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ABSTRACT This paper presents a newmetaheuristic optimization algorithm, the firefly algorithm (FA), and
an enhanced version of it, called chaos mutation FA (CMFA), for solving power economic dispatch problems
while considering various power constraints, such as valve-point effects, ramp rate limits, prohibited
operating zones, and multiple generator fuel options. The algorithm is enhanced by adding a new mutation
strategy using self-adaptation parameter selection while replacing the parameters with fixed values. The
proposed algorithm is also enhanced by a self-adaptation mechanism that avoids challenges associated with
tuning the algorithm parameters directed against characteristics of the optimization problem to be solved.
The effectiveness of the CMFA method to solve economic dispatch problems with high nonlinearities is
demonstrated using five classic test power systems. The solutions obtained are compared with the results
of the original algorithm and several methods of optimization proposed in the previous literature. The high
performance of the CMFA algorithm is demonstrated by its ability to achieve search solution quality and
reliability, which reflected in minimum total cost, convergence speed, and consistency.

INDEX TERMS Economic dispatch, firefly algorithm, multiple fuel options, valve-point effects.

I. INTRODUCTION
Facing the reduction of energy reserves and environmen-
tal degradation due to excessive use of conventional fuels,
the Economic Dispatch (ED)problem has become the focus
of researchers [1], [2]. For ED, the main objective is to
find the operating point leading to optimal generator output
power so as to minimize the operating cost while meeting
all the physical and operational constraints [3]. The ED is
considered as an important economic operation optimiza-
tion problem in power system. Under normal circumstances,
the objective of the problem can be modeled as a convex cost
function whose satisfactory solution can be found at a small
cost. However, when actual characteristics of real power

systems such as prohibited operating zones, transmission
loss, ramp rate limits, and multiple fuel options are taken into
consideration, the cost function becomes highly quadratic,
non-smooth, non-convex, and multi-modal [4]–[7]. Solv-
ing such a problem is no longer an easy task. Ignoring,
approximating or inaccurately handling these character-
istics may lead to erroneous results of the ED prob-
lem and significant economic losses or accidents [8]–[10].
In the published article on this issue, many methods have
been applied to deal with the ED problem. These meth-
ods can be divided into two categories as 1) classical
optimization methods and 2) metaheuristic optimization
methods.
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Classical optimization technologies include Lagrange
relaxation [11], λ-iteration method [12] and nonlinear pro-
gramming [13],etc. The advantages of the classical optimiza-
tion methods are the guarantee of optimization convergence,
the lack of parameters requiring special settings depending
on the characteristics of the problem and computational effi-
ciency; however, they deal mainly with convex cost functions
because this kind of optimization method is based on the gra-
dient theory, which has powerful ability when facing smooth
and continuous functions. Regrettably, practical features of
real power system form a complex non-convex model of
ED problem with extremely high complexity and the appli-
cation of the classical optimization methods is faced with
difficult-to-handle restrictions. In order to improve the ability
of classic optimization algorithms to solve ED problems,
some improved algorithms have been proposed in recent
years. Examples of this include, the dimensional steepest
decline method [13] and Big-M method [14]. Although these
methods show a stronger ability to solve non-convex objec-
tive functions, the tradeoff introduces additional variables
that need additional computation. Its performance, therefore,
is increasingly worsened by the dimension of the problem.

Manymodernmetaheuristic optimizationmethods, such as
the genetic algorithm (GA) [15], the particle swarm optimiza-
tion (PSO) [16], [17], and Differential Evolution (DE) [18]
have been developed and utilized successfully to solve the
ED problem due to their ability to find global or near-global
solution of a nonconvex optimization problem. Furthermore,
modified and improved versions of the metaheuristic meth-
ods, with the intention of improving the convergence and
global optimum search capability of the original algorithms,
have been proposed for dealing with the ED problem. Exam-
ples of these improved versions include, conventional genetic
algorithm with multiplier updating (CGA-MU) [19], fuzzy
adaptive particle swarm optimization (FAPSO) [20], new
global particle swarm optimization (NGPSO) [21] and shuf-
fled differential evolution (SDE) [22]. Also, hybrid meth-
ods, generally combined with two methods, one method is
used as the primary search tool, while the other is used to
fine-tune the search process, like combined DE and PSO
algorithms [23], hybrid chemical reaction optimization with
differential evolution(HCRO-DE) [24], have been applied for
solving the ED problem and achieved satisfactory effect
by improving the global search capability while using fast
computational analysis. However, for hybrid methods, how
to determine the integration points between methods and
balance the positive and negative effects of methods is a
headache for practitioners.

