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ABSTRACT In recent years, due to its strong nonlinear mapping and research capacities, the convolutional
neural network (CNN) has been widely used in the field of hyperspectral image (HSI) processing. Recently,
pixel pair features (PPFs) and spatial PPFs (SPPFs) for HSI classification have served as the new tools for
feature extraction. In this paper, on top of PPF, improved subtraction pixel pair features (subtraction-PPFs)
are applied for HSI target detection. Unlike original PPF and SPPF, the subtraction-PPF considers target
classes to afford the CNN, a target detection function. Using subtraction-PPF, a sufficiently large number of
samples are obtained to ensure the excellent performance of the multilayer CNN. For a testing pixel, the input
of the trained CNN is the spectral difference between the central pixel and its adjacent pixels. When a test
pixel belongs to the target, the output score will be close to the target label. To verify the effectiveness of the
proposed method, aircrafts and vehicles are used as targets of interest, while another 27 objects are chosen
as background classes (e.g., vegetation and runways). Our experimental results on four images indicate that
the proposed detector outperforms classic hyperspectral target detection algorithms.

INDEX TERMS Target detection, hyperspectral imagery, deep learning, convolutional neural network,
subtraction pixel pair features.

I. INTRODUCTION
Hyperspectral technologies are becoming a focus of remote
sensing domains in various countries [1]. Due to their high
spectral resolution, pixels can be used to recognize small
targets of interest [2]. Object detection and recognition via
HSI is a central research field with practical applications.
In general, detection algorithms can be divided into two
categories: supervised and unsupervised. The unsupervised
algorithm, which is also called the ‘‘anomaly detection’’
algorithm, does not require the use of prior spectral infor-
mation, reflectance spectra and atmospheric compensation.
The supervised algorithm or ‘‘target detection’’ algorithm
requires prior spectral information of the target of interest [3].
The algorithm proposed in this paper focuses on supervised
target detection from HSIs.

At present, several detection algorithms have been put
forward from different perspectives. The following four prin-
ciples characterize methods of hyperspectral target detection.

1) Classic detection algorithms based on multivariate sta-
tistical analysis methods and signal processing [1], [4].
These algorithms project spectral features of image
data onto a certain plane according to a certain crite-
rion. This ensures that the target and background are
located in different positions of the plane. Then, the

target is separated from the background by thresh-
old segmentation [4]. A well-known signature-based
approach is that of constrained energy minimization
(CEM). This algorithm can minimize energy output
under constraints of the target signal to ensure tar-
get detection [5]. The orthogonal subspace projection
(OSP) is a very good target detection operator that
determines both the target spectrum of interest and the
background spectrum [6], [7]. The above two algo-
rithms are classic unstructured algorithms. Rather than
representing background information based on end
member signals and corresponding components, struc-
tured detectors such as the generalized likelihood ratio
test (GLRT), adaptive cosine estimator (ACE), adap-
tive matched filter (AMF), adaptive subspace detector
(ASD) and matched subspace detector (MSD) regard
the background as a statistical model. The model
conforms to the multivariate Gaussian distribution,
in which both the background and noise are modeled
as the background [4].

2) Detection algorithms using the kernel function. To bet-
ter distinguish the target from the background, the
kernel function is introduced into traditional linear
detection algorithms, forming some new detectors
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(e.g., kernel orthogonal subspace projections (KOSP),
kernel-based constrained energy minimization
(KCEM), kernel matched subspace detectors (KMSD)
and kernel-based target constrained interference-
minimized filters (KTCIMF)). By mapping data from
low dimensional input space to high dimensional fea-
ture space via the kernel strategy, nonlinear problems
are converted into linear problems [4].

3) Detection algorithms based on sparse representation.
The basic premise of introducing sparse theory into
HSI target detection algorithms is to represent the orig-
inal hyperspectral signal as the product of an over-
complete dictionary and of coefficients. In general,
the sparsest set of coefficients is to be determine
such that essential features of the signal can be repre-
sented by a few large coefficients [8]. In [9], a joint
sparsity model is proposed to determine sparse rep-
resentations of neighboring pixels. In the algorithm,
pixels are decomposed over the given dictionary con-
sisting of training samples of the target and background
classes.

4) In recent years, with the continuous emergence of new
algorithms in the field of statistical pattern recogni-
tion and machine learning, some data-driven target
detection methods such as the non-linear manifold
learning method [10], transfer learning method [11],
background self-learning method [12] and regulariza-
tion method [13] have been used to process remote
sensing image. In particular, a tensor-matched sub-
space detector (TMSD) is proposed in [14]. In the
algorithm, to jointly utilize information of multidimen-
sional hyperspectral data, data are represented as a
third-order tensor. This method uses spectral-spatial
information and achieves good results.

Although some progress has been made in research on
hyperspectral target detection, some challenges remain in its
development.

1) Uncertainties in the spectra of targets [4]. Due to vary-
ing factors, field measurement reflectance spectral data
of a target are not uniquely determined and can vary [4].
This is precisely due to the fact that such uncertainties
of the target to be measured cannot be described by a
single spectral curve. As is shown in Fig. 1, although
the shape of spectral curves of pixels belonging to the
focus of this work is approximately the same, the spec-
tral value varies dramatically, complicating accurate
target detection and identification.

