
Received July 8, 2018, accepted August 10, 2018, date of publication August 17, 2018, date of current version September 7, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2866031

Enabling Efficient Verifiable Fuzzy Keyword
Search Over Encrypted Data in Cloud Computing
XINRUI GE1, JIA YU 1,2,3, CHENGYU HU 4, HANLIN ZHANG1, AND RONG HAO1
1College of Computer Science and Technology, Qingdao University, Qingdao 266071, China
2State Key Laboratory of Cryptology, Beijing 100878, China
3State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
4School of Software, Shandong University, Jinan 250101, China

Corresponding author: Jia Yu (qduyujia@gmail.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61572267, Grant 61272425,
Grant 61402245, and Grant 61602275, in part by the National Development Foundation of Cryptography under Grant MMJJ20170118 and
Grant MMJJ20170126, in part by the Open Project of Co-Innovation Center for Information Supply and Assurance Technology, Anhui
University, under Grant ADXXBZ201702, in part by the Open Project of the State Key Laboratory of Information Security, Institute of
Information Engineering, Chinese Academy of Sciences under Grant 2017-MS-21 and Grant 2016-MS-23, in part by the Jiangsu Key
Laboratory of Big Data Security and Intelligent Processing, NJUPT, under Grant BDSIP1806, and in part by the Natural Science
Foundation of Shandong Province under Grant ZR2015FM020 and Grant ZR2016FQ02.

ABSTRACT Searchable encryption can support data user to selectively retrieve the cipher documents over
encrypted cloud data by keyword-based search. Most of the existing searchable encryption schemes only
focus on the exact keyword search. When data user makes spelling errors, these schemes fail to return
the result of interest. In searchable encryption, the cloud server might return the invalid result to data
user for saving the computation cost or other reasons. Therefore, these exact keyword search schemes
find little practical significance in real-world applications. In order to address these issues, we propose a
novel verifiable fuzzy keyword search scheme over encrypted cloud data. For the purpose of introducing
this scheme, we first propose a verifiable exact keyword search scheme and then extend this scheme to the
fuzzy keyword search scheme. In the fuzzy keyword search scheme, we employ the linked list as our secure
index to achieve the efficient storage. We construct a linked list with three nodes for each exact keyword
and generate a fuzzy keyword set for it. To reduce the computation cost and the storage space, we generate
one index vector for each fuzzy keyword set, rather than each fuzzy keyword. To resist malicious behaviors
of the cloud server, we generate an authentication label for each fuzzy keyword to verify the authenticity of
the returned ciphertexts. Through security analysis and experiment evaluation, we show that our proposed
schemes are secure and efficient.

INDEX TERMS Cloud computing, searchable encryption, verifiable exact keyword search, verifiable fuzzy
keyword search.

I. INTRODUCTION
Nowadays, cloud computing is playing an increasingly
important role in daily lives. As a promising computing
model, it provides us with scalable computing resources,
on-demand high quality services and ubiquitous network
access. Owing to its convenience and flexibility, more and
more data owners prefer to store their data into the cloud
server for reducing the storage space and saving the manage-
ment overhead at local machines. Because the cloud server
is in different trusted domains with the data owner, the data
is out of the owner’s physical control. The data owner needs
to be able to check whether the data is correctly stored on
cloud [1]–[3]. In addition, the cloud data may be known by

the malicious cloud server or undelegated users(e.g.hackers),
which results in the disclosure of the owner’s private data. For
instance, in 2016, the second largest social networking site
in the world, Myspace, was hacked, which leads to the leak
of users’ account information. Therefore, it is of imminent
importance to protect the privacy of the cloud data.

To secure the data on the cloud server, the data owner
usually encrypts the data before uploading them to the cloud
server. However, it is intractable for the data user to search
over the encrypted cloud data by adopting the traditional
search scheme. One simple solution to this issue is that the
data user downloads all of the cipher data from the cloud
server and then decrypts them locally. However, it will incur

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

45725

https://orcid.org/0000-0002-0574-7803
https://orcid.org/0000-0002-5523-2672

X. Ge et al.: Enabling Efficient VFKS Over Encrypted Data in Cloud Computing

a huge amount of network bandwidth, storage space and
computation overhead, which is infeasible actually. Another
possible way is that the user provides the decryption key and
the queried keyword to the cloud server. The cloud server
decrypts the cipher data and performs search operation over
the plaintext. Obviously, this way will expose the data to
the cloud server, which is improbable. In order to address
this issue, many searchable encryption(SE) schemes have
been proposed [4]–[6], [8]–[14]. SE allows the data user
to selectively retrieve cipher documents stored on the cloud
server by keyword-based search.

Up to now, most of these schemes assume that the cloud
server is honest-but-curious. In other words, the cloud server
follows the pre-defined protocol to perform search operation
over encrypted cloud data, but prefers to know extra informa-
tion from the search trapdoor and the secure index. However,
in real scenario, the cloud server is not always honest. It may
return invalid search result for saving the computation cost.
Thus, it is necessary for the data user to verify the search
result. Kurosawa and Ohtaki et al. [15] proposed a UC-secure
verifiable searchable symmetric encryption (SSE) scheme.
This scheme first formulates the security of verifiable SSE
schemes against active adversaries by introducing the notion
of privacy and reliability. It solves the problem that the same
storage location is padded with different values in scheme [5].
The computation cost of verification is linear with the number
of documents. In addition, this scheme can only support
the exact keyword search, while the data user often makes
mistakes when inputting keywords. In this case, the exact
keyword search might not return the documents of interest.
Therefore, it is necessary to design a scheme supporting
fuzzy keyword search. Li et al. [16] firstly proposed the
fuzzy keyword search scheme over encrypted cloud data.
In this scheme, edit distance is used to quantify keywords
similarity. This scheme develops a novel technique, i.e., an
wildcard-based technique, for the construction of fuzzy key-
word sets. This technique eliminates the need for enumer-
ating all the fuzzy keywords. The resulted size of the fuzzy
keyword sets is significantly reduced. However, this scheme
does not consider the verification for search result. Wang
et al. [17] proposed the first verifiable fuzzy keyword search
scheme, which not only enables fuzzy keyword search over
encrypted data, but also maintains keyword privacy and the
verifiability of the search result. Zhu et al. [18] introduced a
verifiable dynamic fuzzy keyword search scheme, which is
UC-secure against the malicious adversary. The verification
process incurs enormous time cost since it adopts RSA accu-
mulator based on the public key system to authenticate the
search result. Therefore, how to realize the efficient verifiable
fuzzy keyword search is worth studying.
Contributions:
1) Before introducing the main work, we propose a ver-

ifiable exact keyword search (VEKS) scheme, which
achieves search operation in one communication round.
To detect the malicious behavior of the cloud server,
we generate an authentication label for each keyword.

After the cloud server returns the search result, the data
user can verify the validity of search result based on the
authentication label. With this method, we can detect
whether the documents returned from the cloud server
have been modified or deleted.

2) Based on the proposed VEKS scheme, we propose a
verifiable fuzzy keyword search (VFKS) scheme. In the
VFKS scheme, in order to efficiently build the index,
we adopt the linked lists as the index structure.We store
a fuzzy keyword set rather than one single fuzzy key-
word into a node, and only generate one index vector
for each fuzzy keyword set instead of each single fuzzy
keyword. This method can greatly reduce the storage
space. In addition, we do not need to construct the fuzzy
keyword set for the queried keyword in our design,
which reduces the computation cost and improves the
search efficiency.

3) Through the security analysis and experimental evalu-
ation on a large real-world dataset, we show that our
proposed schemes are secure and efficient.

Organization: The rest of this paper is organized as fol-
lows. In Section II, we introduce the related work. Some
preliminaries are given in Section III. Section IV proposes
the two schemes, the verifiable exact keyword search scheme
and the verifiable fuzzy keyword search scheme. Section V
gives the security analysis. Section VI gives the performance
analysis and the experiment results. We give the further dis-
cussion in Section VII. Section VIII concludes the paper.

II. RELATED WORK
A. EXACT KEYWORD SSE
Song et al. [4] firstly proposed the searchable symmetric
encryption scheme. In this scheme, a special two-layered
encryption structure is constructed to encrypt each keyword.
The cloud server must search all documents with a sequential
scan. So the search time cost is linear with the total size of
the document collection. Curtmola et al. [5] proposed two
efficient searchable symmetric encryption schemes. These
schemes support multi-user to submit the search request, and
realize sublinear search, that is, the search cost is proportional
to the number of documents containing the queried keyword.
Cao et al. [13] firstly proposed a privacy-preserving multi-
keyword ranked search scheme over encrypted cloud data.
This scheme adopts the similarity measure of ‘‘Coordinate
matching’’to capture the relevance of documents with the
queried keyword, and uses ‘‘inner product similarity’’ to
quantitatively evaluate such similarity measure. Xia et al. [6]
proposed a secure and dynamic multi-keyword ranked search
scheme over encrypted cloud data. This scheme adopts a
tree-based index, which is combined with the vector model
and the TF × IDF model. Fu et al. [7] built a user interest
model for individual user by analyzing the users search his-
tory to enable user to retrieve relevant documents from the
cloud server based on his own interest. In addition, some other
SSE schemes have also been proposed, such as conjunctive

45726 VOLUME 6, 2018

X. Ge et al.: Enabling Efficient VFKS Over Encrypted Data in Cloud Computing

keyword query scheme [8], ranked search scheme [11], [12],
ranked multi-keyword search scheme for multiple data own-
ers [12], [20], central keyword-based semantic extension
search scheme [19], and keyword search schemes supporting
deduplication [9], [10].