Many of the metaheuristic optimization methods reported
in previous literature have a disturbing limitation. They
require adjustment of the algorithm parameters based on the
particular problem before they can be applied. When the
parameters of the algorithm are determined, a satisfactory
result may be obtained in a test system, but at the same time,
satisfactory results may not always be obtained in another
test system. Changes in system load or unit constraints will

lead to the need for algorithm parameter adjustment, which
is a difficult problem. To solve this problem, the mechanism
for adaptively adjusting parameter values must be added
to the algorithm. However, any metaheuristic optimization
method that adds a parameter to the self-tuning mechanism
may obtain the result of reduced computational efficiency
because additional computational effort is required because
of the need for adjusting algorithm parameters when solv-
ing the main optimization problem. Because of this reason,
only the method that adds self-adjusting parameter is highly
efficient. A novel high efficiency optimization algorithm,
firefly algorithm(FA), has been proposed in [25]. Yang [26]
showed that the FA could compete and outperform many
of metaheuristic optimization algorithms in many aspects,
like convergence rate, numerical stability, and calculation
accuracy. In fact, the FA has proven to have a great advan-
tage over other recently developed algorithms in solving a
variety of optimization problems, for instance the dynamic
economic dispatch problem of power systems [27] and the
optimal chiller loading design [28]. The author of the firefly
algorithm, Yang, has successfully applied the FA to solve
ED problem of small and medium power systems in [29],
but the ED problem consider multiple fuel options was not
considered in the study, which is the contribution of this
paper.

In this paper, FA is applied for solving non-convex and
complex ED problem of five (medium and large) power
systems considering actual characteristics such as prohibited
operating zones, transmission loss, ramp rate limits, and mul-
tiple fuel options. Large-scale test systems with both multiple
fuel options and valve-point effects are included. Further-
more, after carefully considering different components in
designing the algorithms, two modifications are proposed to
significantly increase the FA efficacy. The proposed modi-
fications are to replace the fixed-parameters of the FA with
a new dynamic adjustment of parameters in the FA, and to
add a new powerful self-adaptive mutation mechanism while
replacing the parameter of the mechanism as a fixed value.
An improved version of firefly algorithm, called chaos muta-
tion firefly algorithm(CMFA), is thus generated. In addition,
in most of metaheuristic optimization methods, the equality
constraints are usually handled using the penalty-function
technique, which makes it difficult to generate feasible solu-
tions and maintain feasibility after crossover and mutation
operations, resulting in no good result. Thus, a constraint
handling scheme was proposed for correcting a solution in
infeasible domain region to the space of feasible region with-
out adding any additional goal on the objective function. This
mechanism not only has the ability to handle constraints,
but also has the ability to prevent premature convergence
by introducing a diversity strategy, which ensures that the
fireflies always be a feasible solution to the problem. Indeed,
the proposed measures have positive and reliable effect on the
convergence of the algorithm and the quality of the solution
provided by algorithm. Results of the proposed technique for
solving the known ED problems are compared with other
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algorithms that are recently published. The numerical anal-
ysis of results proves the superiority performance of the
proposed method over the other methods mentioned in this
paper.

The rest of this paper is organized as the follows: Section 2
presents the ED problem formulation. Section 3 introduces
the proposed methodology. Application of CMFA for solving
ED shown in Section 4. Section 5 introduces the simulation
results and discussion, followed by the conclusions and future
work in Section 6.

II. MATHEMATICAL FORMULATION OF THE ED PROBLEM
A. OBJECTIVE FUNCTION
The mathematical model of the ED problem of considering
different conditions can be modeled as different objective
functions. A comprehensive mathematical model of the ED
problem can be presented as [30]:

Minimize: FC =
NG∑
i=1

Fi(Pi). (1)

where, Pi represents the power output of ith generator;
FC denotes the total generation cost; Fi(Pi) are generation
cost of unit i; NG meaning the total number of generator.