2) Problems related to mixed pixels [4]. Due to limitations
on spatial resolutions and the complexities of ground
object distributions, in most cases, one pixel may cover
hundreds of square meters with various ground objects
and becomes a mixed pixel [4]. Thus, the target object
often occupies part of the pixel area and is mixed
with a variety of other objects into a single pixel.
Themixed pixel problem complicates the identification
and recognition of materials. This problem must be

FIGURE 1. Spectral curves of pixels that belong to target of interest in the
experimental AVIRIS data.

addressed urgently for target detection from hyperspec-
tral imagery.

3) The nonlinear problem [1], [4]. At present, most
detectors are based on the spectral linear mixed
model or pure point model, while high-order feature
information for images is not fully utilized.Meanwhile,
with an increase in the number of nonlinear factors
involved, nonlinear feature distribution will seriously
affect the data analysis process, causing traditional
methods to not directly apply. Non-linear information
often plays an important role in HSI detection and
classification.

Recently, deep learning-based methods have drawn
increasing attention in the field of hyperspectral image anal-
ysis. A variety of neural networks such as the CNN, Deep
Belief Network (DBN) and Stacked Auto Encoder (SAE)
have been introduced into the realm of hyperspectral data
processing and especially in terms of classification. In [16],
Convolutional Recurrent Neural Networks (CRNN) are used.
Several convolutional layers are used to extract mid-level
and locally invariant features from the input data, and then,
the following recurrent layers are used to further extract
spectrally contextual information from features generated by
the convolutional layers.

Recently, novel pixel pair features (PPF) have been pro-
posed as a means to significantly increase the number of
training samples involved in [17]. PPF ensure that advan-
tages of the CNN for HSI classification can be actually
realized. In addition to PPF, a revamped spatial pixel pair
feature (SPPF) is proposed to better exploit spatial/contextual
and spectral information [18]. In particular, deep CNN with
PPF are applied to hyperspectral anomaly detection for the
first time in [20]. In [20] reference data with labeled sam-
ples are required for the training procedure, and then the
difference between pixels pairs is determined for anomaly
detection. Experimental results demonstrate that the method
outperforms both classic and state-of-the-art representation-
based detectors.

According to the above analyses, the CNN-based target
detection framework is robust, as in applying deep learn-
ing to hyperspectral remote sensing data processing, the
multi-layer expression of the potential distribution of an
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HSI can be determined through the deep neural network, and
nonlinear features can be extracted. In relying on their pow-
erful learning abilities, deep neural networks can effectively
combine feature extraction capacities with classification and
recognition features, supporting target detection or terrain
classification. Thus, the CNN-based method is helpful in
addressing the challenges mentioned above.

Inspired by [17]–[20], a hyperspectral target detection
framework with subtraction pixel pair features is pre-
sented. First, the size of training samples is enlarged via
subtraction-PPF. The training samples can be enlarged by
removing any two pixels from background and target classes.
Second, by coding the new samples removed between pixels
from target classes and other background classes as 1 and new
samples removed between pixels of both different and the
same background classes as 0, target detection becomes the
classification mode of new samples, and the CNN is trained
by millions of new samples generated by subtraction-PPF.
Finally, for each testing pixel, the input of the trained
CNN is the difference between the central pixel and its neigh-
boring pixels, and outputs are the scores of central pixels
between 0 and 1. When the testing pixel belongs to target of
interest classes, the average score should be close to 1.

This work makes two main contributions:
1) A subtraction pixel pair feature based on the target and

background classes is used to obtain a sufficiently large
number of samples for the training of the proposed
target detection framework, ensuring that advantages of
the CNN can be realized.

2) The CNN is used to extract advanced features for tar-
get detection from an HSI. All of our experimental
results demonstrate that the CNN-based detector with
favorable nonlinear mapping and excellent learning
capabilities is superior in executing hyperspectral target
detection.

The rest of this paper is organized as follows. Section II
describes the PPF, SPPF and the proposed subtraction-PPF.
The detailed architecture of the CNN and its overall flow is
introduced in Section III. By comparing the proposed method
with other detectors, experiments are conducted in Section IV,
which includes the descriptions of the AVIRIS data, parame-
ters setup, the results and corresponding discussion. Finally,
section V summarizes the key ideas in this paper.

II. SUBTRACTION-PPF
To form the CNN, two problems must be solved: a large
number of training samples must be obtained, and the
CNN must be made a target detection function. Subtraction-
PPF is used to address these two problems.