B. FUZZY KEYWORD SSE
When the data user makes spelling errors, the traditional
exact keyword search schemes cannot return the documents
of interest. It greatly affects the system usability. To address
this problem, Li et al. [16] firstly proposed a fuzzy keyword
search scheme over encrypted cloud data using the edit dis-
tance to measure the similarity of two keywords. This scheme
adopts the wildcard technology to construct the fuzzy key-
word sets. Kuzu et al. [21] proposed a similarity searchable
symmetric encryption scheme, which makes use of minhash
based on Jaccard distance to support fault tolerant keyword
search. Wang et al. [22] proposed the first multi-keyword
fuzzy keyword search scheme based on the Bloom filter and
the LSH function, in which the keyword is transformed into a
bi-gram set. Wang et al. [23] proposed a range fuzzy keyword
search scheme by using a score table structure to rank the doc-
uments. Fu et al. [24] proposed amulti-keyword fuzzy ranked
search scheme based on scheme [22]. This scheme designs
a new method of keyword transformation based on the uni-
gram, and considers the keyword weight when selecting an
adequate matching file set.

C. VERIFIABLE SSE
The cloud server may return the incorrect search result to the
data user for saving the computation cost or other reasons.
To address this problem, it is necessary for the data user to
verify the search result. Chai and Gong [25] firstly proposed
a verifiable keyword search scheme over encrypted cloud
data. In this scheme, the cloud server needs to prove that
the returned result is correct, which is named as the ‘‘veri-
fiable searchability’’. Wang et al. [26] proposed a verifiable
keyword search scheme by using the hash chain to verify
the search result. Kurosawa and Ohtaki [15] proposed the
first UC-secure verifiable SSE scheme based on scheme [5].
This scheme can verify whether the search result is modi-
fied or deleted. The computation cost of verification is linear
with the number of documents. Sun et al. [27] proposed
an efficient verifiable conjunctive keyword search scheme,
in which the authors exploit a bilinear-map accumulator tree
as the authenticated data structure. Wang textitet al. [28]
proposed a verifiable keyword search scheme based on the
inverted bloom filter without the process of pre-counting.
Furthermore, it realizes the multi-user setting by incorpo-
rating multi-party searchable encryption (MPSE), which can
resist the collusion attack between the cloud server and the
malicious data user. Jiang et al. [29] proposed a verifiable
multi-keyword ranked search scheme over encrypted cloud
data, in which it constructs a special data structure named
QSet to achieve efficient keyword search. These verifiable
keyword search schemes can work only when the data user’s

input is completely correct. However, the data user may
make spelling errors in real scenario. To address this prob-
lem, some verifiable fuzzy keyword search schemes have
been proposed. Wang et al. [17] proposed the first verifi-
able fuzzy keyword search scheme, which not only enables
fuzzy keyword search over encrypted data, but also maintains
keyword privacy and the verifiability of the search result.
Zhu et al. [18] introduced a verifiable dynamic fuzzy key-
word search scheme, which is UC-secure against a malicious
adversary. The verification process incurs enormous time cost
since it adopts RSA accumulator based on the public key
system to authenticate the search result. In addition, verifiable
multiple users search scheme [30], verifiable ranked keyword
search scheme [31], verifiable keyword search scheme in
multi-owner settings [32], verifiable keyword-based semantic
search scheme [33] and verifiable dynamic keyword search
scheme [34] have also been proposed.

III. PROBLEM FORMULATION
A. SYSTEM MODEL
As shown in Fig.1, the system model involves three different
entities: the data owner, the data user and the cloud server.
The data owner encrypts the plaintextsF = (F1,F2, . . . ,FN)
into ciphertexts C = (C1,C2, . . . ,CN). In order to realize the
efficient search over the ciphertexts, the data owner constructs
a secure index I for all different keywords extracted from
plaintexts F . To verify the correctness of the returned result,
the data owner computes an authentication label (tag) for
each keyword and stores all of the authentication labels into
a table named as Tag table. Finally, the data owner uploads
the encrypted files C, the secure index I and the Tag table to
the cloud server. When the data user wants to search some
documents containing the queried keyword w, he computes
the trapdoor of w, and sends the trapdoor to the cloud server.
Upon receiving the trapdoor from the data user, the cloud
server performs search operation over the ciphertexts, and
returns the related encrypted files and the authentication label
to the data user. After the data user receives the search result
from the cloud server, he will verify whether it is valid. If it
is valid, accepts it; otherwise, rejects it.

FIGURE 1. The framework of the system model.

VOLUME 6, 2018 45727

X. Ge et al.: Enabling Efficient VFKS Over Encrypted Data in Cloud Computing

B. THREAT MODEL
In the threat model, the data owner and the data user are
assumed to be always trusted. That is, the data owner hon-
estly encrypts documents, builds secure index, and com-
putes authentication labels. The data user honestly generates
the trapdoor for the queried keyword. The cloud server is
regarded as an untrusted entity. It may try to learn additional
valuable information from the encrypted files, the secure
index and the search trapdoor. Moreover, it may return invalid
search result to the data user for saving computation cost.

Besides the encrypted documents, the secure index and
the search trapdoor, the cloud server can know and record
each search result. We name this type of knowledge as known
ciphertext . The cloud server also knows some background
information e.g. the relationship of two search trapdoors,
that is, which documents commonly contain two queried
keywords. This type of knowledge is named as known back-
ground .

C. DESIGN GOALS
Our scheme should satisfy the following requirements:
• Keyword search. The scheme should be able to retrieve
all documents containing the queried keyword.

• Efficiency. The scheme should efficiently return the
search result and incur little overhead on verifying the
result.

• Privacy preserving. The scheme cannot reveal any data
information to the cloud server, such as the plaintext of
keywords and documents beyond the limited leakage.
Usually, we consider the limited leakage from the fol-
lowing three aspects.
1) Documents privacy.The contents of the documents

cannot be leaked but the number of documents.
2) Index privacy. The cloud server cannot find the

storage relationship between keywords and docu-
ments from the secure index.

3) Trapdoor privacy. It should guarantee the trapdoor
cannot reveal any information about the queried
keyword.

• Search results verifiability. The scheme should be able
to verify whether the search result is true to prevent the
cloud server from returning the incorrect search result to
the data user.

D. NOTATIONS AND PRELIMINARIES
We define some notations in Table.1 to help readers read our
paper more easily.

Cryptographic tools are very important for designing cryp-
tographic schemes [35], [36]. Some crytograhpic tools, con-
cepts and structures used in this paper are introduced as
follows.

1) SYMMETRIC ENCRYPTION
A symmetric encryption scheme includes three polynomial-
time algorithms SKE = (Gen,Enc,Dec). Algorithm Gen is

TABLE 1. Some frequently used symbols and descriptions.

used to generate the secret key sk by inputting a secure param-
eter k . Algorithm Enc is used to encrypt the plaintext F into
the ciphertext C with sk . Algorithm Dec is used to decrypt
the ciphertext C into the plaintext F with sk . A symmetric
encryption scheme should be secure against chosen-plaintext
attack. We select the AES encryption algorithm that satisfies
above requirement to encrypt the documents.

2) PSEUDO-RANDOM FUNCTION AND MESSAGE
AUTHENTICATION FUNCTION
Pseudo-random functions(PRF) and pseudo-random permu-
tation functions(PRP) are polynomial-time computable func-
tions, which cannot be distinguished from random functions
by any probabilistic polynomial-time adversary.Wemake use
of PRF f to blind the index vectors and PRP π to confuse the
location of keywords. The parameters of above two functions
are as follows:

π : {0, 1}k × {0, 1}l → {0, 1}l,

f : {0, 1}k × {0, 1}l → {0, 1}N ,

where l is the most length of keywords.
Let MAC: {0, 1}k × {0, 1}∗ → {0, 1}N be an authentica-

tion label generation function, which has irreversibility and
message unforgeability against chosen message attacks [37].
We use it to generate an authentication label for message and
verify the correctness of search result returned from the cloud
server. In this paper, we write tag = MAC(m) instead of tag
=MAC(k0,m), where k0 is a key and m is a message.

3) INVERTED INDEX
In our paper, we build the index table based on the inverted
index [5], as shown in Table.2. Firstly, the data owner scans
the whole documents to extract all of the distinct keywords.
Then he constructs F(wi) for each keyword wi to denote the
set of documents containing the keyword wi(1 ≤ i ≤ n).

45728 VOLUME 6, 2018

X. Ge et al.: Enabling Efficient VFKS Over Encrypted Data in Cloud Computing

TABLE 2. Inverted index.

Finally, the data owner constructs the index according to
F(wi). We use v(wi) to represent the index vector of keyword
wi and set addri = wi. If the file Fj(1 ≤ j ≤ N) is in F(wi),
we set v(wi)[j] = 1; otherwise, set v(wi)[j] = 0.