The objective function as a quadratic polynomial is convex
when neglecting the VPE. It can be shown as:

Fi(Pi) = ai ∗ P2i + bi ∗ Pi + ci. (2)

where, ai($/MW2), bi($/MW), ci($) are the cost coefficients
of the ith unit.
Furthermore, the objective function becomes non-convex

by adding a sinusoidal term to the quadratic objective func-
tion when considering the VPE and can be modeled as:

Fi(Pi) = aiP2i + biPi + ci + |ei(fi sin(P
min
i − Pi))| (3)

where, ei($) and fi(rad/MW) are the valve-point coefficients
of generator i, Pmini is the minimum power output of the
ith unit.

If generators with multiple fuel options and the VPE are
also considered, the objective function can be written as
follows:

Fi(Pi) = aijP2i + bijPi + cij + |eij(fij sin(P
min
ij − Pi))|

if Pminij ≤ Pi ≤ P
max
ij . (4)

where, aij($/MW2), bij($/MW), cij($) are the cost coeffi-
cients, and eij($), fij(rad/MW) are the valve-point coefficients
of the ith unit using fuel type j; Pminij and Pmaxij are the lower
bound and upper bound of the ith unit using the jth fuel type,
respectively.

The objective function is subject to the following
constraints.

B. POWER BALANCE CONSTRAINTS
The sum of generator output powers must be equal to the sum
of load demand and transmission loss.

NG∑
i=1

(Pi) = Pload + Ploss. (5)

where Pload and Ploss are the load demand and the trans-
mission loss, respectively. Ploss is calculated by B matrix
coefficients as follow:

Ploss =
NG∑
i=1

NG∑
i=1

PiBijPj +
NG∑
i=1

B0iPi + B00. (6)

where Bij, B0i and B00 are the loss coefficients.

C. POWER OUTPUT AND PROHIBITED
OPERATING ZONES LIMITS
In realistic power systems, the output of the generator should
be within its output range. Also there are some prohibited
operating zones for the generator due to the VPE. The limits
can be described as follows:

Pi =


Pmini ≤ Pi ≤ P

l
i,1;

. . .

Pui,z−1 ≤ Pi ≤ P
l
i,z−1; z = 2, 3, . . . ,N

Pui,z ≤ Pi ≤ P
max
i .

(7)

where Pmini and Pmaxi are the minimum and maximum output
powers of the ith unit, and N is the total number of prohibited
operating zones for unit i. Pui,z and P

l
i,z presented upper limit

and lower limit the zth prohibited zone of unit i, respectively.

D. RAMP RATE LIMITS
In practice, the output of the generator cannot be adjusted
instantaneously without limitation. The operating range of
each generator is restricted by their corresponding ramp-up
and ramp-down constraints, which can be formulated as
follow:

max(Pmini ,P0i − DRi) ≤ Pi ≤ min(Pmaxi ,P0i + URi). (8)

where, P0i is power output of the ith unit at the previous time
interval; DRi and URi are down-ramp rate and upper-ramp
rate limitation of the ith generator, respectively.

III. PROPOSED METHODOLOGY
A. FIREFLY ALGORITHM
The FA is categorized as one of the population-based algo-
rithm proposed by Yang (2008) [25]. It simulates the social
behavior of the flashing characteristics of fireflies. For the
FA, a firefly of population means a potential solution of
the optimal problem. In terms of the search space, a firefly
represents a point that moves in the search space with the
optimization process. The structure of each firefly in the
candidate solution for solving ED problem, in this paper, can
be described as the following:

Xi = [Pi,1,Pi,2, . . . ,Pi,D]; i = 1, 2, . . . ,N . (9)
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where N is the total number of population, and D is the
dimensionality of the problem. In this paper, it if defined as
D = NG.
The higher the light intensity of a firefly, the greater its

attractiveness to other nearby fireflies, and the attractiveness
β of a firefly can be defined as:

β(r) = β0e−γ r
2
. (10)

where γ is absorption coefficient and commonly set to 1 [26].
β0 is the maximum attractiveness obtained when r = 0;
r is the Cartesian or Euclidean distance between the mth and
nth fireflies, which can be written as:

rkmn =

√√√√ NG∑
i=1

(X km,i − X
k
n,i)

2; m, n = 1, 2, . . . ,N . (11)

where X km,iand X
k
n,i are the ith variables of the kth generation

of mth and nth fireflies, respectively.
In the previous study, it was found that when β changes

according to Eq.10, the resulting effects could not achieve
the desired effect. So the researchers proposed a variety of
transformation strategies for it. The most obvious strategy
was proposed by Fister et al. [31] and can be described as:

β = βmin + (βmax − βmin)e−γ r
2
. (12)

where βmax and βmin are set to 1 and 0.2, respectively.