A. PPF AND SPPF
To enlarge samples for the training procedure, PPF are
proposed in [17] for HSI classification purposes. As the
basic premise of this method, training samples are first
paired with any two selected samples based on the following
criteria—a pair of samples from the same class is labeled

with no change, while that of samples selected from different
classes is denoted as 0 [17]. Li et al. [20] used a similar
approach to expand samples to train the CNN for anomaly
detection for an HSI. According to this method, for two types
of pixel pairs, one type of sample (the label is denoted as 0) is
selected from the same class, while the other type of sample
(the label is denoted as 1) is selected from different classes.
This was the first way in which a deep CNN was applied for
hyperspectral anomaly detection. According to the method,
reference data (the Salinas dataset with 16 classes) with
ground truthing are required, and the target class is not taken
into account. Based on these two approaches, subtraction-
PPF values of training samples for the training procedure are
put forward. In [18], the SPPF is proposed as a means to
better incorporate spatial information, and the geographically
co-located pixel selection rule and pair label assignment rule
of the SPPF are different from the prior PPF. In the SPPF, only
the central pixel and its immediate eight-neighbor pixels are
paired, and then, spatial pixel pair features are fed into the
designed CNN. The label of the pixel in the SPPF is always
coincident with the central pixel, regardless of its neighboring
pixels [18]. In [19], a novel feature learning framework, i.e.,
the simultaneous spectral-spatial feature selection and extrac-
tion algorithm, is proposed for hyperspectral image spectral-
spatial feature representation and classification.

Taking the CNN presented in this paper for example,
the number of parameters in the designed architecture to be
trained is approximately 1350000. Traditionally, when the
CNN is used for target detection from the HSI, the input of
the neural network will be different classes of samples and
corresponding labels, and the output of each tested pixel will
be its corresponding label. When the tested pixel belongs
to the target of interest, the output label will be consistent
with the target class or consistent with different background
classes. Under such conditions, target detection can be con-
sidered a form of classification. However, in reality, there
are not this many samples and particularly target samples
of interest, and it is essential to the effective functioning
of the CNN that there are enough training samples. Taking
AVIRIS data used in Salinas [20] as an example, there
are 16 classes, and a maximum of 900 samples can be
obtained for each class. The total number of available samples
of 14400 is much lower than 1350000. Most objects included
in the Salinas image are crops and vegetation, which are
unsuitable for images containingmoremanmade objects such
as runways and houses.

B. SUBTRACTION-PPF
Inspired by the prior PPF and SPPF, the subtraction-PPF is
used to enlarge samples for the training stage.

First, 27 (denoted as k) background classes (denoted
as Xb), such as roads, vegetation and tarmac and
an aircraft-vehicles target class (denoted as Xt) are
manually chosen for several AVIRIS date1 X values,

1https://gulfoilspill.jpl.nasa.gov/cgi-bin/search.pl#
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FIGURE 2. Spectral curves of pixels that belong to target of interest in original data and the new data set, the horizontal axis represents the number of
bands and vertical axis represents the spectral values for each band. (a) Spectral curves of some targets in original data; (b), (c), (d), (e), (f) Spectral
curves of some targets in the new data set.

where = {xi}, i ε{1, 2 . . . 27} and where xi is one of the
background classes. By comparing the spectral curves of
the aircrafts and vehicles and their appearance in high
resolution Google Maps images it is found that the spec-
tra of the aircrafts and vehicles are very similar. Thus,
they are selected as target classes to train the proposed
CNN, which is used to detect aircrafts and vehicles from
AVIRIS images.

Second, to enlarge the samples, a new dataset
(denoted Xnew) is built through target and background sub-
traction. To generate the pixel pairs, a new pixel (Xnew

b1 )
generated through the subtraction of any two pixels selected
from 27 different classes (xi, xj) is coded as 0, the new
pixel (Xnew

b2 ) generated by the subtraction of any two pixels
(xii, xjj) selected from each class (xi) is coded as 0, and the
new pixel (Xnew

t ) created through the subtraction of any two
pixels, in which one pixel is drawn from the target class
(Xt) while the other is drawn from background classes (Xb),
is coded as 1. The new datasets are written as Xnew

= {Xnew
b1 ,

Xnew
b2 , Xnew

t }, where the background classes (coded as 0) are
Xnew
b1 and Xnew

b2 and the target class (coded as 1) is Xnew
t . That

is,

Xnew
=

Xnew
b

{
Xnew
b1 = xi−xj,

Xnew
b2 = xii−xjj

Xnew
t = Xt−xi,

i, j∈{1, 2, . . . 27, }, i 6= j
xii, xjj ∈ {xi}27i=1, ii 6= jj
i ∈ {1, 2, . . . 27}

(1)

As is shown in (1), the following three types of pixel pairs
can be obtained: xi − xj, xii − xjj, and Xt − xi.
When 300 (denoted as n) samples are selected from each

class and when the number of classes is 27 (denoted as k),
the total number N1 of Xnew

b1 can be calculated from all
combinations. That is,

N1 = C2
k × n× n = C2

27 × 300× 300 = 31590000 (2)

The total number of Xnew
b2 is N2. That is,

N2 = C2
n × k = C2

300 × 27 = 1210950 (3)

The total number of Xnew
t is N3. That is,

N3 = n× n× k = 300× 300× 27 = 2430000 (4)

From the above measures, the new dataset Xnew is built and
is divided into two classes: the background class (denoted 0)
with number n0 and the target class (denoted 1) with num-
ber n1. The label and number of samples of each class are
written as

Label(Xnew) =

{
0, n0 = N1+ N2 = 32800950
1, n1 = N3 = 2430000,

(5)

