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ABSTRACT As one of the most typical multistate systems, weighted k-out-of-n system has been exten-
sively studied in recent years. This paper presents a new kind of multistate weighted k-out-of-n system,
which simultaneously considers performance requirements of each component and the system performance
(cumulative performance threshold of all components). Then, we establish a new dynamic availability
model by combining the Markov process and universal generating function. Moreover, an optimal design
is proposed to achieve a tradeoff between system reliability/availability and cost. Non-dominated sorting
genetic algorithm-II is used to optimize the probability and performance of components in different states.
Finally, an example is illustrated to evaluate system availability and optimize component design. The
optimization design can be referred as an optimal standard in system update.

INDEX TERMS Availability analysis, multistate system, k-out-of-n, optimal design, universal generating
function, non-dominated sorting genetic algorithm-II (NSGA- II).

NOTATION
n Number of system components.
m Optimal operating state of the components.
m+ 1 Total number of states.
i Index of component number in the system,

1 ≤ i ≤ n.
j Index of component state in the system,

1 ≤ j ≤ m.
λij,l State transition (failure) rate of component i from

state j to state l (j > l).
µij,l State transition (repair) rate of component i from

state j to state l(j < l).
gij Performance rate of component i in state j.
Gi (t) Performance rate of component i at time t .
GSj Performance rate of the system in state j.
pij(t) State probability of component i in state j at time t .
kij(t) Minimum performance required for each

component to ensure that component i is in state j
or above at time t .

Kj (t) Minimum system performance (cumulative
performance of all components) required to ensure
that the system is in state j or above at time t .

ci (t) Total cost of component i at time t .

Csys Total cost of the system.
Cj Cost of the system in a state below j.
Ãsys Minimum required probability for the system to

remain in state j or above.
C̃sys Upper limit of the total cost for the system to

remain in state j or above.
cpi (t) Availability-associated cost of component i.
cui (t) Performance-associated cost of component i.

I. INTRODUCTION
Many practical systems comprise multistate components,
which have various distinctive performance levels and failure
modes with effects on the overall system performance. The
system with different performance rates is called multistate
system (MSS) [1]. Multistate weighted k-out-of-n systems
have been widely investigated as typical MSSs. For example,
some types of power systems, computer systems, pipeline
transportation systems, and signal transmission systems are
MSSs with performance characteristics of generator capacity,
data processing speed, transport capacity, and channel capac-
ity [2], [3], respectively. These systems usually have a high
reliability, long operating cycle, and high cost of production
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and maintenance. Therefore, it is particularly crucial to con-
duct reliability/availability analysis and make optimal design
of multistate weighted k-out-of-n systems.
Many studies have investigated the reliability and avail-

ability of MSSs, because of its significance and wide appli-
cation. The earliest investigations of the reliability concept
and theory of MSS were performed by Murchland [4],
Barlow and Wu [5], and Ross [6] in the 1970s. Researchers
have mainly considered the following three aspects in the
availability/reliability analysis and optimal design of multi-
state weighted k-out-of-n systems:

A. MODELING METHODS
Researchers have mainly considered the following four meth-
ods for establishing the reliability/availability model of an
MSS: 1) expanded Boolean models such as MSS fault
trees [7], multistate paths and cut sets [8], [9], andmultivalued
decision diagrams [10], [11]. 2) simulations such as Monte
Carlo simulations [8], [12], [13], and random Petri nets [14].
3) random processes such as the homogeneous Markov
process [15] and Quasi renewal process [16], [17]. 4) the
universal generating function (UGF) proposed by Ushakov
in 1987 [18], which is a discrete random variable opera-
tion tool. UGF is widely used in the reliability/availability
analysis of MSSs because of its advantages, such as fast
computing speed, easy programming, and numerical imple-
mentation [1], [19], [20].