Fig. 1. Change of β based on different strategies.

However, there are potential pitfalls. As we can see from
Fig.1, Eq.12’s strategy keeps β’s value at the beginning of 0.2,
and quickly increases to 1 after reaching a certain number
of iterations. The value of β stays at 0.2 for too long, and
increase from 0.2 to 1 too quickly. This will have an adverse
influence on the optimization. Therefore, improved strategy
based on Equation 12 was proposed, which can be written as:

β = (βmin + (βmax − βmin)e−γ r
2
)× (

k
Kmax

). (13)

where βmax and βmin are set to 0.9 and 0.4, respectively. k
and Kmax represent the current number of iterations and the
maximum number of iterations, respectively.

Figure 1 shows the effect of the proposed strategy. It can be
clearly seen that, compared to Eq.12, the increase speed of β

is significantly slower, which increases the ability to escape
from the local optimum; and the later change is more gradual,
which can increase the speed of convergence.

Similar to other evolutionary algorithms, in the firefly algo-
rithm, the fireflies update their position by moving towards
the brighter fireflies which means better position in search
space, and the modified position can be formulated as:

X k+1m =


X km + β

k (X kn − X
k
m)+ α

k (rand(.)1×D − 0.5),
if FC (X kn ) < FC (X km);

X km, otherwise.
(14)

where α is the randomness parameter which commonly
selected in the rang [0, 1], and rand represents a ran-
dom number generated from a uniformly distributed set
between 0 and 1.

The framework of the FA is given in Algorithm1.

Algorithm 1 The Standard FA

1: Generate an initial population X = (X k1 ,X
k
2 , . . . ,X

k
N ) and

set k = 0.
2: Define initial value of α and γ .
3: Evaluate the fitness values F(X ki ) of all N initial fireflies.

4: while k < Kmax do
5: for i = 1 to n do
6: for j = 1 to n do
7: if F(X kj ) < F(X ki ) then
8: Update position of X ki using the formula in

(14).
9: Evaluate the fitness values of X ki,move
10: if F(X ki,move) < F(X ki ) then
11: X k+1i = X ki,move; else,X

k+1
i = X ki .

12: end if
13: end if
14: end for
15: end for
16: k = k + 1.
17: end while
18: Output the Optimum solution Xbest .

B. CHAOS MUTATION FIREFLY ALGORITHM
Because of its advantages, the application of FA to solve the
problems in various aspects of the power system has aroused
great concern Simple concept and low number of parameters
need for tuning are its obvious advantages, Having the ability
to seek global optimums and local optima at the same time
makes it highly applicable. However, it also has a vexing
defects. For instance, premature convergence or convergence
to an inappropriate position often occurs because the algo-
rithm falls into a local optimum. However, the existing mech-
anism of diversifying populations does not have the ability to
help it escape from the local optimum. Even if the algorithm
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can successfully avoid the local optimum, the cost is an
unbearable computational burden. When the FA is applied
to solve constrained optimization problems, its performance
depends largely on the selection of control parameters. Also,
the population diversity has a great effect on computational
efficiency and convergence rate. In addition, it is obvious that
an appropriate constraint handling mechanism can improve
the performance of the algorithm. Therefore, special care in
redesigning the algorithm based on these considerations has
been taken in this paper. The control parameters and mutation
mechanism are discussed in the following few subsections.

1) DYNAMIC ADJUSTMENT OF α AND γ

As we know, a powerful optimization algorithm, not only
have the ability to effectively exploit the current solutions that
have good fitness, but also has a strong ability to explore the
unknown fields in the search space. The random movement
factor, α, controls the range of random search of firefly, and
generally determined in the range [0, 1], has a huge impact
on the balance between the ability of algorithm exploration
and exploitation in search space. Too large value of an α
makes the random search range of solution too large to cause
convergence difficulties and the smaller α will trap firefly
in the local optimum. The absorption coefficient γ controls
the decrease of light intensity and commonly set to 1 [26].
It is a fact that FA’s parameter control deeply influences its
performance, and how to select the appropriate parameter is
an intractable optimization problem..

