
Received July 3, 2018, accepted August 15, 2018, date of publication August 20, 2018, date of current version September 21, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2866082

The Empirical Study of Semi-Supervised
Deep Fuzzy C-Mean Clustering for
Software Fault Prediction
ALI ARSHAD 1,2, SAMAN RIAZ 1,2, LICHENG JIAO3, (Fellow, IEEE), AND APARNA MURTHY4
1School of Computer Science and Technology, Xidian University, Xi’an 710071, China
2School of International Education, Xidian University, Xi’an 710071, China
3Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, International Joint Collaboration Laboratory of Intelligent
Perception and Computation, International Research Center of Intelligent Perception and Computation, School of Artificial Intelligence, Xidian University,
Xi’an 710071, China
4Professional Engineers in Ontario, North York, ON M2N 6K9, Canada

Corresponding author: Ali Arshad (alli.arshad@gmail.com)

This work was supported in part by the National Basic Research Program (973 Program) of China under Grant 2013CB329402, in part by
the National Natural Science Foundation of China under Grant 61573267, Grant 61473215, Grant 61571342, Grant 61572383, Grant
61501353, Grant 61502369, Grant 61271302, Grant 61272282, and Grant 61202176, in part by the Fund for Foreign Scholars in University
Research and Teaching Programs (the 111 Project) under Grant B07048, and in part by the Major Research Plan of the National Natural
Science Foundation of China under Grant 91438201 and Grant 91438103.

ABSTRACT Software fault prediction is a very consequent research topic for software quality assurance.
The performance of fault prediction model depends on the features that are used to train it. Redundant
and irrelevant features can hinder the performance of a classification model. In this paper, we propose an
empirical study of two-stage data pre-processing technique on software fault prediction models. In the first
stage, a novel semi-supervised deep Fuzzy C-Mean (DFCM) clustering-based feature extraction technique
is proposed to create new features by utilizing deep multi-clusters of unlabeled and labeled data sets that
tends to maximize intra-cluster class and intra-cluster feature by using FCM clustering. The FCM also
utilizes to handle the class imbalance problem. In the second stage, we further ameliorate the prediction
performance with coalescence of feature selection (using random-under sampling) to reduce the noisy data
for classification. However, by the performance of themodel results in the amalgamation of novel DFCMdata
pre-processing approach work better due to their ability to identify and amalgamation essential information
in data features. An empirical study is designed on real-world software project (NASA & Eclipse) data set
to evaluate the performance of DFCM by implemented different data pre-processing schemes on prediction
models (C4.5, naive bayes, and 1-near neighbor (1-NN)), which are widely used in software fault prediction
and further investigated the influencing factors in our approach. The result shows that the performance of
the proposed DFCM feature extraction technique for data pre-processing is stable and effectiveness on all
prediction models.

INDEX TERMS Semi-supervised learning, Fuzzy C-Mean clustering, feature learning, software fault
prediction.

I. INTRODUCTION
Software fault prediction (SFP) is one of the hottest research
topics in experimental software engineering to test reliability
and quality of software entities. The complexity and size of
software are rapidly increasing day by day for sundry reasons
incrementing authoritative ordinance of infusion of incipient
technologies, reliability, and security by the users. One pos-
sible way to handle this issue is to focus on determination of
redundant preprocessing data in early phases of software fault

prediction. Software defect prediction can be regarded as the
binary classification problem, which aims to divide software
modules into fault modules or non-fault modules. To improve
software quality assurance, many researchers paid attention
to the process of testing and withal on preprocessing training
data [1]–[11], [41], [42].

Supervised learning models are one of the best choices
for software fault prediction if labeled data are provided
for training model [12], [13]. Consequently, for the better

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

47047

https://orcid.org/0000-0003-1842-8040
https://orcid.org/0000-0001-5136-7927

A. Arshad et al.: Empirical study of Semi-Supervised DFCM for Software Fault Prediction

accuracy one drawback of supervised learning is that the
size of training dataset should be as large as possible, which
is expensive and time-consuming. Supervised learning mod-
els use class labeled data represented as known fault data
during the training phase. However, there are cases when
previous known faults data are not inordinate available for
training model, then to handle this challenging problem,
the semi-supervised approach can be applied in these case.
Fig. 1 is a semi-supervised learning approach because in
the training phase uses labeled data represented as known
faults data and unlabeled data represented as unknown faults
data.

Many researchers have proposed the semi-supervised
approach for classification [14], [15], [16]. However, few
researchers have been used simultaneously to exploit the
obnubilated information from unlabeled data to labeled
data [17]–[20], [42]. Many semi-supervised approaches are
used for fault prediction. However, most of them have been
dealing with balanced classes [13].

Real-world datasets are usually imbalanced, causes a diffi-
culty for most traditional classification algorithms, example
decision tree, Naive Bayes, support vector machine, random
forest and evolutionary algorithms [6], [21]–[25], [27], [28].
The cause of imbalanced problem occurs where some classes
are highly underrepresented compared to other classes. Par-
ticularly, for a binary class application, level of imbalance is
defined as the ratio of the number of majority examples to that
of the minority ones, and the minority class is always more
interest [29], [30]. This problem affects the performance of
the classification models. This problem has gained more
attention from researchers, lately. The K-nearest neighbor
classifier (KNN) [31], [32] is one of the most popular learn-
ing algorithms for imbalance classes. An object is assigned
to the class which is most frequent among the K-nearest
neighbor. At the time, numerous changes in KNN have been
proposed for improvement [33], [34]. There are many Fuzzy
set theory based algorithms [35]–[38] are proposed for imbal-
anced classes.

Nevertheless, the imbalanced dataset is not the only fac-
tor that harms the performance of classifiers. High dimen-
sionality datasets in training set may cause lead to a high
computational (training) cost and performance degradation
of certain classification models [39], [40] by eliminating the
feature which is mostly irrelevant to the class.

In this paper, we present an empirical study to eval-
uate the performance stability of our previous work
preprocessing raining data technique [42] on traditional
classification models with class imbalance. In our empir-
ical study, the aim to check the effectiveness of the new
semi-supervised approach in which both supervised and
unsupervised data are utilized simultaneously during the
multi-clustering process in which the obnubilated informa-
tion is exploited from unlabeled data to support the con-
struction of better classifier. The coalesce analysis of labeled
data and unlabeled data is very useful in the field of pattern
recognition.

FIGURE 1. The process of software fault prediction.

However, to the best of our knowledge very few researchers
have utilized multi-clustering for feature extraction and also
handle the class imbalance problem [43], in which Germain
Forestier, proposed a semi-supervised learning method to
produce new features derived from the first step of data clus-
tering by utilizing supervised and unsupervised data. They
used unsupervised classification to create new features to
describe the labeled samples by creating clusters that tend to
maximize intra-cluster similarity and intra-cluster dissimilar-
ity.

However, the performance of accuracy effect with class
imbalance problem. The prosperity of prediction model
depends strongly on the features and it is commonly believed,
more features do not indispensably avail identification of
systems based on input-output data. Hence, there are two
common ways for dimensionality reduction of features, one
is by feature extraction [44], [45] and second by feature
selection [46], [47]. However, few researchers have cumu-
lated these two ways of dimension reduction of features to
ameliorate data quality in software fault prediction.

In this paper, we used ‘‘Deep’’ word in our paper title,
because to create new features by deep correlation between
supervised and unsupervised data during the multi-clusters
for feature extraction.

The contribution of the proposed method can be concluded
as follow.

1. We proposed semi-supervised deep FCM clustering
data pre-processing approach to create new features,
which simultaneously deals with the labeled and unla-
beled data during clustering to exploit the hidden infor-
mation from unlabeled data.

2. We introduced semi-supervised FCM multi-clustering
that tend to maximize intra-cluster class and intra-
cluster features to handle the class imbalance problem.