4) SECURE INDEX
The data owner encrypts the plain index into the secure index,
as shown in Table.3. He employs PRP π to confuse the real
location of keywords, and employs PRF f to blind the vector
v(wi), that is, πk1 (wi) and Ev(wi) ← fk2 (πk1 (wi)) ⊕ v(wi).
The data owner invokes algorithm SKE.Enc to encrypt the
document F into the cipher-text C . Use ID(Cj) to denote the
identifier of encrypted file Cj.

TABLE 3. Secure index.

5) EDIT DISTANCE
Edit distance(Levenshtein) is used to evaluate the similarity
of two strings in fuzzy keyword search scheme. The edit
distance ed(w1,w2) between two keywords w1 and w2 is the
minimum number of operations required to transform one to
the other. There are three primitive operations.

1) Substitution: Transfer a character into another in a
word.

2) Deletion: Delete a letter from a word.
3) Insertion: Insert a letter into a word .

For example, the operations required to transform the key-
word kitten to the keyword sitting are as follows:
1) kitten→ sitten (k → s)
2) sitten→ sittin (e→ i)
3) sittin→ sitting (insert g)

Generally, the smaller the editing distance is, the greater the
similarity of two keywords is.

E. DEFINITIONS
1) SCHEME DEFINITION
Definition 1 (Verifiable SSE Scheme): A verifiable SSE

scheme includes six polynomial-time algorithms (KeyGen,
BuildIndex, Trapdoor, Search, Verify and Dec).

• K ← KeyGen(1k) is the probabilistic key generation
algorithm run by the data owner. It takes a random secure
parameter k as input, and outputs a secret key set K .

• (I, C) ← BuildIndex(K ,F) is the probabilistic index
building algorithm run by the data owner. It takes the
secret key set K and the file set F as input, and outputs
a secure index I and a set of ciphertexts C.

• Tw ← Trapdoor(K ,w) is the deterministic trapdoor
generation algorithm run by the data user. It takes the
secret key set K and the queried keyword w as input,
and outputs the trapdoor Tw.

• (tagw,C(w)) ← Search(Tw, I, C) is the deterministic
search algorithm run by the cloud server. It takes the
trapdoor Tw, the secure index I and the ciphertexts set
C as input, and outputs a set C(w) and an authentication
label tagw.

• (accept, reject) ← Verify(K ,Tw,C(w), tagw) is the
deterministic verification algorithm run by the data user.
It takes the secret key setK , the trapdoor Tw, the setC(w)
and the authentication label tagw as input, and outputs
accept or reject .

• F(w) ← Dec(K ,C(w)) is the deterministic decryption
algorithm run by the data user. It takes the secret key set
K and the setC(w) as input, and outputs a set of plaintext
documents F(w).

2) SECURITY DEFINITIONS
Definition 2 (Privacy): A Verifiable SSE scheme satisfies

privacy if there exists a probabilistic polynomial-time PPT
simulator Sim such that

|Pr(A outputs b = 1 in Gamereal)− Pr(A outputs b = 1 in

Gamesim)|

is negligible for any PPT adversary A.
We regard a real game Gamereal and a simulation game
Gamesim, in which Gamereal is performed by a challenger and
an adversary A, and Gamesim is performed by a simulator
Sim.

Real Game(Gamereal)
• A selects a pair of document set and keyword set
(F ,W), and sends them to the challenger.

• The challenger computes the secret key set K and (I, C)
by calling algorithm KeyGen and algorithm BuildIn-
dex, and sends (I, C) to A.

• A chooses a keyword w and sends it to the challenger.
The challenger sends the trapdoor Tw to A.

• A outputs a bit b.
Simulation Game(Gamesim)
• A chooses (F ,W) and sends them to the challenger.
• The challenger sends |F1|, . . . , |FN | and l to Sim.
• Sim computes (I ′,C′) and sends them to the challenger.
• The challenger sends (I ′,C′) to A.

– A chooses w and sends it to the challenger.
– Sim computes T ′w using PRP function π and PRF

function f , and sends it to the challenger.

VOLUME 6, 2018 45729

X. Ge et al.: Enabling Efficient VFKS Over Encrypted Data in Cloud Computing

– The challenger sends T ′w to A.
• A outputs a bit b.
Definition 3 (Correctness): A verifiable SSE scheme is

correct if it satisfies the following requirements: ∀k ∈
N ,K ←KenGen(1k),∀Fi ∈ F(1 ≤ i ≤ N),∀w ∈ W ,
the following statement is true:

Search(I, C,Tw) = (C(w), tagw) ∧

Verify(K , (C(w),Tw, tagw) = accept ∧

Dec(K ,C(w)) = F(w).
Definition 4 (Reliability): A verifiable SSE scheme satis-

fies reliability if for any PPT adversary A, the probability
of successfully forging the search result is negligible for any
(F ,W, I) and trapdoor Tw.

Specifically, because the cloud server is untrusted, it may
return incorrect search result to the data user. The data user
should be able to detect such misbehaviour to guarantee the
validity of search result. Given a valid C(w) and an authen-
tication label tagw for a trapdoor, the adversary wins if he
can give a forgery (C ′(w), tag′w) that can pass the Verify
algorithm.

IV. THE PROPOSED VERIFIABLE SEARCHABLE
SYMMETRIC ENCRYPTION SCHEMES
A. THE PROPOSED VERIFIABLE EXACT KEYWORD
SEARCH (VEKS) SCHEME
The algorithms of this scheme are described as follows.

1) KeyGen(1k)
The data owner calls algorithm SKE.Gen to generate
sk , that is, sk ← SKE.Gen(1k). Then he samples
k0, k1, k2 ← {0, 1}k . sk is the key for encrypting and
decrypting documents, k0 is the key for MAC, k1 is the
key for PRP π , and k2 is the key for PRF f . The algo-
rithm outputs the secret key set K = {sk, k0, k1, k2}.

2) BuildIndex(K ,F)
The process of building the secure index is shown
in Fig.2.
a) The data owner scans the whole documents to

extract all of the distinct keywords and constructs
the keyword set W . For each keyword wi ∈
W(1 ≤ i ≤ n), the data owner builds F(wi),
which is a set of files containing wi.

b) According to F(wi), the data owner builds the
index shown in Table.2. Let v(wi)(1 ≤ i ≤ n)
represent the index vector of keyword wi. If Fj
(1 ≤ j ≤ N) is in F(wi), the data owner sets
v(wi)[j] = 1; otherwise, sets v(wi)[j] = 0.

c) The data owner encrypts the documents by
computing C(wi) ← SKE.Encsk (F(wi)). Then
he generates the keyword trapdoor πk1 (wi) and
blinds the vector v(wi) by computing Ev(wi) ←
fk2 (πk1 (wi))⊕ v(wi).

d) The data owner computes tagwi ← MAC(πk1 (wi),
Ev(wi),C(wi)) for each wi, and stores all tagwi
into the Tag table.

FIGURE 2. The process of building the secure index and the Tag table.

e) Finally, the data owner uploads the secure index
I, the ciphertexts C and the Tag table to the cloud
server.

3) Trapdoor(K ,w′)
When the data user wants to search some documents
containing the keyword w′, he computes the trapdoor
Tw′ = (πk1 (w

′), fk2 (πk1 (w
′))), and sends it to the cloud

server.
4) Search(Tw′ , C, I)

The cloud server finds the related encrypted vector
Ev(w′) in the secure index I according to πk1 (w

′).
Then it decrypts Ev(w′) by computing v(w′) ←
fk2 (πk1 (w

′)) ⊕ Ev(w′). If v(w′)[j] = 1(1 ≤ j ≤
N), the cloud server adds Cj to C(w′); otherwise,
not. Meanwhile, the cloud server extracts tagw′ on the
πk1 (w

′)-th position in the Tag table. Finally, the cloud
server returns C(w′) and tagw′ to the data user.

5) Verify(K , tagw′ ,C(w′),Tw′)
The data user parses out v(w′) from C(w′). If Cj is in
C(w′), then the j-th bit in v(w′) is 1; otherwise, is 0.
The data user computes Ev(w′)← fk2 (πk1 (w

′))⊕v(w′).
Then he checks whether MAC(πk1 (w

′),Ev(w′),C(w′))
= tagw′ or not. If it does, the data user accepts the result;
otherwise, rejects the result.

6) Dec(K ,C(w′))
The data user decrypts C(w′) by computing F(w′) ←
SKE.Decsk (C(w′)) (sk ∈ K).

B. THE PROPOSED VERIFIABLE FUZZY KEYWORD
SEARCH (VFKS) SCHEME
When the data user makes spelling errors, the above VEKS
scheme cannot return the files of interest. To address this
problem, we extend the above VEKS scheme to a VFKS
scheme. The detailed scheme is described as follows.

1) KeyGen(1k)
It is the same as the key generation algorithm
KeyGen(1k) in section IV.A. The secret key set is
K = {sk, k0, k1, k2}.

2) BuildIndex(K ,F)
In order to conveniently and efficiently build the index,
we construct the linked lists containing three nodes as
the index by extending the inverted index. The structure
of this index is shown in Fig.3.
a) The data owner scans the whole documents to

extract all of the distinct keywords and constructs
the keyword set W . For each keyword wi ∈ W ,
the data owner builds F(wi), which is a set of files
containing wi.