Numerous studies showed that the performance of the evo-
lutionary optimization algorithms are improved when chaotic
sequences were used [32]. Therefore, after testing different
chaotic operator, a dynamic adjustment mechanism base
on chaotic sequences for the random movement factor is
deployed in this paper, opposed to monotonically decreased
as the iterations progress in basic firefly algorithm, parameter
α of the proposed methods also being variety decreased from
its initial value based on chaotic formula with optimization
process, which can be calculated as:

αkc = xk × αkl . (15)

where, αkc and αkl are the chaotic-based random movement
factor and the random movement factor with linear decrease
at iteration k . The value of αkl is decreased linearly from
a set initial value to zero, and xk is the chaotic parame-
ter at iteration k , which produced by a so-called sinusoidal
iterator [32], can be represented as the following:

xk+1 = sin(π × xk ). (16)

in this paper, x0 was set to 0.7.
The chaotic-based α we introduced enhance the searching

capability and efficiency of FA and illustrated in the numeri-
cal results. Also, the performance of α in dynamic adjustment
mechanism is shown in Fig. 2 for better understanding.

As for the absorption coefficient γ , a fixed value is
replaced with a variable that needs to be optimized, and then
it was added to the firefly as a variable in the candidate

Fig. 2. Two change trajectories of α.

solution vector [27]. The new structure of solution vector can
be written in the following form:

Xi = [Pi,1,Pi,2, . . . ,Pi,D, γi], i = 1, 2, . . . ,N . (17)

2) ADAPTIVE MUTATION MECHANISM
In the previously mentioned methods, inappropriate con-
vergence and local optima traps may still be impossible to
avoid. Also, each enhancement of the algorithm optimization
will become very slow before the global optimal solution is
obtained. We have noticed that the optimization mechanism
of FA itself is simple and efficient, even adding additional
strategies that increase search power will not have an unac-
ceptable negative impact on the computational efficiency of
the algorithm. Therefore, a new powerful mutation mecha-
nism, which mainly for enhancing the ability of the algorithm
to exploit the unknown area of the search space, is introduced
to solve the afore-discussed problems, thus the ability of the
FA to eventually be enhanced.

Sincemutation has been applied to the algorithmic process,
many mutation operators have been proposed. Unfortunately,
there exists no single optimal solution to all problems. There-
fore, a new powerful mutation strategy that contains two
mutation operators is considered in this paper. First, three vec-
tors m1 to m3 obtained from solution are randomly selected
as m1 6= m2 6= m3 6= m. Consequently, a mutant firefly Xmutm
is generated as the following:

Xmutm =



X km1
+ Fm(X km2

− X km3
),

if rand1 ≤ Crm and rand2 ≤ 0.5;
X km + Fm((X

k
m1
− X km3

)+ (X kbesk − X
k
m2
)),

if rand1 ≤ Crm and rand2 > 0.5;
X km1

, otherwise.
(18)

where, rand1 and rand2 are random numbers generated from
a uniform distribution in the interval [0, 1]. Fm is the scale
factor and Crm is the crossover rate. They should be fixed
values, but picking the optimum values for a specific problem
is tricky. Thus, a self-adaptation strategy was introduced to
select the most appropriate value. For each firefly in the
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search space, with two control parameters (F and Cr) of the
mutation mechanism. In the beginning, EF ∈ N (0.5, 0.1) and
ECr ∈ N (0.5, 0.1). N (0.5, 0.1) means a normal distributions
whose mean equals to 0.5 and standard deviation is 0.1.
Consequently, Fm and Crm in (18) are generated as described
below:

Fm =

{
EFm1 + rand1(EFm2 −

EFm3 ), if (rand2 < δ);
rand3, otherwise.

(19)

Crm =

{
ECrm1 + rand4( ECrm2 −

ECrm3 ), if (rand5 < δ);
rand6, otherwise.

(20)

where EFmλ and ECrmλ (λ = 1, 2, 3) are parameters of corre-
sponding firefly (X kmλ ) in

EF and ECr , respectively; and randµ ∈
(0, 1)(µ = 1, 2, . . . , 6), are generated using uniform dis-
tribution of 0 to 1. The value of δ, in this paper, set to
0.75 according to the test, appropriate range of Fm and Crm is
0.1 to 1, so, if their value is outside this range, it is truncated
to 0.1 and 1, respectively [33].

The proposed mutation mechanism followed by a greedy
selection process is such that, the brightest one between
the current firefly (X km) and the mutant firefly(Xmutm ), will
replace the position of the current firefly and become the new
offspring of the fireflies. The process can be written as:

X k+1m =

{
X k,muti , if (FC (X

k,mut
i ) ≤ FC (X km));

X km, otherwise.
(21)

It is important to point out that the value of EF and ECr
are also updated with the optimization process. If the mutant
firefly is better than the current firefly, then, EFm = Fm and
ECrm = Crm.