3. An Empirical study is designed to evaluate the per-
formance stability of proposed approach with differ-
ent schemes on three prediction models. The result
shows that the performance of Navie Bayes is more
stable than other prediction models on our proposed
approach.

In this study, we design experiments to analyze the impact
of features extraction by DFCM on the performance of com-
monly used classification techniques (Naive Bayes (NB),
C4.5, 1-NN). We train our classification models using dataset
based on real-world software projects to demonstrate the
effectiveness of our approach.

47048 VOLUME 6, 2018

A. Arshad et al.: Empirical study of Semi-Supervised DFCM for Software Fault Prediction

We conduct an empirical study to evaluate the performance
stability of our approach based on the address the following
research questions.
RQ1. In our feature extraction stage, whether FCM based

semi-supervisedmulti-clustering can improve the per-
formance of the classification models with imbal-
anced classes?

RQ2. Does combining the feature selection technique with
our feature extraction technique together have more
significantly improved than by using any of the indi-
vidual prediction performance?

RQ3. Does combining RUS approach with DFCM together
have a more significant improvement in prediction
performance?

This paper is organized as follows. In section II, we will
provide a review of related work, Section III, deals with
implementation strategy of the algorithm, Section IV,
describes experiment and results, section V, provides with
the threats to validity and section VI, provides with the
conclusion.

II. RELATED WORK
Software fault prediction is one of the most consequential
tasks to predict the software modules. Many researchers have
used a variety of machine learning technique (such as k
nearest neighbor rule decision, clustering, and SVM [5], [7],
[8], [48] for classificationmodel [13], [49]–[53] to categorize
software into fault and non-fault.

Semi-Supervised learning plays an important role to
improve the performance of the model in the machine learn-
ing techniques. Semi-supervised approach for software fault
prediction is studied by yarowsky, the algorithm utilized in
speech processing computational linguistics [54]. Here, a set
of untagged data is used and steps of collection labeling using
this labeled data are trained for partitioning, iteratively on the
probability of co-occurrence till the data grows and reduces
the untagged set. Once the grouping is complete, the classifier
is used. The algorithm is dependent on the collocational list
of entries [54].

Lu et al. [55] invested the performance of an iterative semi-
supervised software defect prediction approach on different
size of labeled rate, they approved if the rate of labeled data
is greater than 5% then the proposed approach performs better
than supervised learning approach.

Data pre-processing is valuable to amend the software
data quality [51], [56], [57] which includes feature selection
and re-sampling. Feature selection is used to remove the
irrelevant feature from the dataset, which will hurt the gen-
eralization performance of classification [58]. Feature rank
algorithm [3], [56], [59] are used for selection on the bases
of importance weights in differentiating modules at different
classes [3], [60]–[62].

Liu et al. proposed a two-stage data preprocessing
approach for software fault prediction [11]. It is a two-stage
data preprocessing approach, which integrates both feature

selection and instance reduction, to improve the quality of
software fault prediction. He proposed NTC (NB) (Novel
threshold-based clustering algorithm using Naïve Bayes clas-
sification model), which involves both reliance analysis and
redundancy control. He also applies the random under-
sampling technique to keep the balance between the faulty
and non-faulty classes.

In feature learning Coates [63], apply several off-the-shelf
feature learning algorithms, by the analysis of this results the
clustering algorithms is extremely fast and easy to implement
with achievable high accuracy.

It is known that good modeling tool is the cognition
between a learning method and feature representation learn-
ing. Dimensionally reduction in feature learning is usually
done in two broad ways by feature extraction (generation
of incipient features from subsisting ones) [44], [45] and
features selection [46], [47]. The data preprocessing plays
an important role to improve the quality of software datasets
[51], [56], [61], which include feature selection and reduction
(or sampling). Khoshgoftaar et al. [64] combined filter based
feature ranking methods and random under-sampling for
improved the data preprocessing.

Many unnecessary features are one of the causes of high
dimensionality problem, and the other is class imbalance
problem. In recent years, the class imbalance is one of the
most important tasks for software fault prediction. In order
to explore the impact of class imbalance on SFP, many
researchers have carried out a large number of empirical
studies [65]–[68]. Wang et al. [65] provided an empirical
study on bases of stability of feature selection techniques.
By their experimental results, many factors could affect the
stability of feature selection, such as class balance, feature
subset size, and perturbation level. Grbac et al. [67] also indi-
cated in their investigation that feature selection was unstable
with the higher level of data imbalance.

Yu et al. [69] investigate the performance stability of fault
prediction models with class imbalance on six prediction
models (C4.5 [21], Naive Bayes [22], KNN [70], Logistic
Regression [71], Multi-layer Perceptron (MLP) [72], and
Random Forest [23]. The experiment results showed that the
performance of C4.5 is unstable on the imbalanced dataset,
and the performance of Naive Bayes and Random Forest are
more suitable than other models.

According to our knowledge, there have few researchers
used fuzzy set theory to software fault prediction been a few
attempts to use fuzzy set theory to predict software faults.
Pandey and Goyal [73] first constructed a decision tree using
ID3 and then from decision tree they generate ‘‘if-then rules,
which are used as fuzzy rules’’. Chatterjee andMayi [74] also
use fuzzy if the fault in software requirement analysis phase.

Li [75] proposed Constraint FCM method novel semi-
supervised fuzzy c-means algorithm. It uses data that contain
labeled tag and finds cluster center and optimize the objec-
tive function of fuzzy c-mean of the labeled data using EM
algorithm.

VOLUME 6, 2018 47049

A. Arshad et al.: Empirical study of Semi-Supervised DFCM for Software Fault Prediction

FIGURE 2. The framework of proposed approach.

However, to the best of our knowledge, very few
researchers have used the semi-supervised approach in multi-
clusters for feature selection to handle the class imbal-
ance problem. Forestier and Wemmert [43] proposed a
semi-supervised learning method to produce new feature by
multi-clusters.

Gabrys and Petrakieva [76] or Bouchacha [77], they pro-
posed the method to ameliorate the classification accuracy
with very few labeled and abundant unlabeled samples are
available, they used the semi-supervised approach in which
during the clustering process they deal with labeled and unla-
beled data simultaneously.

Cai [19] proposed ‘‘A simultaneous learning framework
for clustering and classification’’ to fuse the advantages of
classification learning and clustering learning into the single
framework with inhibited labeled and abundant unlabeled
data by optimizing the clustering centers in the objective
function, both the classification learning and clustering learn-
ing can be realized simultaneously. In his work, they used
an evolutionary technique called modified particle swarm
optimizer (PSOm) to find optimal clustering centers.

III. EMPIRICAL STUDY OF SEMI-SUPERVISED DEEP
FUZZY-C MEANS CLUSTERING
In this section, we present the empirical study to evaluate
the performance of our previous work ‘‘Semi-Supervised
Deep Fuzzy C-Mean Clustering for Software Fault
Prediction’’ [42]. In semi-supervised deep fuzzy C-Mean
clustering, we present a human-interpretable learning-based
semi-supervised feature extraction technique for software
fault prediction model, which cumulates the DFCM multi-
clustering based feature extraction with feature selec-
tion (random-under sampling (RUS) [23]) technique for fault
prediction models. We count the widely used prediction
models in software fault prediction, C4.5 [21] is a decision
tree algorithm, 1-NN [78] is an instance based algorithm and
NB [22] is a probabilistic classifier based on Bayes theorem,
and it supposes that all features are independent.