It is easy to observe that the number of the new datasets
is much larger than the number of parameters used in the
proposed CNN. As is evident from the spectrum curves
(as shown in Fig. 2 and Fig. 3) of several samples of the new
dataset Xnew, Xnew is very different from the original AVIRIS
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FIGURE 3. Spectral curves of pixels that belong to background in original data and the new data set, the horizontal axis represents the number of
bands and vertical axis represents the spectral values for each band. (a), (b), (c) Spectral curves of some backgrounds in original data;
(d), (e), (f) Spectral curves of some backgrounds in the new data set.

data X value. In the subtraction-PPF, both target and back-
ground classes of Xnew contain different spectra becausemost
samples of the new dataset are created from a combination of
any two different samples. Compared to the spectra value of
samples in X, which is greater than zero, the spectra value
of samples in Xnew can be less than zero due to the presence
of numerical values, causing the spectrum to be more diverse
and easier to distinguish. However, it is difficult to identify
new spectra from traditionalmethods, as the spectrum inXnew

and the spectrum of typical objects in X are quite different.
Thus, to identify the target spectrum of so many different
new spectra, a non-linear detector with strong recognition
capacities must be used. At this point, the target detection
problem defined in X is transformed into the classification
problem defined in Xnew. In the new dataset, the target class
is only one of many categories used. The difference observed
is attributed to the fact that the labels of other classes are
denoted as the same. For example, for class Xnew

b1 , which is
created from the subtraction of any two pixels selected from
27 different classes, according to formula (2), the number of
new classes is C2

27, but they are denoted as 0. This means that
these C2

27 classes are merged into the background class of the
new dataset. Similarly, according to formula (4), 27 classes
are merged into the target class of the new dataset. This
increases the diversity and sample number of the target class.
Like other classification problems, the CNN is used to clas-
sify new classes in the new dataset. Thus, the transformation
can be used to address class imbalances.

In experiments, only 150 samples for each background
class and 300 samples for the target class are manually chosen
for several original AVIRIS dates. Then these samples are
paired to generate the new dataset. According to the above
subtraction method and according to formulas (1) to (5),
8199225 background samples and 2430000 target samples in
the new dataset can be obtained as training samples.

C. COMPARISON OF PPF, SPPF, AND SUBTRACTION-PPF
Compared to the PPF and SPPF, the proposed subtraction-
PPF takes a target class into account. PPF features are
pixels generated from paired pixels on reference data with
labeled samples. In [17], [18], and [20], pixel pair features
are utilized for HSI classification and anomaly detection.
In PPF [20], paired pixels are selected from the Salinas
dataset with sixteen classes, and the same pairing method is
applied to all sixteen classes. In this paper, however, aircrafts
and vehicles are regarded as the target class, and target fea-
tures of the subtraction-PPF are generated from paired pixels
between the target class and other background classes. Thus,
the subtraction-PPF ensures that the CNN is a target detection
function.

In addition, to better incorporate spatial information,
the SPPF only selects the central pixel and its eight-
neighbor pixels at the training and testing stage [18]. In the
subtraction-PPF, spatial information is not considered in the
training stage, as paired pixels used in the subtraction stage
are chosen randomly. However, spatial information is used in
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FIGURE 4. Architecture of the CNN-based target detection framework.

the testing stage, and to manage edge pixels, more neighbor-
ing pixels are paired with the testing pixel. It is conducive
to reduce the effects of edge pixels. Given that the sizes of
targets in an image vary, different processing windows are
used when a testing pixel is paired with other neighboring
pixels, and it is found that the larger the processing window
is, the more pixels are paired with the central pixel. This
renders the contrast of spatial information between the testing
pixel and neighboring pixels complementary to the practical
distribution of ground objects.

Moreover, the subtraction-PPF offers abundant character-
istic information. In PPF [17], [20], reference data have
sixteen classes, and most objects include crops and vegeta-
tion. Thus, PPF features [17], [20] are not suitable for the
detection of targets in images with artificial objects. However,
the subtraction-PPF described in this paper is generated from
twenty-eight different ground objects that are manually cho-
sen from several AVIRIS dates. This renders the subtraction-
PPF more suited for target detection.

III. CNN-BASED TARGET DETECTION FRAMEWORK
A. ARCHITECTURE OF THE PROPOSED CNN
After constructing the new dataset, the designed CNN can be
trained. The architecture of the CNN is shown in Fig. 4. The
design of the neural network structure described in this paper
is inspired by CNNs described in [17] and [20]. The CNN
described in this paper contains more layers and performs
different functions. The designed CNN framework contains
twenty-nine convolutional layers and one average-pooling
layer. Linear unit layers rectified after each convolutional

layer are used to accelerate the convergence of the stochastic
gradient descent algorithm and to ensure that the trained
network exhibits moderate sparsity. It is worth noting that
convolutional layers with stride two (C9, C15, C19, C25,
and C28) are used to limit spectral dimensionality.