Fig. 3. A schematic diagram of the role of the first mutation operator.

The main effect of the first mutation operator is to speed
up the convergence, as shown in Fig. 3. The main purpose of
the second one is to diversify population. The point behind

using two multi-operators instead of more is to control the
computing burden within a reasonable range. The main func-
tion of this mechanism is to provide better information to
the main algorithm of the proposed algorithm, rather than
determine the optimization process of algorithm.

The framework of the CMFA is given in Algorithm2.

Algorithm 2 The Proposed CMFA

1: Generate an initial population (X=X k1 ,X
k
2 , . . . ,X

k
N ) and

set k = 0.
2: Define initial value of α, F and Cr .
3: Evaluate the fitness values F(X ki ) of all N initial fireflies.

4: while k < Kmax do
5: for i = 1 to N do
6: for j = 1 to N do
7: if F(X kj ) < F(X ki ) then
8: Update position of X ki using the formula in

(14).
9: Evaluate the fitness values of Xmove,ki
10: if F(Xmove,ki ) < F(X ki ) then
11: X ki = Xmove,ki ;
12: else
13: X k+1i = X ki ;
14: end if
15: end if
16: end for
17: end for
18: for i = 1 to N do
19: Generate mutant firefly Xmutm using the formula in

(18).
20: Evaluate the fitness values of Xmutm using the for-

mula in (1).
21: if F(Xmut,km ) < F(X ki ) then
22: X k+1i = Xmut,km ;
23: else
24: X k+1i = Xi(k);
25: end if
26: end for
27: Update α using the formula in (15).
28: Update Fm and Crm according to (19)-(20).
29: k = k + 1.
30: end while
31: Output the Optimum solution Xbest .

IV. IMPLEMENTING CMFA FOR SOLVING ED PROBLEM
In this section, the steps of the proposed CMFA for solving
the ED problems under various constraints of power system
will be described. But before that, various constraints, espe-
cially equality constraints, will be described. The ED problem
is a nonlinear constrained optimization problem, which con-
tains a large amount of equality and inequality constraints.
Thus, the initial fireflies are hard to satisfy all the constraints
due to the fact that they are randomly generated, even though
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one may satisfy all the constraints, it is difficult to maintain
it feasible after updating its position. Generally, there are
two strategies to deal with constraints of the ED problem,
one is to use a penalty function which is achieved through
adding an extra objective function for punishing violations of
constraints on the original objective function, and the other
way is to generate solutions that satisfy all constraints by
some strategies and maintain the feasibility of the solution
in the optimization process so that optimization is only done
in the feasible region. The first method is simple and can
maintain population diversity but not adequate for handling
constraints. The second method will lose a certain population
diversity but with high efficiency in finding feasible solution.
Therefore, in this paper, the latter method is chosen since
mutation mechanism has been applied for diversifying the
population. Also, the constraints handling mechanism we
used, which will be described in detail next, will also improve
the diversity of the population simultaneously.

Implementing the CMFA for solving ED problem can be
briefly described via the following steps:

1) Generate initial individual Xi(i = 1, 2 . . . ,N ), consid-
ering ramp rate limits:

Xi = Pmini,t + rand(.)(P
max
i,t − P

min
i,t );{

Pmini,t = max(Pmini ,P0i − DRi)
Pmaxi,t = min(Pmaxi ,P0i + URi)

(22)

where Pmaxi,t and Pmini,t are the maximum and minimum
output powers of the ith unit in tth, respectively.

2) Check whether the solution satisfies the other system
constraints such as the prohibited operating zones,
if the output of a unit(Pi) fall in a prohibited zone of
[L,U ], its value will be determined by the following
way:

Pi =

{
L, if (Pi − L) < (U − Pi);
U , otherwise.