A. THE FRAMEWORK OF OUR APPROACH
Fig. 2 gives the framework of our approach for fault pre-
diction. In this framework, we cumulate the multi-clustering
based feature extraction with random-under sampling [23]
for fault prediction model. Fig. 3 is the flowchart of DFCM

FIGURE 3. Flowchart of DFCM clustering based feature extraction.

clustering based feature extraction to remove the irrelevant
feature with class imbalance. In this flowchart, after normal-
ization of semi-supervised data using minimum-maximum
approach, data converted into binary clusters of labeled and
unlabeled datasets, which lead to intra-clusters of classes and
feature. We have total k (2+1) clusters in the last stage of
clustering, where k is the number of features. Calculate the
DFCM membership and DFCM centroid by algorithm 1.
B. FEATURE EXTRACTION
Use of many features customarily increases the data acqui-
sition cost and time. Therefore, it is always desirable for
classification that the number of features reduces the accu-
mulated the design for decision-making system. There are
two main broad ways to reduce the feature space i.e. feature
selection [38], [47] and feature extraction [44], [45].

But in our proposed method, we used both methods to
design good prediction system by generating good features
and removing irrelevant and redundant features to reduce the
noisy data for training classification model.

In the next stage for feature extraction on the bases of
DFCMk (2+1) clusters, we apply we applyDFCMclustering
to learn k centroids from the labeled and unlabeled datasets.
Given the learned centroids V (k), we choose non-linear map-
ping for feature mapping.

fk (x) = max (0,µ (z)− zk) (1)

47050 VOLUME 6, 2018

A. Arshad et al.: Empirical study of Semi-Supervised DFCM for Software Fault Prediction

Algorithm 1 Membership and Centroid of DFCM
Input:
The data set X = {x1, x2, xn, l},
X = XTL ∪ XFL ∪ XUN , where
XTL = {x1, x2, xT } ∈ True class,
XFL = {xT+1, xT+2, xl} ∈ False class,
l ∈ True, False,
XUN = {xF+1, xF+2, xn} ∈ Unlabeled class,
Where l is the labeled classes and k is the feature clusters,
fuzziness m=2, with ε is objective threshold and t is num-
ber of iterations.
Output:
UTL ,UFL&UUN Membership matrices
V (k)
TL ,V

(k)
FL&V

(k)
UN Set of k centroid.

1. Initialize the sets of cluster center V (o)
TL ,V

(o)
FL&V

(o)
UN by

randomly select ‘‘k’’ cluster centers from the features
of XTL ,XFL&XUNdatasets respectively.

2. Construct membership matrices UTL ,UFL&UUN
with random decimal fraction.

3. Compute cluster center V (k)
TL ,V

(k)
FL&V

(k)
UN using for-

mula of cluster center of FCM [32].
4. Update UTL ,UFL&UUN using formula of member-

ship of FCM [37].
5. Repeat step 2 & 3 until

∥∥J(t) − J(t−1)
∥∥ < ε for all

labeled and unlabeled subsets separately.

Where zk =
∥∥x − V (k)

∥∥
2 and µ (z) is the mean of the

elements of z. If the output 0 of any feature fk , where the
distance to the centriod V k is ‘‘above average’’. In practice,
this means that roughly half of the feature will be set 0.

After the feature extraction by algorithm 2, to balance the
number of features between all subsets of labeled classes and
unlabeled dataset, select ‘‘s’’ features from each subset by
feature selection RUS (Random under-sampling) suggested
by Khoshgoftaar et al. [64], where ‘‘s’’ is the number of
minimum features in any subset shown in Table 3.

IV. EXPERIMENT
In this section, we design experiments to conduct an empirical
study to evaluate the performance of our approach Deep
Fuzzy C-Mean (DFCM) clustering based feature extraction
with Random-under Sampling (RUS) on fault prediction
models. First, we design the research questions for empirical
study, second, we describe the details of the dataset used
in our experiments, third, we introduced the performance
measuring for evaluation and in the last, and we design exper-
iments on the bases of research questions.

A. RESEARCH QUESTIONS
We train our fault prediction models using a combination of
DFCM clustering based feature extraction and feature selec-
tion techniques, in order to address the following research
questions.
RQ1. In our feature extraction stage, whether FCM based

semi-supervisedmulti-clustering can improve the per-

Algorithm 2 Feature Extraction of DFCM
Input:
The data set X = {x1, x2, xn, l},
X = XTL ∪ XFL ∪ XUN ,
Set of centroid V (k)

TL ,V
(k)
FL&V

(k)
UN

Output:
fTLk (xTL) , fFLk (xFL)&fUNk , sets of features of True class,
False class and unlabeled dataset.
1. Calculate ZTLk ,ZFLk&Zunk , using formula

Where,

ZTLk =
∥∥∥xTL − V (k)

TL

∥∥∥ ,
ZFLk =

∥∥∥xFL − V (k)
FL

∥∥∥&
ZUNk =

∥∥∥xUN − V (k)
UN

∥∥∥ .
2. Calculate µT (ZTL), µF (ZFL)&µT (ZUN) are the

means of the elements ZTL ,ZFL&ZUN .
1) fk (x) = max (0, µ (z)− zk)∀TL,FL&UN features
2) Update all the features of all data sets

fTLk , fFLk&fUNk .

formance of the classification models with imbal-
anced classes?

RQ2. Does combining the feature selection technique with
our feature extraction technique together have more
significantly improved than by using any of the indi-
vidual prediction performance?

RQ3. Does combining RUS approach with DFCM together
have a more significant improvement in prediction
performance?

B. DATA PREPARATION
In this paper, the MATLAB 2017a [79] platform is utilized
to test the results. In order to evaluate the performance of
our model to test the experiment on thirteen datasets, ten
datasets belong to NASA (cm1, jm1, kc1, kc3, mc2, mw1,
pc1, pc3, pc4, and pc5) [80], [81], and three datasets belong
to Eclipse (Eclipse 2.0, Eclipse 2.0 and Eclipse 3.0) [82], [83]
with 10%, 20%, &30% rate of labeled data. All datasets have
binary classes with imbalance ratio. To stop the iteration for
updating new cluster center for all datasets, we set objective
threshold 0.1, and degree of fuzziness m=2.
Table 1, shows the benchmark NASA and Eclipse datasets

that illustrates brief properties of thirteen datasets, that will
include the number of samples, number of features, number
of faulty modules, number of non-faulty modules, and num-
ber of classes.

C. PERFORMANCE MEASURE
There are many ways how to measure well statistical model
predicts a binary outcome with imbalanced classes. We used
three most common measures to estimate the performance of
our approach by Sensitivity, Specificity, and Area-under-the-
curve (AUC) by using ROC-curve under the information of

VOLUME 6, 2018 47051

A. Arshad et al.: Empirical study of Semi-Supervised DFCM for Software Fault Prediction

TABLE 1. NASA and eclipse dataset.

TABLE 2. Fault prediction confusion matrix.

confusion matrix in Table 2. n(TP), n(FN), n(FP), and n(TN)
are the number of true faulty modules, the number false non-
faulty modules, the number of false faulty modules and the
number of true non-faulty modules respectively. Sensitivity
is the percentage of actual faulty modules which is correctly
identified, and Specificity is the percentage of non-faulty
modules which is correctly identified. It is calculated by using
below formula.

Sensitivity =
TP

TP+ FN

Specificity =
TN

FP+ TN

ROC curve shows that the tradeoff between sensitivity and
specificity. ROC curve is plotted with the false positive rate
at x-axis and the true positive rate at y-axis. We utilize AUC
evaluation measures to verify the performance on different
compared methods. In machine learning, AUC is widely used
to check the performance evaluation spatially for imbalanced
classes.

D. EXPERIMENTAL DESIGN
To investigate the validity of our approach, we designed
experiments to answer the research questions, five different
schemes are designed accordingly to different combinations
of feature extraction techniques with feature selection tech-
nique (RUS). These schemes are applied to three different
prediction models to comprehensively study the effects on
the performance of software fault prediction. In order to
train our prediction models, we use average results over the
10 × 10 folds cross-validation approach [57], [84]. Cross-
validation means that the data is equally divided into ten parts
(i.e. 90% training and 10% testing dataset). To further reduce

the effect of randomness, 10-folds cross-validation approach
is repeated 10 times (100 iterations in total), we take the
average of 100 times same experiments as the final value of
Sensitivity, Specificity, and AUC to validate our results.