As is illustrated in Fig. 4, the input of the CNN is a
1 × 224 × 1 tensor and a corresponding 0 or 1 label. The
input tensor is converted by the 1 × 224 spectral vector of
the new dataset Xnew. Then, the first convolutional layer
(C1) primarily filters the input 1 × 224 × 1 tensor with
forty 1 × 16 × 1 kernels, producing a 1 × 224 × 40 tensor.
Then, the second convolutional layer (C2) filters the input
1×224×40 tensor with forty 1×16×1 kernels, producing a
1× 224× 40 tensor. Then, the third convolutional layer (C3)
filters the input 1 × 224 × 40 tensor with forty 1 × 16 × 1
kernels, producing a 1 × 224 × 40 tensor. From C1 to C3
(C1-C3 in Fig. 4), nonlinear features are extracted. In short,
to obtain high-level features, the networks must use more
convolutional layers, and thus, 28 convolutional layers (from
C1 to C28) are continuously designed.

Like layers from C1 to C3, the output of C6 is fifty
1× 224 feature tensors, which are obtained by applying fifty
1 × 16 × 1 kernels to the 1 × 224 × 50 tensor generated
by C4. From C1 to C8, the output of each layer has the
same dimensions as the original input vector because the
stride is valued at one. When each layer enters C9 with
stride two, the output is sixty 1 × 112 feature tensors such
that the spectral dimension is reduced by half. Following the
same convolution operation as that described above, the out-
put of the twenty-eighth convolution layer (C28) is twenty
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FIGURE 5. Flowchart of the CNN-based target detection in HSI with single window.

FIGURE 6. Pseudo color image1 scene using bands 185, 130 and 35. (b) Ground truth map of image1 with 123 target pixels.

1 × 7 feature tensors. After 28 convolutional layers are
applied, another convolutional layer (C29) filters a 1 ×
20 tensor, which is generated by an average-pool layer
applied to the output of C28 with a 1 × 16 × 1 kernel,
producing the final 1 × 1 output score of between 0 and 1.

B. FLOWCHART OF CNN-BASED TARGET
DETECTION VIA THE HSI
When testing, the same subtractionmethod is used to generate
a new input vector for the testing pixel. As shown in Fig. 5,
the input of the trained CNN is a new 1 × 224 vector, which
is generated through subtraction between the central testing
pixel and neighboring pixel. When using twenty-four neigh-
borhood pixels, the output is twenty-four scores of between
0 and 1. Then, themean of the twenty-four scores is compared
to the prescribed threshold; when the mean of the twenty-
four scores > the threshold, the testing pixel T belongs to
the target; otherwise, it belongs to the background.

Generally, the threshold is set to 0.5 because when a test-
ing pixel belongs to the target of interest classes, the final
score should be close to 1, and otherwise, it is close to 0.
For ROC generation, the threshold is gradually changed
from 0 to 1, and thousands of thresholds between the mini-
mum and maximum of the detection output map are used to
calculate the ROC curve.

IV. EXPERIMENT AND DISCUSSION
In the experiment, only one CNN model is trained and used
for all images.

A. DATASET AND ROC
1) DATASET
To demonstrate the performance of the CNN-based tar-
get detection framework, four images drawn from three
AVIRIS datasets are employed. All images with a 3.5 m spa-
tial resolution are gathered by the Airborne Visible Infrared
Imaging Spectrometer [21] sensor and have 224 spectral
channels in wavelengths ranging from 370 to 2510 nm,
in which the wavelengths of 1350–1420 and 1810–1940 nm
are water-absorption bands. All 224 bands are used in the
experiments.

The first image (image1) was collected by the Air-
borne Visible Infrared Imaging Spectrometer sensor from
San Diego Airport, CA, USA [22]. This scene consists
of 60 × 100 pixels and there are three planes in the image,
which consist of 123 pixels. The image1 scene and the ground
truth map of image1 are shown in Fig. 6.

The second and third images (image2 and image3) were
collected by the Airborne Visible Infrared Imaging Spec-
trometer sensor. These two images come from the same data
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FIGURE 7. (a) Pseudo color image2 scene using bands 180, 128 and 30. (b) Ground truth map of image2 with 45 target pixels.
(c) Pseudo color image3 scene using bands 16, 25 and 50. (d) Ground truth map of image3 with 120 target pixels.

covering Mississippi, USA. The image2 consist of 109 ×
109 pixels and there are seven aircrafts in the image, which
consist of 45 pixels. The image3 consist of 311 × 259 pixels
and there are fifteen aircrafts and one vehicle in the image,
which consist of 120 pixels. The image scenes and the ground
truth maps of image2 and image3 are shown in Fig. 7.

The fourth image (image4) was collected by the Airborne
Visible Infrared Imaging Spectrometer sensor. This image is
the AVIRIS data covering a parking lot on Galveston Island,
Texas, USA. This scene consists of 70× 210 pixels and there
are some vehicles in the image, which consist of 330 pixels.
The image scene and the ground truth map of image4 are
shown in Fig. 8.