B. MODEL ANALYSIS
In traditional multistate weighted k-out-of-n systems, every
component in each possible state has a certain contribution
to system performance. The output performance of weighted
k-out-of-n systems depends on the sum of the weighted
working components and is greater than the performance
threshold. Wu and Chen [21] developed a recursive formula
for analyzing the reliability of a binary weighted k-out-of-n
system. Li and Zuo [22] extended the binary weighted
k-out-of-n model to an MSS model and then analyzed its
availability by combining recursive algorithms and the UGF.
Ding et al. [23] developed a hierarchical weighted multi-
state k-out-of-n system, which can be resolved into different
hierarchical levels, such as system, subsystem, and compo-
nents. In this model, each level is represented as a multistate
weighted k-out-of-n structure. Khorshidi et al. [24], [25]
defined the multistate weighted k-out-of-n system from eco-
nomic perspective, which demonstrated that the summation
of components income (total performance of all components)
in the system is equal to system income (system perfor-
mance). Therefore, this definition agrees with the definition
ofModel I in reference [22]. Eryilmaz andAksoy [26] studied
the reliability of linear weighted k-out-of-n: G and F systems
by using recursive formulas. Wang et al. [27] estimated the
reliability of weighted k-out-of-n multistate systems based
on component reliability data. An unbiased system reliability
estimator and unbiased covariance estimator were obtained
based on the propagation mechanism of uncertainty of

component reliability data. Eryilmaz [28] developed the
k-out-of-n system reliability model with random weights
components by using recursive formula andMonte Carlo sim-
ulation through static and dynamic approaches. Eryilmaz and
Bozbulut [29] considered the marginal and joint importance
in weighted k-out-of-n systems through the UGF and proba-
bilistic approaches. Amrutkar and Kamalja [30] developed a
formula for evaluating the reliability and probability-based
importance measures of weighted k-out-of-n: G systems.
Pourkarim Guilania et al. [31] compared two methods of the
Markov model, as well as the UGF and recursive algorithm
for estimating the reliability of a nonrepairable three-state
system. Results revealed that the Markov process method has
a faster computing speed.

In the dynamicmodel, the probabilities and performance of
components in different states can change with time. On the
basis of multivariate copula, Eryilmaz [32] explored the reli-
ability of a dynamic weighted k-out-of-n system with depen-
dent component lifetime. Based on the capacity and weights
as well as a cold standby component, Franko et al. [33] inves-
tigated the reliability of weighted k-out-of-n systems that
included two types of components. Faghih-Roohia et al. [34]
evaluated the dynamic availability of dynamic multistate
weighted k-out-of-n systems based on the reliability model
of Li and Zuo [22], and they developed the optimization
model of Model I based on the nondynamic case to obtain
the optimal design of dynamic components.

C. OPTIMAL DESIGN
Most reliability optimization and design problems of mul-
tistate weighted k-out-of-n systems are considered to be
balancing system reliability/availability and cost. Meta-
heuristic has been considered as the most effective approach
to solve complex reliability and cost optimization problems.
Genetic algorithm (GA), which is the most well-known
heuristic approach, has been widely used for solving
optimization problems in weighted multistate weighted
k-out-of-n systems [24], [35]–[40]. Li and Zuo [36] extended
the component optimal design of the binary k-out-of-n
system to multistate systems. Two single-objective opti-
mization problems have been presented to solve the
component optimal design. Khorshidi et al. [24] studied the
optimization of the reliability-redundancy allocation prob-
lem for multistate weighted k-out-of-n systems to simulta-
neously maximize system reliability and minimize system
cost. Khorshidi et al. [38] evaluated the dynamic unreliability
of multistate weighted k-out-of-n: F systems and established
a bi-objective optimization model for optimal maintenance
strategies. Li and Peng [39] developed an availability and
optimization model for analyzing dynamic multistate series-
parallel systems. Li et al. [40] developed a multi-objective
optimization model for multistate weighted series-parallel
systems, which is used to maximize expected performance
and reliability, and minimize system cost. An improved GA
was also used for the optimization of multistate k-out-of-n
systems. Ebrahimipur et al. [41] established a fuzzy
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optimal model for the reliability design of multistate
k-out-of-n systems to minimize the system cost subject to
the reliability constraint. By using the augmented Lagrangian
genetic algorithm, Li et al. [42] achieved the optimal
design parameters for the components of multistate weighted
k-out-of-n systems.
The aforementioned literature indicates that most studies

have focused on modeling and optimization. Moreover, most
researchers have investigated multistate weighted k-out-of-n
systems based on the two definitions proposed by Li and
Zuo [22]. Li and Zuo [22] first extended the binary weighted
k-out-of-n model to the MSS model and defined two types
of systems named Model I and Model II. In addition,
they [35] proposed two optimization problems for Model I
and Model II.
Model I [22]: The system is in state j or above if the total

performance of all components is greater than or equal to Kj.
The performance of all components can contribute to the
system.
Model II [22]: The system is in state j or above if

the sum of the weights of only those components in state
j or above is not less thanKj. The performance of components
which are greater than or equal to Kj can contribute to the
system.