1) FEATURE EXTRACTION TECHNIQUE
We use two different feature extraction techniques in our
experiments for the empirical study. One is our proposed
DFCM clustering based feature extraction algorithm and
another one is Information Gain (IG) [56], which only uses
feature ranking. The further details of these two algorithms
are described as follows.

a: INFORMATION GAIN (IG)
Information Gain is the probability-based measuring tech-
nique [39]. IG is an Entropy-Based technique, which mea-
sures the reduction in uncertainty of a class label after
observing a feature. IG can be calculated by using following
equation.

IG(X/Y) = h (X)− h (X/Y) (2)

In equation 2, h (X) is entropy of a discrete random variable X
(i.e. the class) which is calculated by

h (X) = −
∑
x∈X

p(x) log2 p(x) (3)

Where p(x) is the probability of x. h (X/Y) is the conditional
entropy, which calculates the uncertainty of X given the
observed variable Y (i.e. the feature) which is calculated by

h (X/Y) = −
∑
y∈Y

p(y)
∑
x∈X

p (x/y) log2 p (x/y) (4)

b: DFCM CLUSTERING BASED FEATURE EXTRACTION
As we discussed before, this algorithm is for creating new
features by using the multi-clustering technique. There are
two steps for feature extraction, first is the multi-clustering by
using Fuzzy C-Mean rule [85]. Initially, the dataset converts
into the binary cluster of labeled and unlabeled dataset, then
these cluster lead to intra-cluster of classes and features. Total
k(2+1) clusters are created, where k is the number of features.
Calculate membership and centroid by using FCM on k(2+1)
clusters. In the second step, feature mapping by activation
function by using equation 1, which is non-linear mapping
that attempts to be ‘softer’ while also keeping some sparsely.
In this activation function, output ‘o’ is for any feature ‘k’,
where the distance to the centroid is above average. From the
results of the experiment in table 3, we can conclude that by
this activation function almost half of the original features are
selected except on some datasets.

2) FEATURE SELECTION TECHNIQUE
In this stage, we use random under-sampling (RUS) to build
a more balanced feature by selecting ‘s’ features, where ‘s’
is the minimum number of features extracted in any clusters,
which is shown in table3.

47052 VOLUME 6, 2018

A. Arshad et al.: Empirical study of Semi-Supervised DFCM for Software Fault Prediction

TABLE 3. Details of selected features by feature extraction algorithm with (RUS).

FIGURE 4. The configuration of empirical study.

Based on the two features extraction techniques and RUS,
we can have five possible combinations to address the
research question. First, the original dataset without any data
pre-processing and it is donated by ‘None’. Second and third,
we use feature extraction techniques and denoted by ‘IG’
and ‘DFCM’ respectively. Fourth and fifth, we use RUS with
feature extraction technique and denoted by ‘IG+RUS’ and
‘DFCM+RUS’ respectively. These all are shown in figure 4.

3) CLASSIFICATION MODELS
Our experiment is conducted on three widely used clas-
sification models in software fault prediction [Naive
Bayes (NB) [13], C4.5 decision tree (C4.5) [86] and 1-nearest
neighbor rule (1-NN) [77]. C4.5 is a decision tree algorithm,
and information gain ratio is used for feature selection, which
eliminates the bias of selecting frequent features of informa-
tion gain (IG). Naive Bayes (NB) is a probabilistic classifier
based on Bayes theorem and supposes that all the features are
independent. 1-NN is an instance-based algorithm, and one
sample can be classified by a majority role of its 1-nearest
neighbor. All these three algorithms are implemented based
on WEKA 3.5.5 [87] to avoid external threats to validity.

E. EXPERIMENTAL RESULT AND ANALYSIS
In this section, Table 4, 5, and 6 show the sensitivity and
specificity results of all different data pre-processing schemes
on three prediction models (NB, C4.5, and 1-NN) with
labeled rate (10%, 20%, and 30%). Sensitivity measure the
ration of actual faulty modules which are correctly identified

and specificitymeasure the ratio of non-faultymodules which
are correctly identified. Ideally, the results of both being high
for better performance. According to Table 4, 5, and 6 we
can analyze that our proposed data pre-processing scheme
(DFCM+RUS) archives better sensitivity and specificity
results in all prediction models with all labeled rates. Espe-
cially, our proposed schemes perform better on Naive Bayes
prediction model. When we compared between sensitivity
and specificity, sensitivity is better than specificity with all
labeled rates.

Figure 5 (a), (b), and (c) are the comparison of sensi-
tivity and specificity of proposed schemes with other data
pre-processing schemes for three prediction models (NB,
C4.5, & 1-NN) respectively. The results are the average of
sensitivity or specificity on all labeled rates. Accordingly
figure 5 (a), (b), and (c), our proposed schemes achieve better
sensitivity and specificity on all prediction models.

Other than sensitivity and specificity, Table 7, 8, and 9
shows the AUC results after different schemes on three fault
prediction models (NB, C4.5, and 1-NN respectively). Every
Table has the list of five different schemes (None, IG, DFCM,
IG+RUS, and DFCM+RUS). Every result shows the average
of AUC across the 10 × 10 fold cross-validation on thirteen
datasets with three different rates of labeled data. Bold values
are the best performances in each row of the tables with
different labeled rates.

The comparison of ROC curves of our proposed data
pre-processing approach on three prediction model (NB,
C4.5, and 1-NN) for three datasets (cm1, pc3, and Eclipse
2.0) are shown in figure 6. All ROC curves at labeled rate
0.3 and ROC curve shows the tradeoff between sensitivity
and specificity. According to the ROC curves, our proposed
approach (DFCM+RUS) achieve good AUC on Naïve Bayes
prediction model. Another hand 1-NN prediction model per-
forms better than C4.5 prediction model on our proposed
approach.

To further analysis on the effectiveness of different
schemes, we perform the Mann-Whitney U test (also called
Wilcoxon rank-sum test) which is non-parametric rank-order

VOLUME 6, 2018 47053

A. Arshad et al.: Empirical study of Semi-Supervised DFCM for Software Fault Prediction

TABLE 4. Mean sensitivity and specificity of Naive Bayes on different data pre-processing schemes.

TABLE 5. Mean sensitivity and specificity of C4.5 on different data pre-processing schemes.

statistic test used to access whether two independent groups
are significantly different from each other. For the entire test,
the null hypothesis is that there is no difference between the
two schemes, and the significance level of alpha (α) is 0.05

Table 7, 8, and 9 shows theMann-WhitneyU test results for
the comparison of different schemes in terms of the average
of AUC on all labeled rates. To perform the Mann-Whitney
U test first ranks all the values from low to high. The smallest

47054 VOLUME 6, 2018

A. Arshad et al.: Empirical study of Semi-Supervised DFCM for Software Fault Prediction

TABLE 6. Mean sensitivity and specificity of 1-NN on different data pre-processing schemes.

number gets a rank of 1 and the largest number gets a rank
of ‘‘n’’, where ‘‘n’’ is the total number of values in two
groups. U-Value and P-Value are the Mann-Whitney U-Value
and Mann-Whitney P-Value. If P < 0.05, it means the
comparison is significantly different which is in bold font.

RQ1. In our feature extraction stage, whether FCM based
semi-supervised multi-clustering pre-processing data
can improve the performance of the classification
models with imbalanced classes?

To investigate the effectiveness of our approach on fault
prediction models, we will analyze the results on two factors
first is any pre-processing date approach can affect the predic-
tion performance. Second, our proposed approach achieves
how much success for fault prediction performance from
Table 7, 8, and 9, We can analysis, two pre-processing
approaches (IG+RUS and DFCM+RUS) on thirteen dataset
perform better than AUC results on all prediction mod-
els (NB, C4.5, and 1-NN) with different labeled rates.