2) ROC
The receiver operating characteristic (ROC) curve, which
shows the tradeoff between probability of false alarm
(denoted as Pf) and probability of detection (denoted as Pd),
is used to evaluate the experiment results. In addition, area
under the curve (AUC) is calculated to measure the per-
formance of the ROC, the larger the AUC, the better the
performance of the detector [23]. To calculate the ROC curve,
the detection map is first normalized to (0, 1). After picking
thousands of thresholds between the minimum andmaximum
of the detection output map, the resulting Pf (which means

that background pixels are detected as target) and Pd (which
means that target pixels are detected as target) are plotted by
comparing with the ground truth map [9], [24]. Pd is the ratio
of the number of detected true target pixels in the detection
map to the number of true target pixels in the ground truth
map; Pf is the ratio of the number of detected false pixels in
the detection map to the total number of pixels in the entire
tested image. It must be noted that the targets pixels in the
ground truth maps are artificially marked one by one relying
on experience and knowledge of the spectral information.
In addition, high resolution images of Google Maps are also
used as the reference to make ground truth maps.

B. PARAMETER SETUP
To maximize the effectiveness of the neural networks, appro-
priate parameters must be applied, i.e., window sizes, convo-
lution kernel sizes, learning rates and classes of samples.

1) WINDOW SIZE
As numerous experiments show that CNNwindow sizes have
a strong effect on target detection results, this is discussed in
detail in this paper.

Windows of different sizes are used to obtain input data
in the experiments (as shown in Fig. 5). Tables 1 to 4 demon-
strate the effects of windows of various sizes and of execution
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FIGURE 8. (a) Pseudo color image4 scene using bands 180, 125 and 30. (b) Ground truth map of
image4 with 330 target pixels.

TABLE 1. AUC (%) Performance and execution time (seconds) of CNN-based detector for various sizes of single windows using image1.

TABLE 2. AUC (%) Performance and execution time (seconds) of CNN-based detector for various sizes of double windows and 4 neighbors using image1.

TABLE 3. AUC (%) Performance and execution time (seconds) of CNN-based detector for various sizes of single windows using image2.

TABLE 4. AUC (%) performance and execution time (seconds) of CNN-based detector for various sizes of double windows and 4 neighbors using image2.

times using image1 and image2. When using a single win-
dow, central and neighboring pixels are used for subtraction.
Taking a 5 × 5 single window as an example, twenty-four
input vectors are obtained through subtraction between the
central testing pixel and its twenty-four neighboring pixels
(as shown in Fig. 5). When using a double window, only

pixels between the inner window and outer window partic-
ipate in the calculation, preventing pixels within the inner
window from affecting the calculation. Taking a 3× 5 single
window as an example, sixteen input vectors are obtained
by subtraction between the central testing pixel and pix-
els between the inner and outer windows. From Tables 1 to 4,
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TABLE 5. The sizes of window that suitable for four images.

TABLE 6. AUC (%) performance of CNN-based detector with different learning rate when using image1.

TABLE 7. AUC (%) performance Of CNN-based detector with different convolution kernel size when using four images.

it can be clearly observed that a single window is better than
a double window, as the sizes of targets on the image vary.
An inner window of a specific size may only be suitable
for detecting targets of the corresponding size while being
unsuitable for detecting targets of different sizes. Therefore,
although double windows protect pixels within the inner
window and save time, detection capacities are poor. As is
shown in Tables 2 and 4, single windows and even the four
neighboring windows are more suited to detecting targets
of different sizes than double windows. The single window
can adequately reflect the difference between testing and sur-
rounding pixels. Our experiments of image3 and image4 also
show that better detection performance can be achieved when
using a single window. For different data, however, different
situations are observed, as the larger the window is, the higher
the precision. It is worth noting that the larger the window
is, the longer the calculation time, and so it is necessary to
use the right window according to actual conditions. Sliding
windows of different sizes are used to obtain a different
number of input vectors for each image and the most suitable
windows for each image are shown in Table 5.

2) CONVOLUTION KERNEL SIZE
During deep feature extraction using the CNN, it is important
to address the configuration of the designed neural network.
Convolution kernel sizes recommended in recent studies for
the CNN framework are 5 × 5, 7 × 7 or 9 × 9 [25]. Unlike
two-dimensional images, inputs of the CNN examined in
this paper are one-dimensional vectors. Therefore, four kinds
of convolution kernels of different sizes were applied in
the experiment, i.e., 1 × 3, 1 × 7, 1 × 11 and 1 × 16.
The kernel size is important because it dictates the size of
the feature to extract. Compared to features extracted from
every three neighboring bands when using kernels of 1 × 3,
features extracted from every sixteen neighbor bands when
using kernels of 1 × 16 incorporate more information. This
better reflects connectivity between multiple bands.
Although a large kernel can mix more information than a

small kernel, this takes more time. Table 7 shows the AUC
performance of the proposed CNN-detector with different
convolution kernel sizes when using four images. It is evident
that the larger the size of the kernel, the greater the AUC value
generated through the four experiments. The detector with
1 × 16 kernels works well when applied to all four images.
Based on the computing capacity of the computer used in the
experiment, the size of kernels used in the proposed CNN
is 1 × 16.