(23)

3) To make solutions satisfy equality constraints, the fea-
sibility of a solution is checked as:

|

NG∑
i=1

(Pi)− (Pload + Ploss)| < ε. (24)

where, ε is a tolerance limit factor, the value of ε, in this
paper, from a larger initial value gradually reduced to
a small final value set to 10−5(an acceptable accuracy
[34]). The way ε changes can be given as [35]:

ε(0) = φ(xθ ) = εintialθ ; (25)

ε(k) =

ε(0)(1−
k
Tc

)cp, if 0 < k < Tc;

10−8, k ≥ Tc.
(26)

where xθ is the top θ th individual and θ = 0.4N . cp is
a control parameter of the θ level and set to 5 in this
paper. With the number of iterations k increase to the

control generation Tc, The θ level has been updated.
There are no solutions that violates the constraints in
the population when the control generation is reached.
The value of Tc is 150 in this paper.
If the value of the power deviation is larger than the
preset value, a slack unit Ps (s = 1, 2, . . . ,NG) that
choose randomly from the unit poor was used to bal-
ance the power deviation follow the following rules:

Ps = (Pload + Ploss)−
NG∑

i=1(i 6=s)

(Pi);

Ps =

{
Pmaxi,t , if Ps > Pmaxi,t ;

Pmini,t , if Ps < Pmini,t .

(27)

If the power balance constraint is still not satisfied,
similarly, one unit from the remaining units is randomly
select as the slack generator to balance the power devi-
ation. This process continues until all units are selected,
and when the output is in a prohibited operation zone
after balancing power deviation, its output can be deter-
mined using Eq.21.

4) Calculating the value of the objective function of all
fireflies using the formula in Eq.1.

5) Update the position of each firefly using Eq.14, calcu-
late fitness of new firefly as described in Step4, and
select the best solution among all fireflies as Pkbest .

6) Generation mutant firefly using the formula in Eq.18.
7) Modify the fireflies produced by the mutation mecha-

nism to satisfy the constraints using Step2 and Step3,
and generation offspring fireflies using the formula in
Eq.21.

8) Check stopping criterion. In this paper, the termination
condition of the algorithm is reaching the maximum
number of iterations. If the termination condition has
not been reached, go to Step5. If the maximum number
of iterations has been reached, stop and output the best
optimization results.

Figure 4 shows the flowchart of the CMFA method.

V. SIMULATION RESULTS
For comparison with other methods, several commonly ED
tests of different sizes are used. A list of state-of-the-art
algorithms and abbreviations of each algorithm mentioned
in this paper is showed in Table 1. There are 65 methods in
Table 1. The references for thesemethods are also exhibited in
the same table. The simulations are carried out on MATLAB
(R2013a) environment using a desktop machine, which CPU
is Intel Core(TM) i7 processor with 3.6 G-Hz clock frequency
and 8 GB of RAM.
In order to more effectively verify the effectiveness of

the proposed method of solving ED problem in large-scale
systems, a few systems used by a large number of literature
that involve up to 160 units are tested. Large-scale systems,
like 160-unit system, make the cost function of ED problem
highly non-convex and complex when both considering VPE
and multiple fuel options. Thus, the ability to consistently
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Fig. 4. The flow chart of the CMFA algorithm.

obtain good optimization results, will demonstrate the effi-
ciency of the algorithm. The robustness of the proposed
algorithm, in this paper, will be validated from the results
of 100 independent runs for each case study. The quality
of the solution provided in this paper is compared with the
results provided by the most advanced methods reported in
the previous literature.

In this paper, the number of populations is set to 20 for
6-unit,10-unit and 15-unit system. The maximum number of
generations for these three systems are 500. The population
size of 80- and 160-unit are 25, and the optimized process
will stop when 1000 generations are reached.

A. CASE 1: 6-UNIT SYSTEM
The system of this case study has six thermal generators and
supply a total load demand of 1263 MW. In this case study,
the prohibited operating zones, the ramp rate limits, and the
transmission losses are considered. The data of the test system
are the same as reported in [16].

The detailed best output dispatch optimization results pro-
vided by the FA, CMFA and other 8 algorithms reported
in previous literature are listed in Table 2 for comparing

TABLE 1. List of algorithms mentioned in the previous literature and
corresponding Acronyms.

the differences among the results of different methods. The
accuracy of the calculations of the FA and CMFA are for
this case are 3.28946E-08 and 9.89811E-06, respectively.
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TABLE 2. The system generator parameters in case 1 (6-unit system).

TABLE 3. Comparison of results in the 6-unit system.

Table 3 shows the super efficiency of the CMFA in obtaining
high quality solutions over 100 independent experiments,
when compared with other methods. The bold values indi-
cate the best result provided by its corresponding method.
Obviously, the CMFA can provide better solutions than
other algorithms under the condition of guaranteeing stability
and computing efficiency. The standard deviation of GA is
smaller than the proposed algorithm in this paper, however,
even the worst result of the CMFA is better than the best
solution of GA, which proves the superior ability of the
proposed method to avoid trapping into local optimum.