45730 VOLUME 6, 2018

X. Ge et al.: Enabling Efficient VFKS Over Encrypted Data in Cloud Computing

FIGURE 3. The structure of the secure index.

b) According to F(wi), the data owner builds the
index shown in Table.2. Let v(wi)(1 ≤ i ≤ n)
represent the index vector of keyword wi. If Fj
(1 ≤ j ≤ N) is in F(wi), the data owner sets
v(wi)[j] = 1; otherwise, sets v(wi)[j] = 0.

c) The data owner constructs the fuzzy keyword
set for each keyword wi. Let Swi,d denote the
fuzzy keyword set of wi with edit distance d , and
wi,t (1 ≤ i ≤ n, 1 ≤ t ≤ |Swi,d |) denote the
keywords in Swi,d .

d) The data owner encrypts all of the files by com-
puting C(wi) ← SKE.Encsk (F(wi)). He cal-
culates πk1 (wi,t)(1 ≤ i ≤ n, 1 ≤ t ≤
|Swi,d |) for each fuzzy keyword in Swi,d , and
stores them into the first node. The data owner
computes Ev(wi) ← fk2 (πk1 (wi)) ⊕ v(wi),
and stores Ev(wi) into the second node. He
computes an authentication label tagwi,t =

MAC(πk1 (wi), πk1 (wi,t),Ev(wi),
C(wi)) for all fuzzy keywords in Swi,d , and stores
them into the third node.

e) Finally, the data owner stores these linked lists
into a big array, which is regarded as the secure
index I.

3) Trapdoor(K ,w′)
When the data user wants to search some files contain-
ing the keyword w′, he computes the trapdoor Tw′ =
(πk1 (w

′), fk2 (πk1 (w
′))), and sends it to the cloud server.

4) Search(Tw′ , I, C)
When the cloud server receives the trapdoor, it com-
pares πk1 (w

′) with the elements in the first node of
each list. Here, we use encrypted exact keywordπk1 (wi)
to denote the first element in the first node πk1 (wi,1).
That is, wi,1 denotes the exact keyword wi. As shown
in Algorithm 1, we describe this process in two cases.
Case 1: πk1 (w

′) does not equal the first element
πk1 (wi,1), but equals a remaining element πk1 (wi,t)(1 <
t ≤ |Swi,d |) in the first node. In this case, the cloud
server returns πk1 (wi,1) to the data user. When the
data user receivesπk1 (wi,1), he calculates fk2 (πk1 (wi,1)),
and sends it to the cloud server. The cloud server
decrypts Ev(wi) in the second node by computing
v(wi) ← fk2 (πk1 (wi,1)) ⊕ Ev(wi). If v(wi)[j] = 1,

Algorithm 1 Searching Operation
Input:

The trapdoor Tw′ , the secure index I, and the encrypted
document collection C;

Output:
The authentication label tagw′ and the document collec-
tion C(w′);

1: Parse Tw′ as (η, θ);
2: for i← 1 to n do
3: for t ← 1 to |Swi,d | do
4: if πk1 (wi,t) equals η and t 6= 1 then
5: Give πk1 (wi,1) to the data user, and the data user

computes fk2 (πk1 (wi,1));
6: Sends fk2 (πk1 (wi,1)) to the cloud server;
7: Extract Ev(wi) from the second node and decrypt

it to v(wi) with fk2 (πk1 (wi,1));
8: for j← 1 to N do
9: if v(wj)[j] = 1 then
10: Add Cj to C(w′);
11: end if
12: end for
13: Extract tagw′ according to η from the third node;
14: return tagw′ and C(w′);
15: end if
16: if πk1 (wi,t) equals η and t = 1 then
17: Extract Ev(wi) and decrypt it to v(wi) with θ ;
18: for j← 1 to N do
19: if v(wi)[j] = 1 then
20: Add Cj to C(w′);
21: end if
22: end for
23: Extract tagw′ according to η from the third node;
24: return tagw′ , C(w′) and πk1 (wi,1);
25: end if
26: end for
27: end for

the cloud server adds Cj to C(w′); otherwise, not. Then
the cloud server extracts tagw′ from the πk1 (w

′)-th posi-
tion in the third node. Finally, the cloud server returns
C(w′) and tagw′ to the data user.
Case 2: πk1 (w

′) equals the first element πk1 (wi,1).
In this case, the cloud server directly decrypts Ev(wi) in
the second node by computing v(wi)← fk2 (πk1 (w

′))⊕
Ev(wi). If v(wi)[j] = 1, the cloud server adds Cj to
C(w′); otherwise, not. Then the cloud server extracts
tagw′ from the πk1 (w

′)-th position in the third node.
Finally, the cloud server returns C(w′), tagw′ and
πk1 (wi,1) to the data user.

5) Verify(K , tagw′ ,C(w′), πk1 (wi,1),Tw′)
The data user extracts v(w′) from C(w′). If Cj is
in C(w′), then the j-th bit in v(w) is 1; other-
wise, is 0. The data user computesi Ev(w′) ←
fk2 (πk1 (w

′)) ⊕ v(w′). Then he checks whether

VOLUME 6, 2018 45731

X. Ge et al.: Enabling Efficient VFKS Over Encrypted Data in Cloud Computing

MAC(πk1 (wi,1), πk1 (w
′),Ev(w′),C(w′))= tagw′ or not.

If it does, the data user accepts the result; otherwise,
rejects the result.

6) Dec(sk,C(w′))
The data user decrypts C(w′) by computing F(w′) ←
SKE.Decsk (C(w′)) (sk ∈ K).

V. SECURITY ANALYSIS
In this section, we analyze the security of our proposed
schemes in terms of the privacy, the correctness and the
reliability.

A. SECURITY ANALYSIS OF THE VERIFIABLE EXACT
KEYWORD SEARCH SCHEME
Theorem 1: The proposed VEKS scheme satisfies privacy.
Proof: Assume there exists a probabilistic polynomial

time(PPT) simulator Sim and an adversary A. In the phases
ofKeyGen and BuildIndex, we give the keyword number of
each maximum document and the max length of keywords l
to Sim.
1) Sim invokes algorithmKeyGen to generate the key set

K = {sk, k0, k1, k2}.
2) Sim computes C ′i = Enc(sk,Fi) for 1 ≤ i ≤ N and

C′ = {C ′1, ..,C
′
N }.

3) Sim constructs the secure index I ′ and generates the
Tag′ table for each keyword w ∈W:

I ′(πk1 (w)) = Ev(w),

Tag′(πk1 (w)) = tagw,

where tagw = MAC(πk1 (w),Ev(w),C(w)) and
Ev(w) = v(w)⊕ fk2 (πk1 (w)).

4) Sim returns (I ′, C′) to A.
In the search phase, Sim computes T ′w′ =

(πk1 (w
′), fk2 (πk1 (w

′))) and extracts the documents set
C(w′) = {Cj} that contains the queried keyword w′.
We will prove that any adversary A cannot distinguish
Gamesim and Gamereal by using a series of games
Game0,Game1,Game2, where Game0 = Gamereal.
Let

pi = Pr(A outputs b = 1 in Gamei).

• Game1 is the same as Game0 except that Cj is
replaced by C ′j . Then |p0 − p1| is negligible.

• Game2 is the same as Game1 except that I is
replaced by I ′, Tag is replaced by Tag′, and Tw′
is replaced by T ′w′ . Let addri= πk1 (w

′). From above
analysis, we can see that

I ′(addri) = I ′(πk1 (w
′)) = Ev(w′),

Tag′(addri) = Tag′(πk1 (w
′)) = tagw′ .

The values of I ′(addri) and Tag′(addri) are the
same as the real values. Hence |p1 − p2| is neg-
ligible.

Therefore, |p0 − p2| is negligible. It is clear that Game2 =
Gamesim. It means that any adversary A cannot distinguish
Gamereal and Gamesim. Consequently, the proposed VEKS
scheme satisfies privacy.
Theorem 2: The proposed VEKS scheme is correct.
Proof: Given the trapdoor Tw′ = (πk1 (w

′), fk2 (πk1 (w
′)))

of the queried keyword w′, the cloud server can locate the
πk1 (w

′)-th entry of the secure index and decrypt the vector by
computing v(w′) ← fk2 (πk1 (w

′)) ⊕ Ev(w′). Then, the cloud
server finds the related cipher documents according to the
vector. If the bit of the vector is 1, it adds the relevant cipher
document to the set C(w′). The cloud server extracts tagw′ ,
and sends C(w′) and tagw′ to the data user. After receiving
the search result from the cloud server, the data user extracts
v(w′) and computes Ev(w′) ← fk2 (πk1 (w

′)) ⊕ v(w′). Finally,
the data user checkswhetherMAC(πk1 (w

′),Ev(w′),C(w′)) =
tagw′ or not. If the cloud server is honest and reliable,
the search result will pass the verification. The data user
can decrypt the documents if the result is right. Therefore,
the proposed VEKS scheme is correct.
Theorem 3: The proposed VEKS scheme satisfies

reliability.
Proof: Assume that A is a PPT adversary who can give

a forgery (C ′(w′), tag′w′) such that the verification algorithm
Verify(K , tag′w′ ,C