According to the aforementioned discussion, Model I and
Model II only require a single threshold for system or com-
ponent performance. For Model I, only the cumulative per-
formance threshold of all components is considered, whereas
for Model II, each individual performance threshold of the
components is considered. Therefore, we propose a new type
of multistate weighted k-out-n: G system called Model III,
in which performance of each component and cumulative per-
formance of all components are considered simultaneously.
This model extends the application areas of Models I and II.
First, we establish an availability model for Model III by
combining the Markov process and UGF. The performance
and state probability of the system can also be obtained.
Moreover, an optimization model is proposed by consider-
ing reduced costs and increased availability. The component
costs comprise two parts: availability-associated cost and
performance-associated cost. Non-dominated sorting genetic
algorithm-II (NSGA-II) is selected for solving the optimiza-
tion problem [43], [44]. Finally, a practical pumping system
is considered as an example to illustrate the availability model
and optimal component design. In addition, the influence of
the output threshold for component and system performance
on the system availability is investigated.

The rest of the paper is organized as follows. The sys-
tem availability model is established in Section II based
on the Markov process and UGF. The optimization model,
which considers reduced costs and increased availability,
is presented in Section III. A practical case is examined,
and the system availability and component optimal design
are analyzed in Section IV. The conclusions are presented
in Section V.

II. SYSTEM AVAILABILITY
Typically, a multistate weighted k-out-of-n system has nmul-
tistate components and each component has m + 1 perfor-
mance states (i.e., 0, 1, · · · ,m, where m implies the perfect
performance state and 0 implies complete failure of the com-
ponents). The components of repairable MSSs can gradually
degenerate from a state of high performance to low per-
formance; the component states can be repaired to improve
the performance. Based on the discussion of Model III in
Section I, the definition of Model III is given as follows:
Definition: The components whose performance is not

less than the threshold kij(t) can contribute to system per-
formance. The system is in state j or above if the sum of
component performance contributions is greater than or equal
to Kj.
The performance of component i in state j is represented

by the set gi = {gi0, gi1, · · · , gim−1, gim}. The definition of
Model III can be represented as

Pr {φ ≥ j} = Pr
{∑n

i=1
gijα(gij ≥ kij(t)) ≥ Kj

}
(1)

where α(gi ≥ kij) is an indicator function defined as

α =

{
1, gij ≥ kij(t)
0, gij < kij(t)

(j = 1, 2, 3 . . . ,m) (2)

φ is the structure function of the system, which represents
the state of system and the performance of all compo-
nents. By comparing Model I and Model II, the defini-
tion of Model III simultaneously considers performance
requirements of each component and system performance
(cumulative performance threshold of all components).When
kij (t) = 0 and

∑n
i=1 gij ≥ Kj, the definition of Model III is

the same as Model I; when gij (t) ≥ kij (t) = Kj, components
can make any contribution for system, and in this situation,
the definition of Model II and III is the same. Therefore,
Model III is a generalization and extension of traditional
definition of multi-state weighted k-out-of-n system, and can
be applied to a broader domain.

A. MODELING FOR MULTISTATE COMPONENT
The continuous-time discrete-state Markov process is used
for establishing the multistate component model; the state
probability distributions of the repaired components with
perfect maintenance can be easily achieved. The multistate
Markov state-transition model for repaired component i is
illustrated in Fig. 1. The instantaneous state probabilities in
state j at time t can be calculated as

pij (t) = Pr
{
Gi (t) = gij

}
(3)

The state probabilities pij(t) for component i can be com-
puted by

dP
dt
= P (t) ∗3i (4)

VOLUME 6, 2018 51549



Z. Chen et al.: Availability Analysis and Optimal Design of Multistate Weighted k-Out-of-n Systems

FIGURE 1. State-transition diagram for repairable components.