If we will analysis according to the prediction mod-
els than by using Naive Bayes the preprocessing data
approach (IG+RUS) can achieve 1.5%, 3.5%, & 4.3%
improve AUC measure with (0.1, 0.2, and 0.3) labeled rates
and our proposed approach (DFCM+RUS) can achieve 6.7%,
8.7%, & 11.5% improve AUC measure with all labeled rates.
Similarly, for the other two prediction models (C4.5, and
1-NN), the pre-processing data approach IG+RUS can
achieve improve AUC measure 8.7%, 89%, & 10.1% on
C4.5 and 5.3%, 7%, & 7.9% on 1-NN with all labeled rates.

Our proposed approach DFCM+RUS can achieve improve
AUC measure by 13.9%, 18.1% & 18.4% on C4.5 and
11.4%, 13.3%, & 15.5% on 1-NN will all labeled rates.
We can analysis by the above result the preprocessing data
approach can improve the prediction performance. On the
bases of average the IG+RUS approach achieve 31%, 9.23%,
& 6.73% improve AUC measure on NB, C4.5, and 1-NN
and our proposed approach DFCM+RUS can achieve 8.97%,
16.8%, & 13.4% improve AUC measure o NB, C4.5, and
1-NN. C4.5 can achieve the highest improvement in AUC
measure compared to NB and 1-NN. We will also do the
comparison of prediction performance of fault prediction
models with and without pre-processing data approaches by
Mann-Whitney U test results in Table 10. The P-Values of
Mann-Whitney U test (0.03572, 0.00018, 0.00880, 0.00034,
0.00758, and 0.00014) are less than 0.05, which shows that
the pre-processing data approach significantly improve pre-
diction models no matter which prediction model is used.
RQ2. Does combining the feature selection technique

with our DFCM based feature extraction technique
together for pre-processing data have more signifi-
cantly improved than by using any of the individual
feature selection for prediction performance?

For the integration of this research question, we will ana-
lyze the results of prediction models by comparison of two
schemes, DFCM vs IG with and without RUS. From AUC
Table 7, 8, and 9, the results of mean AUC on thirteen dataset
of NASA & Eclipse, DFCM feature extraction approach can
adore improve AUCmeasure on IG approach by 5.2%, 5.2%,

VOLUME 6, 2018 47055

A. Arshad et al.: Empirical study of Semi-Supervised DFCM for Software Fault Prediction

FIGURE 5. Comparison of sensitivity and specificity of proposed schemes with other data pre-processing schemes for three prediction
models (NB, C4.5, & 1-NN). (a) NB. (b) C4.5. (c) 1-NN.

FIGURE 6. Comparison of ROC curve of proposed schemes on three prediction model (NB, C4.5, and 1-NN) for three
datasets (cm1, pc3, and Eclipse 2.0) with labeled rate 0.3. (a) cm1. (b) pc3. (c) Eclipse 2.0.

& 5.2%, with RUS and 4.5%, 5.4%, & 6% without RUS on
Naive Bayes prediction model. Similarly DFCM approach
can achieve improve AUC measure on IG approach by 5.2%,
8.2%, & 8.3%, and 6.1%, 6.3%, & 7.6% with RUS and 4.8%,
3.1%, & 3.7 %, and 5.1%, 4.5%, & 4.7% without RUS on
C4.5 and 1-NN prediction models respectively.

From the above results, our proposed approach achieves
good AUC measure on all prediction models. Table 11,
shows the summarized results of Mann-Whitney U test on

DFCM vs IG on three prediction models (NB, C4.5, and
1-NN) with and without RUS. We can conclude the result
of Mann-Whitney U test of AUC, DFCM shows better
results on all prediction models except C4.5. Average twelve
out of thirteen dataset have improved their prediction per-
formance. All P-Values of Mann-Whitney U test is less
than 0.05, except for C4.5 predictive model. We can also
analysis from the Table 11, the combination of Random
Under-Sampling (RUS) with our approach DFCM boost the

47056 VOLUME 6, 2018

A. Arshad et al.: Empirical study of Semi-Supervised DFCM for Software Fault Prediction

TABLE 7. Mean AUC of Naive Bayes on different data pre-processing schemes.

TABLE 8. Mean AUC of C4.5 on different data pre-processing schemes.

TABLE 9. Mean AUC of 1-NN on different data pre-processing schemes.

prediction performance. DFCM+RUS shows better results
than IG+RUS on all prediction models. All P-Values of
Mann-Whitney U test is less than 0.05, which shows
that DFCM feature extraction approaches are significantly
improved feature ranking approach (IG).

RQ3. Does combining RUS approach with DFCM together
have a more significant improvement in prediction
performance?

To investigate the prediction performance of DFCM
feature extraction approach together with RUS, we will

VOLUME 6, 2018 47057

A. Arshad et al.: Empirical study of Semi-Supervised DFCM for Software Fault Prediction

TABLE 10. Mann-Whitney U test results for comparison between schemes with and without data pre-processing for classification models.

TABLE 11. Mann-Whitney U test results for comparison between schemes with and without data pre-processing for classification models.

TABLE 12. Mann-Whitney U test results for comparison between schemes with and without data pre-processing for classification models.

analyse the results of DFCM with and without on three fault
prediction modules. AUC result of DFCM with and without
RUS shown in Table 7, 8, and 9. From these results DFCM
approach achieve improve AUC measure after RUS by 1.5%,
2.2%, & 5.5% on Naive Bayes, 5.3%, 9.3%, and 9.1% on
C4.5 and 3.8%, 5.7%, & 8% on 1-NN.

From above results, we can conclude that RUS can improve
the prediction performance after together with the DFCM
approach. We can also conclude the results of Mann-Whitney
U test in Table 12 by comparison of IG+RUS vs IG, and
DFCM+RUS vs DFCM. According to the results, the com-
bination of RUS with feature ranking approach (IG) is not
significantly improved prediction performance. All P-Values
ofMann-WhitneyU test on IG+RUS vs IGwith all predictive
models is greater than 0.05. Another hand, the combination
of RUS with feature extraction approach DFCM improve the
prediction performance. All P-Values of Mann-Whitney U
test onDFCM+RUS vsDFCM is less than 0.05, which shows
that DFCM+RUS are significantly improved the DFCM
approach.

V. THREATS TO VALIDITY
Some potential threats to validity right are affected by our
experimental study.

A. EXTERNAL VALIDITY
Dataset quality may be the most important threat to the
external validity. These threats refer to the generalizability
of our experimental results. To ensure the representativeness

of our study, we used NASA and Eclipse dataset which are
commonly used for software fault prediction. In addition,
we choose Fuzzy C-Mean clustering for the extension of
multi-clustering and random under-sampling is used for bal-
ancing the dataset, which is widely used in software fault
prediction, to ensure the soundness of our results.

B. INTERNAL VALIDITY
These threats refer to experimenter biases. To avoid this
type of threat, all implementation is cross-checked by our
research group.Withal, we perform our experiment 100 times
and report the average performance over 100 runs and pre-
diction models are provided by the commonly used WEKA
package. Moreover, our experimental results are generated
based on a large collection of the unbalanced dataset from
public PROMISE repository, so the dataset is carefully exam-
ined whether the non-numeric feature is eliminated. Thus,
we believe there are minimal threats to internal validity.

C. CONSTRUCT VALIDITY
These threats refer to the approximations of our evaluation
measure. The initial threat to construct the validity of our
work is that we assume that all the faults that we utilized in our
study had some weights. We make utilization of sensitivity,
specificity, and AUC to evaluate the software fault prediction.
AUC has lower variance and is more reliable to indicate
the predictive potential of the method when compared with
another performance measures, such as precision, recall or

47058 VOLUME 6, 2018

A. Arshad et al.: Empirical study of Semi-Supervised DFCM for Software Fault Prediction

F-measure. Finally, we do theMann-Whitney U test to further
validate the significance of the differences in performance.

