent types of inpainting methods. The feature set in [28] is
not discriminative enough for sparsity-based inpainting, since
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TABLE 2. Detection Accuracy Results for JPEG Compressed Inpainting Images.

the sparsity-based inpainting process is unrelated with the
isophote direction. Fig. 7 shows the performance comparison
of different methods. We can note that the diffusion-based
inpainting detection method is not satisfactory for detecting
the sparsity-based image inpainting.

We also compare the proposed method with tradi-
tional CCA. As mentioned before, in Section II-C and
Section IV-B.2, sparsity-based inpainting operation strongly
changes the correlations of data. By adding nuclear norm as a
new regularization item, and selecting an appropriate balance
parameter δ, we can get a more discriminative feature set as
shown in Fig. 5. In the Fig. 7, the proposed method has better
performance among all the datasets.

Although there is no existing baseline method in the cur-
rent literature for sparsity-based inpainting detection, we can
achieve competitive performances compared with other types
of inpainting detection.More specifically, according to exper-
imental results in [28], the F1-score obtained on the UCID
dataset for diffusion-based inpainting detection is around 0.8,
when the tampered regions are 32× 32 squares.We obtain the
same level F1-score for sparsity-based inpainting detection
when the suspicious areas are 32 × 32 blocks for the UCID
dataset.

D. ROBUSTNESS ANALYSIS
In this subsection, we elaborate the experimental results
under the attacks of JPEG compression and Gaussian noise.
These two common post operations are applied to inpainted
images, respectively. The detection accuracy is used to
demonstrate the effectiveness of our method and other four
methods mentioned above.

1) ROBUSTNESS TO JPEG COMPRESSION
In practical applications, images are usually stored in JPEG
format. It is critical to test the robustness of our method for
JPEG compression. In this experiment, we investigate the per-
formance of the proposed method under various compression
conditions. The same image blocks in Section IV-C are used
in this subsection. The original and inpainted image blocks

are compressed with diverse quality factors (QF). Finally,
the proposed detection algorithm is applied to the com-
pressed image blocks and the accuracy results are reported
in Table 2.
From this table, two main observations can be noted.

First, as the image quality factor decreases, the detection
accuracy reduces. When Q equals to 90, our detection accu-
racy only slightly degrades compared with uncompressed
image blocks. The results support the robustness of the pro-
posed algorithm for JPEG compression. Second, similar to
the results in the previous section, our method is more effec-
tive for high-resolution images. The accuracy of RAISE is
higher than that of UCID and DID.

2) ROBUSTNESS TO GAUSSIAN NOISE
To analyze the effects of noise, Gaussian noise is added to the
images after inpainting. Images with different signal-to-noise
ratios (SNRs) are obtained for testing. Generally speaking,
noise is perceptually invisible when the SNR is greater than
45 dB. In most cases, image quality is considered acceptable
when the SNR is between 36 to 45 dB, while image quality
is considered to be poor for SNR below 36 dB [49]. The
same image blocks in the previous subsection are used. The
Gaussian noise is added to those original and inpainted image
blocks, where SNR= 50, 40 and 30.We conducted our detec-
tion algorithm to image blocks with different SNRs. Table 3
shows the results.

As the SNR decreases, the performance degenerates.When
SNR equals to 50, there is no significant performance degra-
dation in our results. While when the SNR becomes 30, there
is a clear accuracy degradation when compared with images
from noiseless scenarios.

E. PERFORMANCE ON START-OF-THE-ART
INPAINTED IMAGES
Image reconstruction can be viewed as an application of
image inpainting. To demonstrate the generality of our detec-
tion algorithm, we also detect the inpainted images generated
by Liu et al. [50], which is a state-of-the-art sparsity-based
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TABLE 3. Detection Accuracy Results for Inpainting Images with Gaussian Noise.

TABLE 4. Performance Comparisons for the State-of-the-art
Sparsity-based Image Reconstruction.

method for image restoration. The author provides 10 original
images and 10 reconstructed images with size 512 × 512.
We cut them into blocks with size 32× 32.We therefore have
5,120 blocks in total, including 2,560 original blocks and
2,560 reconstructed blocks. The experiments are conducted
using the same process as in the previous section. The results
are reported in Table 4.

Liu et al. utilized more advanced techniques for sparsity-
based image reconstruction. It would be more difficult to
justify whether the images have been modified. As the exper-
imental results show, the detection performances are lower
than that in Elad’s work. However we still obtain better
performances compared with other traditional image forensic
methods [48] and other types of image inpainting detection
methods [24], [28].

Ideally we would like to intensively test the proposed
detection method on the state-of-the-art sparsity-based
method in [50]. However we can not get the codes to re-
produce all required images and we only managed to obtain
limited example images from the authors for evaluation.

V. CONCLUSION
In this paper, we proposed an image forensic method to
detect sparsity-based image inpainting, a useful image editing
operation with a broad range of applications. Completely
different from other types of image inpainting, sparsity-based
inpainting has a potential connection with CCA. To enhance
the inter-class difference in our feature set, a novel objective
function is proposed. We also developed a corresponding
optimization algorithm to solve the new function. Experimen-
tal results showed better performance of the proposed method
when compared with other detection methods.

In the future, we plan to further improve the detection
performance of sparsity-based image inpainting by integrat-
ing other techniques. For example, subspace learning can be
used to project the tampered signals into different subspaces.
It would also be beneficial to seek a more flexible mechanism
and a more general method to detect different types of image
inpainting.
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