3) LEARNING RATE
The learning rate determines how fast a parameter moves
toward its optimum value. When the learning rate is too fast,
it is likely to cross the optimal value, and when the learning
rate is too slow, optimization may be too inefficient, causing
the networks to not converge over a long period. The learning
rate is crucial to the performance of the algorithm, as it
determines the convergence speed of backpropagation and
can significantly affect training performance [20]. To find a
suitable learning rate, various values, i.e., 0.5, 0.1, 0.05, 0.01,
and 0.001, are used in the experiment, and a learning rate
decay strategy is adopted to balance the training speed and
loss. For example, the learning rate is initially set as 0.1 for
the decay strategy, and after hundreds of thousands of train-
ing steps are completed (i.e., 100000 steps), the value is
decreased by multiplying by 0.1. Then, the value becomes
0.01. During the training progress, cross entropy is used as
an index to judge whether the network is convergent. Thus,
a suitable value can be directly found via the decay strategy.
Through experiments, it is found that a fast learning rate
(e.g., 0.1) causes the designed CNN to diverge. As shown
in Table 6, the most suitable learning rate is measured at
0.001 for the designed CNN.

4) SAMPLE CLASSES AND EXPERIMENTAL ENVIRONMENT
For the first experiment, 13 different types of objects are used
for the production of a new dataset, and 28 different types of
objects are used in the second and subsequent experiments.
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FIGURE 9. (a) Output map of the CNN-based detector using image1. Pixels within the red frame belong to targets of interest. Pixels within
the black frame are false targets. For each pixel, the larger the value, the deeper the red color, the greater the possibility that the pixel
belongs to the target. (b) ROC curves of different detectors using image1, the horizontal axis represents the probability of false
alarm and vertical axis represents the probability of detection.

FIGURE 10. (a) Output map of the CNN-based detector when using image2. Pixels within the red frame belong to targets of interest. Pixels within
the black frame are false targets. Pixels within the pink frame are missed targets. For each pixel, the larger the value, the deeper the red color,
the greater the possibility that the pixel belongs to the target. (b) ROC curves of different detectors using image2, the horizontal axis
represents the probability of false alarm and vertical axis represents the probability of detection.

TABLE 8. AUC (%) performance of different detectors using image1.

The CNN trained by 28 types of objects is more accurate
because it can identify more classes. Based on the analysis
given in Section II, when the class number is 13, the number

of new samples is 7558200, which is less than the number
of new samples generated by 28 classes. Thus, 28 classes are
used to produce the subtraction-PPF.
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FIGURE 11. Output map of different detectors when using image2. For each pixel, the larger the value, the deeper the red color, the greater the
possibility that the pixel belongs to the target. (a) ACE detection map. (b) AMSD detection map. (c) CEM detection map. (d) GLRT detection map.
(e) HUD detection map. (f) MF detection map. (g) OSP detection map. (h) SACE detection map. (i) CNN-based detection map.

TABLE 9. AUC (%) performance of different detectors using image2.

TABLE 10. AUC (%) performance of different detectors using image3.

All experiments are implemented in the Tensorflow
deep learning framework and are executed on an Intel(R)
Core(TM) i7-6700 CPU desktop PC with NVIDIA GeForce

GTX 1060 (3GB video memory), and 8GB of RAM. The
desktop PC operating system is Ubuntu 16.04 and all the
programs of the proposed CNN framework are implemented
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TABLE 11. AUC (%) performance of different detectors using image4.

FIGURE 12. (a) Output map of the CNN-based detector when using image3. Pixels with in the red frame belong to targets of
interest. Pixels within the black frame are false targets. For each pixel, the larger the value, the deeper the red color, the
greater the possibility that the pixel belongs to the target. (b) Enlarged scenes of detected target area.

using Python language. All the classical detectors are carried
out on the platform of MATLAB (2014).

C. COMPARISON OF DIFFERENT DETECTORS
To investigate the performance of the proposed CNN-based
target detector, the detector is compared to eight classic detec-
tors: the CEM, OSP, ACE, GLRT, MSD, Adaptive Matched
Subspace Detector (AMSD), Signed Adaptive Cosine
Estimator (SACE), Matched Filter (MF) and Hybrid Unstruc-
tured Detector (HUD) [26]–[30]. These programs are car-
ried out using MATLAB. For our comparative analysis, all
224 bands are maintained. For classic detectors, twenty pixels
are selected from the aircraft-vehicle class manually applied
as shown in Section II. The spectrum of the twenty pixels is
fed into the detector as a priori target information, and the
best of the twenty test results is taken as the output of each
classical detector.

1) EXPERIMENTAL RESULTS OF IMAGE1
There are three big aircrafts in image1. From Fig. 9(a), it
can be clearly seen that the shape of detected aircrafts on
the detection map. Although there are false target pixels,
the values of these pixels are small. The false targets exist
because these pixels are at the junction of the two roads. Both
the AUC performance (as shown in Table 8) and the ROC
curves (as shown in Fig. 9(b)) of different detectors show that
the CNN-based target detector outperforms other detectors on
image1.

FIGURE 13. ROC curves of different detectors using image3, the
horizontal axis represents the probability of false alarm and
vertical axis represents the probability of detection.