VI. CONCLUSION
In this paper, we provided an empirical study of semi-
supervised DFCM based feature extraction data pre-
processing approach, which incorporates the semi-supervised
multi-clustering by using FCM clustering for Novel feature
extraction technique with RUS to amend the quality of soft-
ware dataset utilized by software fault prediction models with
imbalanced classes. In this paper, we presented how ‘‘Deep’’
multi-cluster can be amalgamated for feature extraction tech-
nique and how it can avail to incorporate simultaneously unla-
beled data and labeled data into the sub-clustering process
and withal handle the class imbalance problem.

In our empirical study, we investigate the performance
stability of our proposed data pre-processing approach on
fault prediction models (NB, C4.5, & 1-NN). Experiment
result demonstrates the potential of our approach in enhanc-
ing fault prediction performance on ten NASA dataset and
three Eclipse dataset. The proposed method has the best AUC
measure on all prediction models. But NB prediction model
has achieved goodAUCmeasure compared to C4.5 and 1-NN
by using our proposed approach DFCM feature extraction
with RUS. The rank test using Mann-Whitney U test, experi-
ment results shows that the difference between DFCM+RUS
scheme and our four schemes are statistically significant.
After analysis of experiment results, our pre-processing data
approach boosts the performance of accuracy on traditional
prediction model with imbalance class ratio.

In our future work, we plan to extend our approach for
multi-imbalance classes with the big dataset.

REFERENCES
[1] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu, ‘‘Dictionary

learning based software defect prediction,’’ in Proc. IEEE Int. Conf. Softw.
Eng., May/Jun. 2014, pp. 414–423.

[2] S. Kim, H. Zhang, R. Wu, and L. Gong, ‘‘Dealing with noise in defect
prediction,’’ in Proc. IEEE Int. Conf. Softw. Eng., May 2011, pp. 481–490.

[3] H. Wang, T. M. Khoshgoftaar, and A. Napolitano, ‘‘A comparative study
of ensemble feature selection techniques for software defect prediction,’’
in Proc. Int. Conf. Mach. Learn. Appl., 2010, pp. 135–140.

[4] S. Wang and X. Yao, ‘‘Using class imbalance learning for software defect
prediction,’’ IEEE Trans. Rel., vol. 62, no. 2, pp. 434–443, Jun. 2013.

[5] T. Menzies, J. Greenwald, and A. Frank, ‘‘Data mining static code
attributes to learn defect predictors,’’ IEEE Trans. Softw. Eng., vol. 33,
no. 1, pp. 2–13, Jan. 2007.

[6] N. Nagappan and T. Ball, ‘‘Static analysis tools as early indicators of pre-
release defect density,’’ in Proc. Int. Conf. Softw. Eng., Saint Louis, MO,
USA, May 2005, pp. 580–586.

[7] K. O. Elish and M. O. Elish, ‘‘Predicting defect-prone software modules
using support vector machines,’’ J. Syst. Softw., vol. 81, no. 5, pp. 649–660,
2008.

[8] B. Turhan and A. Bener, ‘‘Analysis of Naive Bayes’ assumptions on
software fault data: An empirical study,’’ Data Knowl. Eng., vol. 68, no. 2,
pp. 278–290, 2009.

[9] C. Catal and B. Diri, ‘‘Investigating the effect of dataset size, metrics sets,
and feature selection techniques on software fault prediction problem,’’ Inf.
Sci., vol. 179, no. 8, pp. 1040–1058, 2009.

[10] P. Singh, N. R. Pal, S. Verma, and O. P. Vyas, ‘‘Fuzzy rule-based approach
for software fault prediction,’’ IEEE Trans. Syst., Man, Cybern. Syst.,
vol. 47, no. 5, pp. 826–837, May 2017.

[11] W. Liu, S. Liu, Q. Gu, J. Chen, X. Chen, and D. Chen, ‘‘Empirical studies
of a two-stage data preprocessing approach for software fault prediction,’’
IEEE Trans. Rel., vol. 65, no. 1, pp. 38–53, Mar. 2016.

[12] T.M. Khoshgoftaar and N. Seliya, ‘‘Fault prediction modeling for software
quality estimation: Comparing commonly used techniques,’’ Empirical
Softw. Eng., vol. 8, pp. 255–283, Sep. 2003.

[13] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, ‘‘Benchmarking clas-
sification models for software defect prediction: A proposed framework
and novel findings,’’ IEEE Trans. Softw. Eng., vol. 34, no. 4, pp. 485–496,
Jul. 2008.

[14] K. P. Bennett and A. Demiriz, ‘‘Semi-supervised support vector
machines,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 11, 1999,
pp. 368–374.

[15] T. Joachims, ‘‘Transductive inference for text classification using support
vector machines,’’ in Proc. Int. Conf. Mach. Learn., 1999, pp. 200–209.

[16] M. Belkin, P. Niyogi, and V. Sindhwani, ‘‘ Manifold regularization: A geo-
metric framework for learning from labeled and unlabeled examples,’’
Mach. Learn. Res., vol. 7, pp. 2399–2434, Nov. 2006.

[17] X. Ao et al., ‘‘Combining supervised and unsupervised models via
unconstrained probabilistic embedding,’’ Inf. Sci., vol. 257, pp. 101–114,
Feb. 2014.

[18] S. Basu, A. Banerjee, and R. Mooney, ‘‘Semi-supervised clustering by
seeding,’’ in Proc. Int. Conf. Mach. Learn., 2002, pp. 27–34.

[19] W. Cai, S. Chen, and D. Zhang, ‘‘A simultaneous learning framework
for clustering and classification,’’ Pattern Recognit., vol. 42, no. 7,
pp. 1248–1259, 2009.

[20] N. V. Chawla and G. J. Karakoulas, ‘‘Learning from labeled and unlabeled
data an empirical study across techniques and domains,’’ J. Artif. Intell.
Res., vol. 23, pp. 331–366, Mar. 2005.

[21] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco, CA,
USA: Morgan Kaufmann, 1993.

[22] G. H. John and P. Langley, ‘‘Estimating continuous distributions in
Bayesian classifiers,’’ in Proc. 11th Conf. Uncertainty Artif. Intell.,
Montréal, QC, Canada, Aug. 1995, pp. 338–345.

[23] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[24] M. D’Ambros, M. Lanza, and R. Robbes, ‘‘An extensive comparison of
bug prediction approaches,’’ in Proc. 7th IEEE Work. Conf. Mining Softw.
Repositories (MSR), May 2010, pp. 31–41.

[25] M. Dash and H. Liu, ‘‘Consistency-based search in feature selection,’’
Artif. Intell., vol. 151, nos. 1–2, pp. 155–176, 2003.

[26] J. Davis and M. Goadrich, ‘‘The relationship between Precision-Recall
and ROC curves,’’ in Proc. ACM 23rd Int. Conf. Mach. Learn., 2006,
pp. 233–240.

[27] T. Fawcett, ‘‘An introduction to ROC analysis,’’ Pattern Recognit. Lett.,
vol. 27, no. 8, pp. 861–874, 2006.

[28] N. E. Fenton and M. Neil, ‘‘A critique of software defect prediction mod-
els,’’ IEEE Trans. Softw. Eng., vol. 25, no. 5, pp. 675–689, Sep./Oct. 1999.

[29] W. W. Cohen, ‘‘Fast effective rule induction,’’ in Proc. Int. Conf. Mach.
Learn., 1995, pp. 115–123.

[30] T. M. Cover and J. A. Thomas, Elements of Information Theory. Hoboken,
NJ, USA: Wiley, 2012.

[31] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis.
New York, NY, USA: Wiley, 1973.

[32] S. Vluymans, D. S. Tarragó, Y. Saeys, C. Cornelis, and F. Herrera, ‘‘Fuzzy
rough classifiers for class imbalanced multi-instance data,’’ Pattern
Recognit., vol. 53, pp. 36–45, May 2016.