′(w′),Tw′) outputs accept . If such an adver-
sary A exists, it will break the reliability of VEKS scheme.
Suppose (C(w′), tagw′) is the correct search result.We need to
prove that the adversaryA cannot forge a valid (C ′(w′), tag′w′)
such that (C ′(w′), tag′w′) = (C(w′), tagw′).
We need to consider two cases:
Case 1: C ′(w′) 6= C(w′). The adversary A computes

tag′w′ ← MAC(πk1 (w
′),Ev(w′),C ′(w′)) for the trapdoor Tw′

by replacing C(w′) with C ′(w′), where Ev(w′) is the index
vector.
Case 2: C ′(w′) = C(w′). As same as Case 1, the adver-

sary A computes tag′w′ for the trapdoor Tw′ by invoking
MAC(πk1 (w

′),Ev(w′),C ′(w′)).
In above cases, if the adversaryA forges the authentication

label tag′w′ according to the method that we describe, the ver-
ification algorithm will output ‘‘accept’’. A will trick the
data user successfully and make him believe C ′(w′) is valid.
However,MAC provides irreversibility andmessage unforge-
ability against chosen message attacks, andA does not know
the keys of MAC. The probability of forging a MAC output
successfully for A is negligible. Thus, whether C ′(w′) =
C(w′), tag′w′ 6= tagw′ , that is, Verify(K , tag′w′ ,C

′(w′),Tw′) 6=
accept . In other words, A cannot break the reliability of
VEKS scheme. Therefore, our proposed VEKS scheme sat-
isfies the reliability.

B. SECURITY ANALYSIS OF THE VERIFIABLE FUZZY
KEYWORD SEARCH SCHEME
Theorem 4: The proposed VFKS scheme satisfies

privacy.
Proof: Assume there exists a probabilistic polynomial

time(PPT) simulator Sim and an adversary A. In the phases

45732 VOLUME 6, 2018

X. Ge et al.: Enabling Efficient VFKS Over Encrypted Data in Cloud Computing

ofKeyGen and BuildIndex, we give the keyword number of
each document and the max length of keywords l to Sim.

1) Sim invokes algorithmKeyGen to generate the key set
K = {sk, k0, k1, k2}.

2) Sim computes C ′i = Enc(sk,Fi) for 1 ≤ i ≤ N and
C′ = {C ′1, ..,C

′
N }.

3) Sim constructs the secure index I ′ containing
three nodes. The first node stores the fuzzy key-
words {πk1 (wi,1), . . . , πk1 (wi,q)} of wi, where q
equals |Swi,d |, the second node stores the index
vector Ev(wi), and the third node stores the
authentication labels {tagwi,1 , . . . , tagwi,q}, where
tagwi,j =MAC(πk1 (wi,j), πk1 (wi),Ev(wi),C

′(wi), and
Ev(wi) = v(wi)⊕ fk2 (πk1 (wi)).

4) Sim returns (I ′, C′) to A.
In the search phase, Sim computes T ′w′ =

(πk1 (w
′), fk2 (πk1 (w

′))) and extracts the documents set
C(w′) = {Cj} that contains the queried keyword w′.
We will prove that any adversary A cannot distinguish
Gamesim and Gamereal by using a series of games
Game0,Game1,Game2, where Game0 = Gamereal.
Let

pi = Pr(Aoutputs b = 1 in Gamei).

• Game1 is the same as Game0 except that Cj is
replaced by C ′j . Then |p0 − p1| is negligible.

• Game2 is the same as Game1 except that I is
replaced by I ′, and Tw′ is replaced by T ′w′ . Nextly,
let addr= πk1 (w

′). From above analysis, we can see
that

I ′1(addr) = πk1 (wi,j),
I ′2 = Ev(wi),

I ′3(addr) = tagwi,j ,

where I ′j denotes the j-th node in one linked
list. The values of I ′2 and I ′3(addr) are the
same as the real values. Hence |p1 − p2| is
negligible.

Therefore, |p0 − p2| is negligible. It is clear that Game2 =
Gamesim. It means that any adversary A cannot distinguish
Gamereal and Gamesim. Consequently, the proposed VFKS
scheme satisfies privacy.
Theorem 5: The proposed VFKS scheme is correct.
Proof: The proposed VFKS scheme can return the doc-

uments of interest when the data user makes spelling errors.
When the cloud server receives the trapdoor, it compares
πk1 (w

′) with the elements in the first node of each list. We use
encrypted exact keyword πk1 (wi) to denote the first element
in the first node πk1 (wi,1). That is, wi,1 denotes the exact
keyword wi.
Case 1: πk1 (w

′) does not equal the first element πk1 (wi,1),
but equals a remaining element πk1 (wi,t)(1 < t ≤ |Swi,d |) in
the first node. In this case, the cloud server returnsπk1 (wi,1) to
the data user. When the data user receives πk1 (wi,1), he com-
putes fk2 (πk1 (wi,1)), and sends it to the cloud server. The

cloud server decryptsEv(wi) in the second node by computing
v(wi) ← fk2 (πk1 (wi,1)) ⊕ Ev(wi). If v(wi)[j] = 1, the cloud
server adds Cj to C(w′); otherwise, not. Then the cloud server
extracts tagw′ from the πk1 (w

′)-th position in the third node.
Finally the cloud server returns C(w′) and tagw′ to the data
user.
Case 2: πk1 (w

′) equals the first element πk1 (wi,1). In
this case, the cloud server directly decrypts Ev(wi) in
the second node by computing v(wi) ← fk2 (πk1 (w

′)) ⊕
Ev(wi). If v(wi)[j] = 1, the cloud server adds Cj to
C(w′); otherwise, not. Then the cloud server extracts tagw′
from the πk1 (w

′)-th position in the third node. Finally,
the cloud server returns C(w′), tagw′ and πk1 (wi,1) to the data
user.

If the search result passes the Verify algorithm, the data
user decrypts C(w′) to obtain the interested documents.
Therefore, the proposed VFKS scheme is correct.
Theorem 6: The proposed VFKS scheme satisfies

reliability.
Proof: Assume that A is a PPT adversary who can

give a forgery (C ′(w′), tag′w′ , π
′
k1
(wi,1)) such that the verifica-

tion algorithmVerify(K , tag′w′ ,C
′(w′), π ′k1 (wi,1),Tw′) outputs

accept . If such an adversary A exists, it will break the reli-
ability of VFKS scheme. Suppose (C(w′), tagw′ , πk1 (wi,1))
is the correct search result. We need to prove that the
adversary A cannot forge a valid (C ′(w′), tag′w′ , π

′
k1
(wi,1))

such that (C ′(w′), tag′w′ , π
′
k1
(wi,1)) = (C(w′), tagw′ ,

πk1 (wi,1)).
We need to consider four cases:
Case 1: C ′(w′) 6= C(w′) and π ′k1 (wi,1) 6= πk1 (wi,1). The

adversary A computes tag′w′ ← MAC(πk1 (w
′), π ′k1 (wi,1),

Ev(w′),C ′(w′)) for the trapdoor Tw′ by replacing C(w′) with
C ′(w′) and πk1 (wi,1) with π

′
k1
(wi,1), where Ev(w′) is the index

vector.
Case 2: C ′(w′) 6= C(w′) and π ′k1 (wi,1) = πk1 (wi,1).

As same as Case 1, the adversary A computes tag′w′ ←
MAC(πk1 (w

′), π ′k1 (wi,1),Ev(w
′),C ′(w′)).

Case 3: C ′(w′) = C(w′) and π ′k1 (wi,1) 6= πk1 (wi,1).
As same as Case 1, the adversary A computes tag′w′ ←
MAC(πk1 (w

′), π ′k1 (wi,1),Ev(w
′),C ′(w′)).

Case 4: C ′(w′) = C(w′) and π ′k1 (wi,1) = πk1 (wi,1).
As same as Case 1, the adversary A computes tag′w′ ←
MAC(πk1 (w

′), π ′k1 (wi,1),Ev(w
′),C ′(w′)).

In above cases, if the adversaryA forges the authentication
label tag′w′ , the verification algorithm will output ‘‘accept’’.
A will trick the data user successfully and make him believe
C ′(w′) is valid. However, MAC provides irreversibility and
message unforgeability against chosen message attacks, and
A does not know the keys ofMAC. The probability of forging
aMAC output successfully forA is negligible. Thus, whether
C ′(w′) = C(w′) or π ′k1 (wi,1) = πk1 (wi,1), tag

′

w′ 6= tagw′ ,
that is, Verify(K , tag′w′ ,C

′(w′), π ′k1 (wi,1),Tw′) 6= accept .
In other words, A cannot break the reliability of VFKS
scheme. Therefore, our proposed VFKS scheme satisfies the
reliability.

VOLUME 6, 2018 45733

X. Ge et al.: Enabling Efficient VFKS Over Encrypted Data in Cloud Computing

VI. PERFORMANCE COMPARISON AND
EXPERIMENT EVALUATION
A. PERFORMANCE COMPARISON
In Table.4, we compare the functionality of our schemes
with that of Kaoru’s scheme [15], Li’s scheme [16], Wang’s
scheme [17] and Zhu’s scheme [18]. Our proposed VEKS
scheme and the scheme [15] both can realize the exact
keyword search and the verification for search result, but
cannot realize the fuzzy keyword search. The scheme [16]
can realize the fuzzy keyword search but cannot support
the verification for search result. Our proposed VFKS
scheme, the scheme [17] and the scheme [18] all can real-
ize the fuzzy keyword search and verification for search
result.