The state-transition rate matrix 3i of component i is pre-
sented as

3i =



λim,m λim,m−1 · · · λim,1 λim,0

µim−1,m λim−1,m−1 · · · λim−1,1 λim−1,0

...
...

. . .
...

...

µi0,m µi0,m−1 · · · µi0,1 λi0,0


(5)

The state probabilities of the components can be given as

m∑
j=0

pij (t) = 1. (6)

When the output performance of the components is less
than the threshold kij(t), the components cannot contribute
to the system. This implies that gij < kij (t) , gij = gi0 =
0(j = 0, 1, · · · ,w). When gij ≥ kij (t) , gij = gij(j =
w+ 1, · · · ,m), the contribution of components to the system
remains unchanged. The indicator function α can be obtained
by using (1), and the UGF ui(z, t) for each repairable compo-
nent iwith component output performance requirement kij (t)
is given by

ui (z, t) =
m∑
j=0

pij (t) zgijα(gij≥kij(t)) (7)

B. MODELING FOR MSS
The composition operator [45] should be used for the
UGF of individual components with their thresholds and
combinations. The UGF associated with the MSS out-
put performance distribution at time t can be obtained as

follows:

Us (z, t) = �(u1 (z, t) , u2 (z, t) , . . . , un−1 (z, t) , un (z, t))

=

∑m

j1=0

∑m

j2=0
· · ·

∑m

jn−1=0

∑m

jn=0(
n∏
i=1

piji (t)z
φ(g1,j1 ,g2,j2 ,...,gn,jn )

)
=

∑m

j=0
pSj(t)zgsj (8)

� is a composition operator and it is also designated as ⊗φ .
φ() is structure function for the system, and the calculation
approach is determined according to the structure of the
system.

φ
(
g1,j1 , g2,j2 , . . . , gn,jn

)
=

∑n

i=1
gi,ji (9)

Thus, the performance and probability of the system can be
achieved under the perfect maintenance. At time t , the avail-
abilityA (t) of themultistate weighted k-out-of-n systemwith
system demand Kj(t) is as follows:

A (t) = Pr
{
φ
(
g1,j1 , g2,j2 , . . . , gn,jn

)
− Kj (t) ≥ 0

}
=

M∑
j=0

psj (t) α
(
GSj − Kj (t)

)
(10)

where α
(
GSj − Kj (t)

)
is an indicator function defined as

α =

{
1, GSj ≥ Kj (t)
0, GSj < Kj (t)

(j = 1, 2, 3 . . . ,m) (11)

III. OPTIMIZATION MODEL
Most reliability optimization and design problems are a trade-
off between system reliability/availability and cost. In this
study, the optimal MSS design is essentially a bi-objective
optimization problem, in which a Pareto-optimal set of design
plans is created by maximizing system availability and mini-
mizing system cost.

Based on the optimization model in [34] and [36],
we establish the optimization model for Model III with
dynamic design. The optimization problem for Model III is
formulated as follows:
Problem 1:

Minimize: Csys =
n∑
i=1

ci (t)+ (1− A (t))Cj

Subject to: A (t) ≥ Ãsys (12)
m∑
j=0

pij (t) = 1, 0 ≤ pij (t) ≤ 1

(i = 1, 2, · · · , n; j = 1, 2, · · · ,m)

ui0 (t) = 0, uij (t) ≥ 0

(i = 1, 2, · · · , n; j = 1, 2, · · · ,m) (13)
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Problem 2:

Maximize: A (t)

Subject to: Csys =
n∑
i=1

ci (t)+ (1− A (t)), Cj ≤ C̃sys

m∑
j=0

pij (t) = 1, 0 ≤ pij (t) ≤ 1

(i = 1, 2, · · · , n; j = 1, 2, · · · ,m)

ui0 (t) = 0, uij (t) ≥ 0

(i = 1, 2, · · · , n; j = 1, 2, · · · ,m) (14)

where the system availability A (t) can be obtained by
using (10). Li and Zuo [36] assumed that the cost of com-
ponent ci (t) comprises two parts: performance-associated
cost and availability-associated cost. Mettas [46] and
Li and Zuo [36] proposed a component cost function, which
considers the reliability/availability, performance, and cost of
components.