[33] V.Wu et al., ‘‘Top 10 algorithms in data mining,’’Knowl. Inf. Syst., vol. 14,
no. 1, pp. 1–37, 2008.

[34] R. Jensen and C. Cornelis, ‘‘Fuzzy-rough nearest neighbor classification,’’
in Transactions on Rough Sets XIII, J. Peters, A. Skowron, C. C. Chan,
J. W. Grzymala-Busse, and W. P. Ziarko, Eds. Berlin, Germany: Springer,
2011, pp. 56–72.

[35] R. B. Bhatt and M. Gopal, ‘‘FRCT: Fuzzy-rough classification trees,’’
Pattern Anal. Appl., vol. 11, no. 1, pp. 73–88, 2008.

[36] R. Jensen and C. Cornelis, ‘‘Fuzzy-rough nearest neighbour classification
and prediction,’’ Theor. Comput. Sci., vol. 412, no. 42, pp. 5871–5884,
2011.

[37] E. Ramentol et al., ‘‘IFROWANN: Imbalanced fuzzy-rough ordered
weighted average nearest neighbor classification,’’ IEEE Trans. Fuzzy
Syst., vol. 23, no. 5, pp. 1622–1637, Oct. 2015.

[38] R. R. Yager, ‘‘On ordered weighted averaging aggregation operators in
multicriteria decisionmaking,’’ IEEE Trans. Syst., Man, Cybern. Syst.,
vol. SMC-18, no. 1, pp. 183–190, Jan./Feb. 1988.

VOLUME 6, 2018 47059

A. Arshad et al.: Empirical study of Semi-Supervised DFCM for Software Fault Prediction

[39] A. L. Blum and P. Langley, ‘‘Selection of relevant features and examples
in machine learning,’’ Artif. Intell., vol. 97, nos. 1–2, pp. 245–271, 1997.

[40] H. Liu and H. Motoda, Feature Extraction, Construction and Selection:
A Data Mining Perspective, vol. 453. London, U.K.: Springer, 2012.

[41] A. Arshad, S. Riaz, L. Jiao, and A.Murthy, ‘‘A semi-supervised deep fuzzy
C-mean clustering for two classes classification,’’ in Proc. IEEE 3rd Inf.
Technol. Mechatronics Eng. Conf. (ITOEC), Chongqing, China, Oct. 2017,
pp. 365–370.

[42] A. Arshad, S. Riaz, L. Jiao, and A. Murthy, ‘‘Semi-supervised deep fuzzy
c-mean clustering for software fault prediction,’’ IEEE Access, vol. 6,
pp. 25675–25685, 2018.

[43] G. Forestier and C. Wemmert, ‘‘Semi-supervised learning using multiple
clusterings with limited labeled data,’’ Inf. Sci., vols. 361–362, pp. 48–65,
Sep. 2016.

[44] N. R. Pal and V. K. Eluri, ‘‘Two efficient connectionist schemes for
structure preserving dimensionality reduction,’’ IEEE Trans. Neural Netw.,
vol. 9, no. 6, pp. 1142–1154, Nov. 1998.

[45] N. R. Pal, V. K. Eluri, and G. K. Mandal, ‘‘Fuzzy logic approaches to
structure preserving dimensionality reduction,’’ IEEE Trans. Fuzzy Syst.,
vol. 10, no. 3, pp. 277–286, Jun. 2002.

[46] N. R. Pal and K. K. Chintalapudi, ‘‘A connectionist system for feature
selection,’’ Neural Parallel Sci. Comput., vol. 5, no. 3, pp. 359–382, 1997.

[47] D. Chakraborty and N. R. Pal, ‘‘A neuro-fuzzy scheme for simultaneous
feature selection and fuzzy rule-based classification,’’ IEEE Trans. Neural
Netw., vol. 15, no. 1, pp. 110–123, Jan. 2004.

[48] R. O. Duda and P. Hart, Pattern Classification and Scene Analysis.
New York, NY, USA: Wiley, 1973.

[49] S. Kim, E. J. Whitehead, Jr., and Y. Zhang, ‘‘Classifying software changes:
Clean or buggy?’’ IEEE Trans. Softw. Eng., vol. 34, no. 2, pp. 181–196,
Mar./Apr. 2008.

[50] X.-Y. Liu, J. Wu, and Z.-H. Zhou, ‘‘Exploratory undersampling for class-
imbalance learning,’’ in Proc. Int. Conf. Data Mining, 2006, pp. 965–969.

[51] H. He and E. A. Garcia, ‘‘Learning from imbalanced data,’’ IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[52] T. Jiang, L. Tan, and S. Kim, ‘‘Personalized defect prediction,’’ in Proc.
Int. Conf. Autom. Softw. Eng., 2013, pp. 279–289.

[53] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, ‘‘Towards building a
universal defect prediction model,’’ in Proc. Work. Conf. Mining Softw.
Repositories, 2014, pp. 182–191.

[54] K. Nigam, A. K.McCallum, S. Thrun, and T.Mitchell, ‘‘Text classification
from labeled and unlabeled documents using EM,’’Mach. Learn., vol. 39,
nos. 2–3, pp. 103–134, 2000.

[55] H. Lu, B. Cukic, and M. Culp, ‘‘An iterative semi-supervised approach to
software fault prediction,’’ in Proc. 7th Int. Conf. Predictive Models Softw.
Eng., 2011, Art. no. 15.

[56] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, ‘‘Choosing software
metrics for defect prediction: An investigation on feature selection tech-
niques,’’ Softw.-Practice Exper., vol. 41, no. 5, pp. 579–606, 2011.

[57] S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim, ‘‘Reducing features
to improve code change-based bug prediction,’’ IEEE Trans. Softw. Eng.,
vol. 39, no. 4, pp. 552–569, Apr. 2013.

[58] L. Yu and H. Liu, ‘‘Efficient feature selection via analysis of relevance and
redundancy,’’ J. Mach. Learn. Res., vol. 5, pp. 1205–1224, Oct. 2004.

[59] I. Jamali, M. Bazmara, and S. Jafari, ‘‘Feature selection in imbalance data
sets,’’ Int. J. Comput. Sci. Issues, vol. 9, no. 3, pp. 1–4, May 2012.

[60] M. Shepperd, Q. Song, Z. Sun, and C. Mair, ‘‘Data quality: Some com-
ments on the NASA software defect datasets,’’ IEEE Trans. Softw. Eng.,
vol. 39, no. 9, pp. 1208–1215, Sep. 2013.

[61] K. Dejaeger, T. Verbraken, and B. Baesens, ‘‘Toward comprehensible soft-
ware fault prediction models using Bayesian network classifiers,’’ IEEE
Trans. Softw. Eng., vol. 39, no. 2, pp. 237–257, Feb. 2013.

[62] J. J. Peterson, ‘‘Regression analysis of count data,’’ Technometrics, vol. 41,
no. 4, p. 371, 1999, doi: 10.1080/00401706.1999.10485941.

[63] A. Coates, H. Lee, and A. Y. Ng, ‘‘An analysis of single-layer networks
in unsupervised feature learning,’’ in Proc. 14th Int. Conf. Artif. Intell.
Statist. (AISTATS), vol. 15, 2011, pp. 215–223.

[64] T. M. Khoshgoftaar, C. Seiffert, J. Van Hulse, A. Napolitano, and A. Fol-
leco, ‘‘Learningwith limitedminority class data,’’ inProc. Int. Conf. Mach.
Learn. Appl., 2007, pp. 348–353.

[65] H. Wang, T. M. Khoshgoftaar, and A. Napolitano, ‘‘An empirical study
on the stability of feature selection for imbalanced software engineering
data,’’ in Proc. 11th Int. Conf. Mach. Learn. Appl., Boca Raton, FL, USA,
vol. 1, Dec. 2012, pp. 317–323.