TABLE 4. Functionality comparison.

In Table.5, we perform the efficiency comparison in the
following aspects: index building cost, trapdoor generation
cost, search cost, and verification cost. We denote N as
the number of documents, n as the number of exact key-
words, l as the maximum length of exact keywords, m as
the total number of fuzzy keywords, M as the maximum
number of fuzzy keywords in the fuzzy keyword set Swi,d ,
and M ′ as the number of fuzzy keywords for the queried
keyword.

In the index building phase, the scheme [15] needs to com-
pute 2lN PRPs and 2lN MACs. In comparison, our VEKS
scheme needs to compute n PRPs, n PRFs and n MACs.
Therefore, the index building time complexity is O(N) in
scheme [15] and is O(n) in our VEKS scheme. In our experi-
ment described in section VI.B, we extract at most 5000 key-
words from 10000 documents. The number of documents N
is bigger than the number of keywords n. In consequence,
the index building efficiency in our VEKS scheme is superior
to that in the scheme [15]. The schemes [16], [17] both adopt
the symbol-tree to build secure index. The time complexity of
index building is O(nM). The scheme [18] needs to compute
2m PRFs, while our VFKS scheme needs to computes n PRFs
and n PRPs. Therefore, the time complexity of index building
is O(m) in scheme [18] and is O(n) in our VFKS scheme.
Since an exact keyword can generate many fuzzy keywords,
the number of fuzzy keywords m is much larger than the
number of exact keywords n. Hence, O(m) is much bigger
than O(n). Obviously, the efficiency of index building in our
VFKS scheme is higher than that in schemes [16]–[18].

In the trapdoor generation phase, the scheme [15] needs
to compute N PRPs. The time complexity of trapdoor gen-
eration in this scheme is O(N). The schemes [16]–[18] all
generate the fuzzy keyword set for the queried keyword and
compute at most M PRFs and M PRPs. Therefore, the time
complexity of trapdoor generation is respectively O(M). In

comparison, our VEKS scheme and VFKS scheme only need
to compute one PRF and one PRP, and the time complexity of
trapdoor generation is only O(1). It is clear that our schemes
are more efficient than schemes [16]–[18] in the trapdoor
generation phase.

In the search phase, the scheme [15] needs to search N
times, while our VEKS scheme only needs once search.
Therefore, the search time complexity is O(N) in [15], and
is only O(1) in our VEKS scheme. The schemes [16], [17]
all need to traverse the index tree for each fuzzy keyword of
the queried keyword. The search time complexity is O(M ′h)
(where h is the height of the index tree). The scheme [18]
makes M ′m times comparison at most, while our VFKS
scheme only needs to make m times comparison at most.
Therefore, the search time complexity is O(M ′m) in [18],
and is O(m) in our VFKS scheme. Accordingly, the search
efficiency in our VEKS scheme is superior to that in the
scheme [15], and the search efficiency in our VFKS scheme is
higher than that in the scheme [18]. Furthermore, since we do
not generate the fuzzy keyword set for the queried keyword,
the VFKS scheme reduces a large amount of computation on
the user side.

In the verification phase, the scheme [15] needs to compute
N MACs. The verification time complexity in this scheme is
O(N). Our VEKS scheme and VFKS scheme both only need
to compute one MAC. The verification time complexity is
respectively O(1) in our two schemes. Therefore, our VEKS
scheme is more efficient than the scheme [15] in verification.
In the scheme [17], the verification time complexity is O(1).
The scheme [18] needs to compute two accumulators in the
verification phase, and the verification time complexity is
O(1). However, the verification in this scheme is based on
the public key system, so verification is time-consuming.
As a consequence, our VFKS scheme is more efficient than
scheme [18] in verification.

From the above analysis, we can know that our proposed
schemes are more efficient than existing schemes in the
phases of index building, trapdoor generation, search and
verification.

B. EXPERIMENT EVALUATION
In order to show the efficiency of our proposed schemes,
we conduct experiments on a real-world dataset. We select
10000 real data files from the online database [38].We imple-
ment our experiments using C++ language on a Linux OS
equipped with 3.4GHz Inter(R) Core(TM) i7-6700 CPU and
16GB RAM.

1) INDEX CONSTRUCTION
In the VEKS scheme, the secure index building phase con-
tains two major steps: encrypting the keywords(PRP) and
blinding the index vectors(PRF). The time cost of encrypting
the keywords is related to the number of keywords, and the
time cost of blinding the index vector is related to the number
of documents. Fig. 4 shows that the time cost of building the
secure index is almost linear with the number of documents

45734 VOLUME 6, 2018

X. Ge et al.: Enabling Efficient VFKS Over Encrypted Data in Cloud Computing

TABLE 5. Efficiency comparison.

FIGURE 4. Index building time cost(VEKS)(n = 5000).

FIGURE 5. Index building time cost(VEKS)(N = 10000).

in the experiment when the number of keywords n is fixed
as 5000. Fig. 5 shows that the time cost of building the
secure index is almost linear with the number of keywords
in the experiment when the number of documents N is fixed
as 10000.

In the VFKS scheme, we first need to construct the fuzzy
keyword set for each keyword. Because the length of each
keyword is different, the number of fuzzy keywords and
the time of generating all fuzzy keywords are different. The
longer the length of one keyword is, the higher the time cost of
constructing the fuzzy keyword set is. Fig.6 shows the time
cost of generating the fuzzy keyword set with edit distance
d = 1. We can see that the time cost increases with the
number of keywords. After all of the fuzzy keyword sets are
constructed, we build the secure index for the VFKS scheme.
The secure index building phase contains three major steps:
encrypting the fuzzy keywords, blinding the index vectors,
and generating the authentication labels for the fuzzy key-
words. The time cost of building the secure index depends on
the number of fuzzy keywords and the number of documents.

FIGURE 6. Fuzzy keyword set constructing time cost.

FIGURE 7. Index building time cost(VFKS)(n = 5000).

FIGURE 8. Index building time cost(VFKS)(N = 10000).

Fig.7 shows that the time cost of building the secure index
increases with the number of documents when the number
of keywords n is fixed as 5000. Fig.8 shows that the time
cost of building the secure index increases with the number
of keywords when the number of documents N is fixed
as 10000.

VOLUME 6, 2018 45735

X. Ge et al.: Enabling Efficient VFKS Over Encrypted Data in Cloud Computing

FIGURE 9. Trapdoor generation time cost.

2) TRAPDOOR GENERATION
In the VEKS scheme and the VFKS scheme, we adopt a
two-tuple Tw = (πk1 (w), fk2 (πk1 (w))) as the trapdoor. The
trapdoor only concludes two sequences of pseudo-random
bits generated by PRP π and PRF f . The output length of
π is a constant value, and the output length of f is related
to the number of documents. As shown in Fig.9, the time
cost of generating the trapdoor is linear with the number of
documents.

3) SEARCH EFFICIENCY
In the VEKS scheme, the search phase contains two major
steps: extracting the related index vector along with the
authentication label and decrypting the vector to obtain the
documents containing the queried keyword. The time of suc-
cessfully matching the queried keyword with the keywords
in the index is related to the number of keywords. As shown
in Fig.10, the search time cost is almost linear with the
number of keywords.

FIGURE 10. Search time cost(VEKS).

In the VFKS scheme, the search phase contains three
major steps: comparing the trapdoor with the fuzzy key-
words, extracting the related index vector along with the
authentication label and decrypting the index vector to obtain
the documents containing the queried keyword. The time
cost of comparing the trapdoor with the fuzzy keywords is
related to the number of fuzzy keywords. The time com-
plexity of extracting the related index vector along with the

authentication label is O(1). The time cost of decrypting the
index vector is related to the number of documents. Because
the number of fuzzy keywords is much more than the number
of documents, the number of fuzzy keywords has a greater
impact on search time cost than the number of documents.
Therefore, we only do the experiment to show the search time
cost as the number of keywords grows. As shown in Fig.11,
the search time cost is nearly linear with the number of
keywords.

FIGURE 11. Search time cost(VFKS).

4) VERIFY EFFICIENCY
In the VEKS scheme, we need to verify whether
MAC(πk1 (w),Ev(w),C(w)) equals tagw from the cloud
server, where C(w) is a set of documents containing the
queried keyword, Ev(w) is the encrypted index vector by
computing Ev(w) ← fk2 (πk1 (w)) ⊕ v(w), and v(w) is
extracted from C(w). The verification time complexity is
O(1). Fig.12 shows the verification time cost increases with
the number of documents.

FIGURE 12. Verification time cost.

In the VFKS scheme, the verification process is the same
as the VEKS scheme’s. As shown in Fig.12, the verification
time cost increases with the number of documents.

VII. DISCUSSION
In this section, we will discuss some problems and potential
solutions. In the proposed VEKS and VFKS schemes, we do

45736 VOLUME 6, 2018

X. Ge et al.: Enabling Efficient VFKS Over Encrypted Data in Cloud Computing

not consider the problems of how to hide the number of key-
words, how to hide the length of keywords, how to efficiently
construct the fuzzy keyword set, and how to rank the returned
documents. We will discuss the solutions to these problems
as follows.