In the current paper,
∑m

j=1 pij (t) uij (t) α is the expected
performance of multistate component i, which contributes to
the system. The value of α is obtained by using (2). If the per-
formance of component i at state j reaches the threshold kij (t),
α is 1; otherwise, it is 0. The performance-associated cost of
component i can be calculated as

cui (t) = gi exp
[∑m

j=1
pij (t) uij (t) α − uimin (t)

]
(15)

where gi is the feasibility of increasing performance of
component i, and uimin (t) is the minimum performance of
component i in the time interval from 0 to t .

The availability-associated cost of component i can be
calculated as follows:

cpi (t) = exp

[
(1− fi)

∑m
j=1 pij (t)− pimin (t)

pimax (t)−
∑m

j=1 pij (t)

]
(16)

where fi is the feasibility of increasing availability of com-
ponent i; pimin (t) and pimax (t) are respectively the minimum
and maximum availability of component i in the time interval
from 0 to t .
The total cost of the component i can be calculated by:

ci (t) = cui (t)+ c
p
i (t) (17)

The search heuristic algorithm has been widely used to
solve the complex reliability and cost optimization prob-
lems. In this paper, NSGA-II is used to solve optimization
problems. The NSGA-II [47] offers a greater improvement
in computational efficiency than traditional GA; moreover,
it incorporates unique dominated sorting and elitism without
sharing parameters [48]. It can also prevent the loss of favor-
able solutions once they are determined.

IV. CASE STUDY
A. AVAILABILITY ANALYSIS
In this section, we considered a pumping system as an
example for analyzing and optimizing multistate weighted

k-out-of-n systems with component performance require-
ments (Model III). The pumping system has three pumps,
throughwhichwater is pumped from a river to amain pipeline
and then transported from the main pipeline to a higher
reservoir. The three pumps have different pump heads, and
each pump has four performance states. The distance from the
river to main pipeline is different; therefore, the requirement
of pump head (performance) for each pump is different.
The minimum performance requirements of pumps 1, 2, and
3 are 20, 15, and 10 m, respectively. The lift of demand for
transporting the water from the main pipeline to the reservoir
is 35 m, which indicates that the threshold of system Kj(t) is
constant at 35 m. Therefore, the pumping system is a typical
weighted k-out-of-3 system with various kij(t) values. The
different state levels 3, 2, 1, and 0 represent perfect, high, low,
and zero performance states, respectively. State 3 represents
the perfect operation state and state 0 is regarded as a com-
plete failure state.We assume that the pumpsmust be repaired
only when they are in state 0. Therefore, the pumping system
is analyzed by using Model III, where the state probabilities
of the pumps are assumed to change exponentially with time.
Model III requires not only the performance of the system
but also that of the components. The component performance
requirement is kij(t) and the system performance requirement
is Kj(t). The state transition and performance of three pumps
are shown in Table 1.

TABLE 1. Performance and transition rates of pumps.

On the basis of (4), we achieved the following equations:

dPi3 (t)
dt

= −

(
λi3,2 + λ

i
3,1+λ

i
3,0

)
Pi3 (t)+ µi0,3Pio (t)

dPi2(t)
dt

= λi3,2Pi3 (t)−
(
λi2,1+λ

i
2,0

)
Pi2 (t)

dPi1(t)
dt

= λi3,1Pi3 (t)+ λ
i
2,1Pi3 (t)− λ

i
1,0Pi1 (t)

dPi0(t)
dt

= −µi0,3Pio(t)+ λ
i
3,0
Pi3(t)+ λi2,0Pi2(t)

+ λi1,0Pi1 (t).

The initial state of the pump is fully operational; therefore,
the initial state probability of the pumps is given by

Pi3 (0) = 1, Pi2 (0) = 0, Pi1 (0) = 0,Pi0 (0) = 0 and

Pi3 (t)+ Pi2 (t)+ Pi1 (t)+ Pi0 (t) = 1.
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FIGURE 2. State probability distributions of pumps.