2) EXPERIMENTAL RESULTS OF IMAGE2
From Fig. 10(a), it can be seen that six targets can be
detected. As these targets are small, it is difficult to
distinguish their shape. Although some of the targets even
have only one or two pixels, they are still detected, prov-
ing that the proposed detector has the ability to detect
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FIGURE 14. Output map of the CNN- based detector when using image4. Pixels within the red frame belong to targets of interest.
Pixels within the black frame are false targets. Pixels within the pink frame are missed targets. For each pixel, the larger the value,
the deeper the red color, the greater the possibility that the pixel belongs to the target.

FIGURE 15. ROC curves of different detectors using image4, the
horizontal axis represents the probability of false alarm and
vertical axis represents the probability of detection.

small targets. But one target is missed and two targets are
false. Both the AUC performance (as shown in Table 9)
and the ROC curves (as shown in Fig. 10(b)) show that the
CNN-based target detector outperforms other detectors on
image2. Fig. 11 shows different detection maps of different
detectors. It can be seen that other detectors, such as OSP and
AMSD, can detect the target, but there are more false targets
in background.

3) EXPERIMENTAL RESULTS OF IMAGE3
In image3, there are three different sizes and different kinds
of targets. As shown in Fig. 7 (c), there are one big aircraft,
fourteen small aircrafts and one small vehicle. Although the
shape of spectral curves of three types of targets is approxi-
mately same, the spectral value varies dramatically (as shown

TABLE 12. Execution time (seconds) of CNN-based detector using four
images.

in Fig. 1). From Fig. 12, it can be seen that all the targets
are detected. And there are false targets in the detection map.
Both the AUC performance (as shown in Table 10) and the
ROC curves (as shown in Fig. 13) show that the CNN-based
target detector outperforms other detectors on image3. It also
can be seen that the proposed detectors can identify targets
with different sizes.

4) EXPERIMENTAL RESULTS OF IMAGE4
Image4 contains a number of vehicles with different materi-
als. FromTable 11, it can be seen that the detection of the clas-
sical detectors is much worse than the CNN-based detector.
Because of the limitation of spatial resolution, the detector
could not separate each vehicle, but it could detect a few
vehicles parked together. Although there are false targets and
missed targets on the detection map (as shown in Fig. 14),
the AUC performance (as shown in Table 11) and the ROC
curves (as shown in Fig. 15) show that the CNN-based target
detector outperforms other detectors on image4.

5) TIME CONSUMPTION
The algorithm requires time for sample selection, CNN train-
ing and target detection. Sample selection can take some time,
but manually selected samples are accurate and reusable.
Due to the large number of samples and parameters consid-
ered, the training process can take several hours. As shown
in Tables 1 to 4 and in Table 12, when the trained CNN detects
a target in different images, the execution time is depen-
dent on the sizes of the detected image and sliding window.
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In general, the larger the size of the tested image and sliding
window, the longer the execution time. It is clear that much
time is consumed for image3 and image4, mainly because the
suitable sliding window size is large.

D. SUMMARY
For the experimental analysis effects of window sizes, convo-
lution kernel sizes and learning rates were studied. We found
that single windows work better than double windows, and
a suitable processing window was found for each image.
We also found that the sizes of convolution kernels affect
detection performance because large kernels may incorporate
more information that better reflects connectivity between
multiple bands, and the 1 × 16 kernel is used according to
the computer’s computation capabilities. After applying dif-
ferent learning rates through the training procedure, the most
appropriate learning rate is measured as 0.001.

Experimental results for the four images demonstrate the
validity of the proposed detector in three respects. First, with
a lower false alarm rate and with higher accuracy, the AUC of
the CNN-based detector for four images (up to 98%) is higher
than that of the other detectors (less than 93%). Second,
the CNN-based detector can not only detect small targets but
can also detect targets of different sizes, and the proposed
detector works well when applied to the four experimental
images. Third, as shown in Fig. 1, although the shapes of
spectral curves of the target are approximately the same,
the spectral value varies dramatically. These targets can be
detected using the proposed CNN-based detector.

V. CONCLUSIONS
In this paper, a CNN-based hyperspectral target detection
framework with subtraction pixel pair features is presented.
To obtain a sufficiently large number of training samples and
render the CNN a target detection function, the subtraction-
PPF is used, and the target detection problem of original data
is transformed into a classification problem for new data,
which is generated through the subtraction-PPF.

The performance of the proposed algorithm is assessed by
comparing it to eight classic detectors. The following three
advantages of the proposed algorithm are identified.

1) Unlike algorithms that need select good bands in the pre-
processing stage, the CNN-based detector identifies poor and
water-absorption bands as useful information to learn. This
facilitates the more efficient use of advanced features of all
bands rather than the use of several selected bands.

2) Superior precision and robustness. The results of our
experiments demonstrate that the CNN-based detector works
well when applied to different AVIRIS data, as it offers favor-
able nonlinear mapping and excellent learning capabilities in
using convolutional neural networks.

3) Superior adaptability. The proposed detector not only
detects targets of different sizes but also detects targets with
differences in spectra. Compared to the eight classical detec-
tors, the CNN-based target detector performs better.

More work must be conducted to reduce time consumption
requirements and to render the detector applicable to data
from different remote sensor.
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