1) How to hide the number of keywords. To achieve
the privacy of keywords, we can hide the number of
keywords by padding the secure index in the VEKS
scheme. Suppose each keyword is at most l bits and
the number of keywords is at most 2l , n ≤ 2l . The size
of the secure index is n. We enlarge it to 2l and initiate
index by padding dummy and 0, as

addr = dummy

I(dummy) = [0, . . . , 0︸ ︷︷ ︸
N

]

Then we map the index vector Ev(w) according to
πk1 (w), as

addr = πk1 (w)

I(addr) = [1, 1, 0, . . . 0, 1︸ ︷︷ ︸
N (Ev(w))

]

The remaining 2l − n positions are still dummy. The
vector 0 is encrypted by f (dummy). The index with
padding is shown in Fig.13. In this way, we can hide
the real number of keywords from the malicious cloud
server and the adversary.

FIGURE 13. The index with padding.

2) How to hide the length of keywords. In the VFKS
scheme, since the length of keywords is different,
the number of fuzzy keywords in each fuzzy keyword
set is different. The adversary and the malicious cloud
server can learn the length of keyword according to the
size of fuzzy keyword set. To address this problem,
we can hide the size of each fuzzy keyword set by
padding some random values. Firstly, we select the
longest keyword and compute the number of its fuzzy
keywords. Nextly, we pad other fuzzy keyword sets
to the same size with the longest fuzzy keyword set.
Finally, we pad the authentication label set at the same
position with the fuzzy keyword set. In this way, we can
hide the real length of each keyword from themalicious
cloud server and the adversary.

3) How to efficiently construct the fuzzy keyword set.
It needs large storage space to enumerate the fuzzy
keywords, and results in low search efficiency. The

number of keywords w′ satisfying ed(w,w′) ≤ 1 is
(2l + 1) × 26 + 1. We can make use of the wildcard
technology [16]–[18] to construct the fuzzy keyword
set. A wildcard denotes all of the edit operations at
the same position. For example, the fuzzy keyword set
of the keyword cat with the edit distance d = 1 is
Scat,1 = {cat, ∗cat, ∗at, c ∗ at, c ∗ t, ca ∗ t, ca∗, cat∗}.
In this case, the number of fuzzy keyword is 8, which is
much smaller than the number of keywords 183 using
enumeration method. For a keyword with the length of
l bits, the number of fuzzy keyword is 2l + 2, which is
far less than (2l + 1) × 26 + 1. This method helps us
improve search efficiency and save the storage space.
The detailed process of constructing the fuzzy keyword
set is shown in Algorithm 2.

Algorithm 2 Fuzzy Keyword Set Construction
Input:

The keyword wi, 1 ≤ i ≤ n and the edit distance d ;
Output:

the fuzzy keyword set S ′wi,d ;
1: procedure FuzzySet(wi, d)
2: if d > 1 then
3: Call FuzzySet(wi, d − 1);
4: end if
5: if d = 0 then
6: Set S ′wi,d = {wi};
7: else
8: for k ← 1 to |S ′wi,d−1| do
9: for j← 1 to 2 ∗ |S ′wi,d [k]| + 1 do
10: if j is odd then
11: Set fuzzykeyword as S ′wi,d [k];
12: Insert ? at position b(j+ 1)/2c ;
13: else
14: Set fuzzykeyword as S ′wi,d [k];
15: Replace bj/2c − th character with ? ;
16: end if
17: if fuzzykeyword is not in S ′wi,d−1 then
18: Set S ′wi,d = S ′wi,d−1 ∪ {fuzzykeyword};
19: end if
20: end for
21: end for
22: end if
23: return NONE;

4) How to rank the documents. The documents returned
from the cloud server are not always what we are inter-
ested in. Because the relevance of the queried keyword
with each document is different, it will cause unneces-
sary calculation cost if the cloud server returns all of
the matched documents. In order to solve this problem,
we can sort the documents by the relevance of the docu-
ments with the queried keyword. We use a widely-used
statistic measurement similar to [29] to compute the
relevance scores of matching documents to a search

VOLUME 6, 2018 45737

X. Ge et al.: Enabling Efficient VFKS Over Encrypted Data in Cloud Computing

trapdoor, named as TF×IDF rule. Here, TF denotes the
number of a given keyword in a document, and IDF is
obtained by dividing the cardinality of the document
collection by the number of documents matching the
queried keyword. The document is considered more
relevant if it contains more matched query keywords.
Simultaneously, we need to set a threshold T . The cloud
server only returns the top-T documents to the data
user. By utilizing this approach, the user can get the
documents with higher interests, and meanwhile the
system achieves better efficiency.

VIII. CONCLUSION
In this paper, we first propose a verifiable exact keyword
search (VEKS) scheme over encrypted cloud data. And
then construct a verifiable fuzzy keyword search (VFKS)
scheme based on VEKS scheme. For enhancing the effi-
ciency, we employ the linked lists as our secure index struc-
ture. Compared with the existing schemes, the proposed
schemes achievemore efficient verification for search results.
We give detailed security analysis of the proposed schemes.
Comprehensive experiment evaluation indicates that they are
very efficient.

REFERENCES
[1] J. Yu, K. Ren, C. Wang, and V. Varadharajan, ‘‘Enabling cloud storage

auditing with key-exposure resistance,’’ IEEE Trans. Inf. Forensics Secu-
rity, vol. 10, no. 6, pp. 1167–1179, Jun. 2015.

[2] Y. Zhang, J. Yu, R. Hao, C. Wang, and K. Ren, ‘‘Enabling effi-
cient user revocation in identity-based cloud storage auditing for shared
big data,’’ IEEE Trans. Depend. Sec. Comput., to be published, doi:
10.1109/TDSC.2018.2829880.

[3] J. Yu, K. Ren, and C. Wang, ‘‘Enabling cloud storage auditing with
verifiable outsourcing of key updates,’’ IEEETrans. Inf. Forensics Security,
vol. 11, no. 6, pp. 1362–1375, Jun. 2016.

[4] D. X. Song, D. Wagner, and A. Perrig, ‘‘Practical techniques for searches
on encrypted data,’’ in Proc. IEEE Secur. Privacy Symp., May 2000,
pp. 44–55.

[5] R. Curtmola, J. Gary, S. Kamara, andR.Ostrovsky, ‘‘Searchable symmetric
encryption: Improved definitions and efficient constructions,’’ in Proc.
ACM Conf. Comput. Commun. Secur., 2006, pp. 79–88.

[6] Z. Xia, X. Wang, X. Sun, and Q. Wang, ‘‘A secure and dynamic multi-
keyword ranked search scheme over encrypted cloud data,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 2, pp. 340–352, Jan. 2016.

[7] Z. Fu, K. Ren, J. Shu, X. Sun, and F. Huang, ‘‘Enabling personalized search
over encrypted outsourced data with efficiency improvement,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 9, pp. 2546–2559, Sep. 2016.

[8] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. C. Roşu, and
M. Steiner, ‘‘Highly-scalable searchable symmetric encryption with sup-
port for Boolean queries,’’ in Advances in Cryptology—CRYPTO. Berlin,
Germany: Springer-Verlag, 2013, pp. 353–373.

[9] J. Li, X. Chen, F. Xhafa, and L. Barolli, ‘‘Secure deduplication storage
systems with keyword search,’’ in Proc. IEEE Int. Conf. Adv. Inf. Netw.
Appl., May 2014, pp. 1532–1541.

[10] J. Li, X. Chen, F. Xhafa, and L. Barolli, ‘‘Secure deduplication storage
systems supporting keyword search,’’ J. Comput. Syst. Sci., vol. 81, no. 8,
pp. 1532–1541, 2015.

[11] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, ‘‘Secure ranked keyword
search over encrypted cloud data,’’ in Proc. IEEE Int. Conf. Distrib.
Comput. Syst., Jun. 2010, pp. 253–262.

[12] W. Zhang, S. Xiao, Y. Lin, T. Zhou, and S. Zhou, ‘‘Secure ranked
multi-keyword search for multiple data owners in cloud comput-
ing,’’ in Proc. IEEE/IFIP Int. Conf. Depend. Syst. Netw., Jun. 2014,
pp. 276–286.

[13] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, ‘‘Privacy-preserving
multi-keyword ranked search over encrypted cloud data,’’ in Proc.
IEEE INFOCOM, Apr. 2011, pp. 829–837.

[14] J. Cui, H. Zhou, H. Zhong, and Y. Xu, ‘‘AKSER: Attribute-based keyword
search with efficient revocation in cloud computing,’’ Inf. Sci., vol. 423,
pp. 343–352, Jan. 2018.

[15] K. Kurosawa and Y. Ohtaki, ‘‘UC-secure searchable symmetric encryp-
tion,’’ in Proc. Int. Conf. Financial Cryptogr. Data Secur., 2012,
pp. 285–298.

[16] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. J. Lou, ‘‘Fuzzy keyword
search over encrypted data in cloud computing,’’ Int. J. Eng. Res. Appl.,
vol. 4, no. 7, pp. 197–202, 2014.