The state probability distributions of the three pumps for the
dynamic system are achieved by using the ODE45 method,
as shown in Fig. 2.

On the basis of (7), the performance UGF of each pump
can be represented as follows:

u1(z, t) = P13(t)z35α + P12(t)z26α + P11(t)z18α + P10(t),

u2(z, t) = P23(t)z31α + P22(t)z23α + P21(t)z15α + P20(t),

u3(z, t) = P33(t)z27α + P32(t)z17α + P31(t)z10α + P30(t).

From (8), the UGF of the pumping system for the three
pumps can be obtained as

Us (z, t)

=
⊗

φ
(u1 (z, t) , u2 (z, t) , u3 (z, t))

=
⊗

φ

P13(t)z35α + P12(t)z26α + P11(t)z18α + P10(t)
P23(t)z31α + P22(t)z23α + P21(t)z15α + P20(t)
P33(t)z27α + P32(t)z17α + P31(t)z10α + P30(t)

.
In this paper, we consider the thresholds kij(t) and Kj(t) as

constants, and threshold changes over time are not analyzed.
First, the real system is studied, and the minimum demand
performance kij(t) of component i (i = 1, 2, 3) is 20, 15, and
10 m, respectively. The minimum system performance Kj(t)
is constant at 35 m. The instantaneous availability of the real
pumping system is shown in Fig. 3.

Three hypothetical situations are considered for analyzing
the effect of model threshold on availability.
Situation 1: The minimum demand performance kij(t) of

each component is 18 m and Kj(t) is 35 m. The instantaneous
availability in situation 1 is depicted in Fig. 4, which indicates
that the availability in the situation 1 is initially similar to that

FIGURE 3. The instantaneous availability of the real pumping system.

FIGURE 4. Comparison on instantaneous availability in situation 1 and
reality.

of actual situation. However, the availability in situation 1 is
lower than that in the actual situation after 0.25 years.
Situation 2: Comparison of the availability in Model III

with that in Models I and II, which were established
by Li and Zuo [22]. Different performance thresholds are
adopted in the three types of Models. Model I: kij (t) = 35 m,
Kj (t) = 0 m; Model II: kij (t) = 0 m, Kj (t) = 35 m; and
Model III: kij (t) = 18 m, Kj (t) = 35 m. The instantaneous
availabilities in Models I, II, and III are presented in Fig. 5.

Situation 3: the performance threshold of the five pumping
systems is the same (Kj (t) = 35 m); however, the compo-
nent threshold of each system is different. The component
thresholds of systems 1, 2, 3, 4, and 5 are 0, 12, 16, 18,
and 20 m, respectively. The availability of five pumping
systems is shown in Fig. 6. The threshold Kj (t) of the sys-
tems remains constant. When the component threshold is
increased, the system availability is reduced.

B. OPTIMAL DESIGN
In this section, we assume that the pumping system needs
to be upgraded to four-state weighted k-out-of-n system.
However, in optimal design, the performance and availabil-
ity distribution of pumps in different states are unknown.
Therefore, we need to evaluate different systems and find the
optimal design (availability and performance distributions) of
the pumps.

We use NSGA-II to solve the optimization problem.
Expressing the optimization problem as penalty function
facilitates the calculation.
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FIGURE 5. Comparison on instantaneous availability in situation 2 and
reality.

FIGURE 6. Comparison on instantaneous availability in situation 3 and
reality.

Problem:
Minimize:

Csys =
n∑
i=1

ci (t)+ (1− A (t))Cj +max
(
Ãsys − A (t) , 0

)
η

−A(t)+max

(
n∑
i=1

ci(t)+ (1−A(t))Cj − C̃sys, 0

)
η

where η is a large number.
Subject to:

m∑
j=0

pij (t) = 1, 0 ≤ pij (t) ≤ 1

(i = 1, 2, · · · , n; j = 1, 2, · · · ,m)

ui0 (t) = 0, uij (t) ≥ 0

(i = 1, 2, · · · , n; j = 1, 2, · · · ,m)

The instantaneous availability A (t) can be obtained by
using Model III as described in Section 2. The other parame-
ter values of the objective function are shown in Table 2.