[66] N. Japkowicz and S. Stephen, ‘‘The class imbalance problem: A systematic
study,’’ Intell. Data Anal., vol. 6, no. 5, pp. 429–449, Oct. 2002.

[67] T. G. Grbac, G. Mausa, and B. D. Basic, ‘‘Stability of software defect
prediction in relation to levels of data imbalance,’’ in Proc. 2nd Work-
shops Softw. Qual. Anal., Monit., Improvement, Appl., Novi Sad, Serbia,
Sep. 2013, pp. 1–10.

[68] D. Ryu, O. Choi, and J. Baik, ‘‘Value-cognitive boosting with a support
vector machine for cross-project defect prediction,’’ Empirical Softw. Eng.,
vol. 21, no. 1, pp. 43–71, 2016.

[69] Q. Yu, S. Jiang, and Y. Zhang, ‘‘The performance stability of defect pre-
diction models with class imbalance: An empirical study,’’ IEICE Trans.
Inf. Syst., vol. E100-D, pp. 265–272, Feb. 2017.

[70] D. W. Aha, D. Kibler, and M. K. Albert, ‘‘Instance-based learning algo-
rithms,’’ Mach. Learn., vol. 6, no. 1, pp. 37–66, 1991.

[71] S. Le Cessie and J. C. Van Houwelingen, ‘‘Ridge estimators in logistic
regression,’’ Appl. Statist., vol. 41, no. 1, pp. 191–201, 1992.

[72] J.-G. Attali and G. Pagès, ‘‘Approximations of functions by a multilayer
perceptron: A new approach,’’Neural Netw., vol. 10, no. 6, pp. 1069–1081,
1997.

[73] A. K. Pandey and N. K. Goyal, ‘‘Predicting fault-prone software module
using data mining technique and fuzzy logic,’’ Int. J. Comput. Commun.
Technol., vol. 2, nos. 2–4, pp. 56–63, 2010.

[74] S. Chatterjee and B. Maji, ‘‘A new fuzzy rule based algorithm for estimat-
ing software faults in early phase of development,’’ Soft Comput., vol. 20,
no. 10, pp. 4023–4035, Oct. 2015.

[75] K. Li, Z. Cao, L. Cao, and R. Zhao, ‘‘A novel semi-supervised fuzzy
c-means clustering method,’’ in Proc. Chin. Control Decis. Conf., Guilin,
China, 2009, pp. 3761–3765.

[76] B. Gabrys and L. Petrakieva, ‘‘Combining labelled and unlabelled data in
the design of pattern classification systems,’’ Int. J. Approx. Reasoning,
vol. 35, no. 3, pp. 251–273, 2014.

[77] A. Bouchachia, ‘‘Learning with partly labeled data,’’ Neural Comput.
Appl., vol. 16, no. 3, pp. 267–293, 2007.

[78] Statistics Toolbox Release MATLAB, MathWorks, Inc., Natick, MA, USA,
2016.

[79] T. Zimmermann, R. Premraj, and A. Zeller, ‘‘Predicting defects for
eclipse,’’ in Proc. Int. Workshop Predictor Models Softw. Eng., May 2007,
p. 9.

[80] PROMISE Software Engineering Repository. Accessed: Mar. 10, 2018.
[Online]. Available: http://promise.site.uottawa.ca/SERepository

[81] Tera-PROMISE Repository. Accessed: Mar. 10, 2018. [Online]. Available:
http://openscience.us/repo/defect/

[82] R. Moser, W. Pedrycz, and G. Succi, ‘‘A comparative analysis of the effi-
ciency of change metrics and static code attributes for defect prediction,’’
in Proc. IEEE Int. Conf. Softw. Eng., May 2008, pp. 181–190.

[83] D. J. Hand, Construction and Assessment of Classification Rules.
Chichester, U.K.: Wiley, 1997.

[84] Y. Zhou, Y. Yang, B. Xu, H. Leung, and X. Zhou, ‘‘Source code size esti-
mation approaches for object-oriented systems from UML class diagrams:
A comparative study,’’ Inf. Softw. Technol., vol. 56, no. 2, pp. 220–237,
2014.

[85] K. Pal, R. K. Mudi, and N. R. Pal, ‘‘A new scheme for fuzzy rule-based
system identification and its application to self-tuning fuzzy controllers,’’
IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 32, no. 4, pp. 470–482,
Aug. 2002.

[86] I. H.Witten and E. Frank,Data Mining: Practical Machine Learning Tools
and Techniques. San Francisco, CA, USA: Morgan Kaufmann, 2005.

[87] H. Liu and R. Setiono, ‘‘Chi2: Feature selection and discretization of
numeric attributes,’’ in Proc. ICTAI, 1995, pp. 388–391.

ALI ARSHAD received the B.S. degree in com-
puter science from Iqra University, Pakistan,
in 2008, and the M.S. degree in software engi-
neering from International Islamic University,
Pakistan, in 2012. He is currently pursuing the
Ph.D. degree with the School of Computer Sci-
ence and Technology, Xidian University, China.
His research interests include machine learn-
ing, semi-supervised learning, and Fuzzy C-Mean
clustering.

47060 VOLUME 6, 2018

http://dx.doi.org/10.1080/00401706.1999.10485941

A. Arshad et al.: Empirical study of Semi-Supervised DFCM for Software Fault Prediction

SAMAN RIAZ received the M.Sc. and M.Phil.
degrees in applied mathematics from Quaid-i-
Azam, Pakistan, in 2006 and 2008, respectively.
She is currently pursuing the Ph.D. degree with
the School of Computer Science and Technology,
Xidian University, China. Her research interests
include machine learning and probability.

LICHENG JIAO (SM’89–F’16) received the B.S.
degree from Shanghai Jiao Tong University,
Shanghai, China, in 1982, and the M.S. and Ph.D.
degrees from Xi’an Jiaotong University, Xi’an,
China, in 1984 and 1990, respectively. Since
1992, he has been a Professor with the School of
Electronic Engineering, Xidian University, Xi’an,
where he is currently the Director of the Key
Laboratory of Intelligent Perception and Image
Understanding, Ministry of Education of China.

He is also in charge of about 40 important scientific research projects. He has
authored or co-authored over 20 monographs and 100 papers in interna-
tional journals and conferences. His research interests include image pro-
cessing, natural computation, machine learning, and intelligent information
processing.

APARNA MURTHY received the B.E. degree in
electronics and communication engineering from
KuvempuUniversity, Shimoga, India, in 1995, and
the M.Tech. degree in electronics from Visves-
varaya Technological University, Belgaum, India,
2005. She was a Lecturer with the Department
of Electronics and Communication Engineering,
BMS Engineering College, from 1998 to 2010.
She was involved in the field of programming
using C/CCC and MATLAB platform. She is cur-

rently with Professional Engineers Ontario, Canada, as an Engineering
Intern.

VOLUME 6, 2018 47061

	INTRODUCTION
	RELATED WORK
	EMPIRICAL STUDY OF SEMI-SUPERVISED DEEP FUZZY-C MEANS CLUSTERING
	THE FRAMEWORK OF OUR APPROACH
	FEATURE EXTRACTION

	EXPERIMENT
	RESEARCH QUESTIONS
	DATA PREPARATION
	PERFORMANCE MEASURE
	EXPERIMENTAL DESIGN
	FEATURE EXTRACTION TECHNIQUE
	FEATURE SELECTION TECHNIQUE
	CLASSIFICATION MODELS

	EXPERIMENTAL RESULT AND ANALYSIS

	THREATS TO VALIDITY
	EXTERNAL VALIDITY
	INTERNAL VALIDITY
	CONSTRUCT VALIDITY

	CONCLUSION
	REFERENCES
	Biographies
	ALI ARSHAD
	SAMAN RIAZ
	LICHENG JIAO
	APARNA MURTHY