[17] J. Wang et al., ‘‘Efficient verifiable fuzzy keyword search over encrypted
data in cloud computing,’’ Comput. Sci. Inf. Syst., vol. 10, no. 2,
pp. 667–684, 2013.

[18] X. Zhu, Q. Liu, and G. Wang, ‘‘A novel verifiable and dynamic fuzzy
keyword search scheme over encrypted data in cloud computing,’’ in Proc.
IEEE Trustcom/BigDataSE/ISPA, Aug. 2017, pp. 845–851.

[19] Z. Fu, X. Wu, Q. Wang, and K. Ren, ‘‘Enabling central keyword-based
semantic extension search over encrypted outsourced data,’’ IEEE Trans.
Inf. Forensics Security, vol. 12, no. 12, pp. 2986–2997, Dec. 2017.

[20] C. Liu, L. Zhu, and J. Chen, ‘‘Efficient searchable symmetric encryption
for storingmultiple source dynamic social data on cloud,’’ J. Netw. Comput.
Appl., vol. 86, no. 3, pp. 3–14, 2017.

[21] M. Kuzu, M. S. Islam, and M. Kantarcioglu, ‘‘Efficient similarity search
over encrypted data,’’ in Proc. IEEE Int. Conf. Data Eng., Apr. 2012,
pp. 1156–1167.

[22] B. Wang, S. Yu, W. Lou, and Y. T. Hou, ‘‘Privacy-preserving multi-
keyword fuzzy search over encrypted data in the cloud,’’ in Proc. IEEE
INFOCOM, Apr./May 2014, pp. 2112–2120.

[23] J. Wang, X. Yu, and M. Zhao, ‘‘Privacy-preserving ranked multi-keyword
fuzzy search on cloud encrypted data supporting range query,’’ Arabian
J. Sci. Eng., vol. 40, no. 8, pp. 2375–2388, 2015.

[24] Z. Fu, X. Wu, C. Guan, X. Sun, and K. Ren, ‘‘Toward efficient multi-
keyword fuzzy search over encrypted outsourced data with accuracy
improvement,’’ IEEE Trans. Inf. Forensics Security, vol. 11, no. 12,
pp. 2706–2716, Dec. 2016.

[25] Q. Chai and G. Gong, ‘‘Verifiable symmetric searchable encryption for
semi-honest-but-curious cloud servers,’’ in Proc. IEEE Int. Conf. Com-
mun., Jun. 2012, pp. 917–922.

[26] C. Wang, N. Cao, K. Ren, and W. Lou, ‘‘Enabling secure and efficient
ranked keyword search over outsourced cloud data,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 23, no. 8, pp. 1467–1479, Aug. 2012.

[27] W. Sun, X. Liu, W. Lou, Y. T. Hou, and H. Li, ‘‘Catch you if
you lie to me: Efficient verifiable conjunctive keyword search over
large dynamic encrypted cloud data,’’ in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr./May 2015, pp. 2110–2118.

[28] J. Wang, X. Chen, J. Li, J. Zhao, and J. Shen, ‘‘Towards achieving flexible
and verifiable search for outsourced database in cloud computing,’’ Future
Gener. Comput. Syst., vol. 67, pp. 266–275, Feb. 2017.

[29] X. Jiang, J. Yu, J. Yan, andR. Hao, ‘‘Enabling efficient and verifiablemulti-
keyword ranked search over encrypted cloud data,’’ Inf. Sci., vols. 403–404,
pp. 22–41, Sep. 2017.

[30] L. Chen andN. Zhang, ‘‘Efficient verifiablemulti-user searchable symmet-
ric encryption for encrypted data in the cloud,’’ in Proc. Int. Conf. Secur.
Privacy New Comput. Environ., 2016, pp. 173–183.

[31] W. Zhang, Y. Lin, and Q. Gu, ‘‘Catch you if you misbehave: Ranked
keyword search results verification in cloud computing,’’ IEEE Trans.
Cloud Comput., vol. 6, no. 1, pp. 74–86, Jan./Mar. 2018.

[32] Y. Miao, J. Ma, X. Liu, J. Zhang, and Z. Liu, ‘‘VKSE-MO: Verifiable
keyword search over encrypted data in multi-owner settings,’’ Sci. China
Inf. Sci., vol. 60, no. 12, p. 122105, 2017.

[33] Z. Fu, J. Shu, X. Sun, and N. Linge, ‘‘Smart cloud search services: Veri-
fiable keyword-based semantic search over encrypted cloud data,’’ IEEE
Trans. Consum. Electron., vol. 60, no. 4, pp. 762–770, Nov. 2014.

[34] J. Wang, X. Chen, and J. Li, ‘‘Verifiable search for dynamic outsourced
database in cloud computing,’’ in Proc. Int. Conf. Broadband Wireless
Comput., Nov. 2015, pp. 568–571.

[35] J. Yu, R. Hao, H. Xia, H. Zhang, X. Cheng, and F. Kong, ‘‘Intrusion-
resilient identity-based signatures: Concrete scheme in the standard
model and generic construction,’’ Inf. Sci., vols. 442–443, pp. 158–172,
May 2018.

[36] Y. Xu, M. Wang, H. Zhang, J. Cui, L. Liu, and V. N. L. Franqueira, ‘‘Ver-
ifiable public key encryption scheme with equality test in 5G networks,’’
IEEE Access, vol. 5, pp. 12702–12713, 2017.

45738 VOLUME 6, 2018

http://dx.doi.org/10.1109/TDSC.2018.2829880

X. Ge et al.: Enabling Efficient VFKS Over Encrypted Data in Cloud Computing

[37] H. Krawczyk, ‘‘The order of encryption and authentication for protecting
communications (or: How secure is SSL?),’’ in Proc. Int. Conf. Adv.
Cryptol., 2001, pp. 310–331.

[38] C. William. Enron Email Dataset. Accessed: Jun. 2008. [Online]. Avail-
able: https://www.cs.cmu.edu/~enron/

XINRUI GE received the B.E. degree in informa-
tion security from Qingdao University in 2016.
She is currently pursuing the master’s degree in
computer science and technology with Qingdao
University. Her research interests include cloud
computing security and searchable encryption.

JIA YU received the B.S. and M.S. degrees from
the School of Computer Science and Technology,
Shandong University, in 2000 and 2003, respec-
tively, and the Ph.D. degree from the Institute of
Network Security, Shandong University, in 2006.
He was a Visiting Professor with the Department
of Computer Science and Engineering, The State
University of New York at Buffalo, Buffalo, NY,
USA, from 2013 to 2014. He is currently a
Professor with the College of Computer Science

and Technology, Qingdao University. His research interests include cloud
computing security, key evolving cryptography, digital signature, and net-
work security.

CHENGYU HU received the Ph.D. degree from
Shandong University in 2008. He is currently a
Lecturer with the School of Software, Shandong
University. His main research interests include
cloud system security, public key cryptography,
and leakage-resilient cryptography.

HANLIN ZHANG received the B.S. degree in
software engineering from Qingdao University
in 2010 and theM.S. degree in applied information
technology and the Ph.D. degree in information
technology fromTowsonUniversity, Towson,MD,
USA, in 2011 and 2016, respectively. He is cur-
rently with the College of Computer Science and
Technology, Qingdao University, as an Assistant
Professor. His research interests include informa-
tion security, cloud security, mobile security, net-

work security, cloud computing security, key evolving cryptography, digital
signature, and network security.

RONG HAO received themaster’s degree from the
Institute of Network Security, Shandong Univer-
sity. She is currently with the College of Computer
Science and Technology, Qingdao University. Her
research interest is information security.

VOLUME 6, 2018 45739

	INTRODUCTION
	RELATED WORK
	EXACT KEYWORD SSE
	FUZZY KEYWORD SSE
	VERIFIABLE SSE

	PROBLEM FORMULATION
	SYSTEM MODEL
	THREAT MODEL
	DESIGN GOALS
	NOTATIONS AND PRELIMINARIES
	SYMMETRIC ENCRYPTION
	PSEUDO-RANDOM FUNCTION AND MESSAGE AUTHENTICATION FUNCTION
	INVERTED INDEX
	SECURE INDEX
	EDIT DISTANCE

	DEFINITIONS
	SCHEME DEFINITION
	SECURITY DEFINITIONS

	THE PROPOSED VERIFIABLE SEARCHABLE SYMMETRIC ENCRYPTION SCHEMES
	THE PROPOSED VERIFIABLE EXACT KEYWORD SEARCH (VEKS) SCHEME
	THE PROPOSED VERIFIABLE FUZZY KEYWORD SEARCH (VFKS) SCHEME

	SECURITY ANALYSIS
	SECURITY ANALYSIS OF THE VERIFIABLE EXACT KEYWORD SEARCH SCHEME
	SECURITY ANALYSIS OF THE VERIFIABLE FUZZY KEYWORD SEARCH SCHEME

	PERFORMANCE COMPARISON AND EXPERIMENT EVALUATION
	PERFORMANCE COMPARISON
	EXPERIMENT EVALUATION
	INDEX CONSTRUCTION
	TRAPDOOR GENERATION
	SEARCH EFFICIENCY
	VERIFY EFFICIENCY

	DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	XINRUI GE
	JIA YU
	CHENGYU HU
	HANLIN ZHANG
	RONG HAO