In this paper, NSGA-II is used to find the Pareto-optimal
solution of optimization problems; the solving process can be
divided into the following six steps:
Step 1 (Population Initialization): Genes are decision vari-

ables for the component design, which are the state probabil-
ity and performance of components. When the components

TABLE 2. Parameter values of the Optimization function.

are in state 0 (j = 0), the performance of the components
is 0. This study contains 21 decision variables. The population
size is set at 100 chromosomes. Then, the initial population
is generated randomly based on the problem range and the
constraints of the design variables. The first generation of the
chromosomes is shown in Fig. 7.
Step 2 (Non-Dominated Sorting): The initialization popu-

lation is sorted based on non-domination [44], [49].
Step 3 (Crowding Distance): The NSGA-II incorporates

elitism without sharing parameters, and the calculation of
crowding distance is the key to ensuring the diversity of the
population.
Step 4 (Selection): Once the individuals are sorted in

steps 3 and 4, the selection process performed by using a
crowded comparison operator (≺). Individuals with favorable
genetic operations are adopted through selection process, thus
improving the convergence of the algorithm.
Step 5 (Genetic Operators): Genetic operators mainly

include crossover and mutation, which can be used to avoid
local optimal and improve the convergence performance.

There are many types of crossover types, such as one-point
crossover, multipoint crossover, and uniform crossover. The
second gene is used as a crossover object in the parent
chromosomes, and they are exchanged to generate two new
chromosomes.

Mutation mainly changes the value of the gene in the
chromosome from the initial state to a new value. Through a
two-point mutation, the parent chromosome generates a new
offspring chromosome.
Step 6 (Recombination and Selection): This step combines

the current population and a temporary population to generate
a new population. The new generation, which is limited by the
population size, is selected based on the results of Step 2.

In this NSGA-II program, the other parameters of the
NSGA-II are set as follows: the number of individuals in
a population is 6; the maximum generation number is 200;
the proportion of crossover is 0.8; the proportion of mutation
is 0.3; and the probability of mutation is 0.7. In this study,
we ran the NSGA-II program in MATLAB R2014a by using
a computer with 3.40-GHz Intel Core(TM) CPU and 8 GB
of RAM with the Windows 10 Professional operating sys-
tem. We selected time t = 2s for solving the optimization
model. The Pareto-optimal solution was obtained based on
the NSGA-II in approximately 11 s. The optimization result
is presented in Table 3. The optimal design result is cer-
tainly not the only favorable solution. In the optimization
model, the number of decision variables rapidly increases
with the number of components and performance state.
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FIGURE 7. First generation of chromosomes based on the problem range and the constraints of the design variables.

TABLE 3. Optimal solution (t = 2 s).

For example, there are 90 decision variables in 6 components
with 8 states, and 372 decision variables in 12 components
with 16 states. TheNSGA-II offers rapid convergence and can
be used to solve the optimization problem easily and quickly.

V. CONCLUSION
In this paper, a dynamic availability model for weighted
k-out-of-n systems, with component output performance
requirements, is established by combining the Markov pro-
cess and UGF method. Then, we propose an optimization
method which considers availability maximization and cost
minimization. Finally, a practical case is presented to illus-
trate how to evaluate system availability and optimize com-
ponent design.

Therefore, the probabilities and performance of system and
its components in different states are obtained over time.
Secondly, we achieve the availability of Model III with con-
sideration of performance threshold of each component and
cumulative performance of all components. Then, according
to comparison on availability in hypotheses and the reality,
system availability decreases faster with the increase of com-
ponent threshold kij (t); availability of Model III declines
more quickly compared to Models I and II. Forth, state
probability and performance of components are optimized by
choosing NSGA-II, which offers high accuracy and speed.

This paper mainly focuses on evaluating the availabil-
ity of Model III and optimizing component design. In the
future, system availability analysis needs to be studied under
imperfect maintenance; component importance or sensitivity
analysis also should be discussed. Moreover, optimization
problem of fuzzy constraints and uncertainties need to be
further studied.
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