Fig. 5. Convergence characteristics of FA and CMFA (6-units system).

Figure 5 shows the convergence properties of the FA and
CMFA when the optimal results are obtained in 100 inde-
pendent trials. It can be seen that the FA settles at about

Fig. 6. Generation cost distribution of FA and CMFA (6-unit system).

20 iterations and provides a value of the total generation cost
of about 15451($/h); the settle iteration number of the CMFA
is about 80 and achieves about 15450($/h). This indicates
that the CMFA provides more accurate results, althoughmore
iterations are needed, compared to the FA. The cost value
distribution of the FA and CMFA running 100 times indepen-
dently are shown in Fig.6, which proves that the CMFA has
an obvious effect on improving the stability of results when
comparing with the FA.

B. CASE 2: 15-UNIT SYSTEM
In this case study, a 15 thermal-unit system with the pro-
hibited operating zones, ramp rate limits, transmission losses
and the valve point effects are considered [16]. The detailed
information of the generator parameters and the loss coeffi-
cients are provided in [15]. The total power load demand is
2630MW. Table 4 lists the detailed best results obtained by
the CMFA and the FA, as well as the best solutions provided
by the other eight methods reported in the previous literature.
It can be seen that both the FA and the CMFA provide
solutions that satisfy all constraints. The minimum, average
and maximum generation cost value of the CMFA and the
FA obtained from 100 independent trials are presented in
Table 5 with the other twenty-seven state-of-the-art methods.
Also, standard deviation(Std.dev) and computational average
time are given in the same table. Obviously, the best solution
of the proposed algorithm is better than the FA and many
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TABLE 4. Best results for case 2 (15-unit system).

TABLE 5. Comparison of results in the 15-unit system.

algorithms that have been recognized as efficient in solving
ED problems, which proves the superiority performance of
the proposed algorithm. Furthermore, a small standard devi-
ation reflects the robustness of the CMFA.

Figure 7 shows the convergence properties of the FA and
the CMFA. It can be seen that the FA and the CMFA settles
at about 270 and 240 iterations with cost value of about
32705($/h) and 32700 ($/h), respectively. This shows that
the CMFA is superior to the FA in both efficiency and
accuracy as the complexity of the problem increases. Fig. 8
shows the distribution of the generation cost value obtained
from running the FA and the CMFA with 100 independent
trials, respectively. This figure clearly shows that the CMFA
provides more consistent and reliable solutions, compared to
those of the FA.

C. CASE 3: 10-UNIT SYSTEM
In this case study, a slightly larger benchmark system that
has 10 units is used. The total load demand of the system

Fig. 7. Convergence characteristics of FA and CMFA (15-unit system).

Fig. 8. Generation cost distribution of FA and CMFA (15-unit system).

is 2700MW. The valve point effects, the ramp rate limits,
and multiple fuel options are considered when optimizing
the allocation of unit output. The generators’ cost coeffi-
cients, the valve-point coefficients, and multiple fuel data
of this test system are given in [19]. The optimal allocation
of unit output and fuel types provided by the FA and the
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TABLE 6. Best results for case 3 (10-unit system).

TABLE 7. Comparison of results in case 3 (10-unit system).

CMFA are presented in Table 6, with the best solutions of
4 literature published in recent years. It can be sure that the
solution satisfies all the generation limit constraints. The total
generation cost obtained by the CMFA is 623.8334 ($/h)
when meeting the power demand of 2700MW while the
violation of power balance is zero, which reveals a powerful
ability of the proposed algorithm that provides better results
in the case of keeping accuracy. Table 7 lists the compar-
ison of generation cost values among the FA, the CMFA
and other 23 methods. It can be seen that the least gener-
ation cost is provided by the CMFA with a good standard
deviation (0.0189) and a fast calculation time (3.78 s). The
FA also provides a good standard deviation of results and
calculation time, but it falls into a mediocre local mini-
mum of 623.9351($/h), although it’s better than the other
11 methods.

Figure 9 shows the convergence properties of the FA and
the CMFA. It can be seen that both the FA and the CMFA
provide smooth convergence. Fig. 10 shows the distribution
of the total generation cost value provided by running the

Fig. 9. Generation cost distribution of FA and CMFA (10-unit system).

Fig. 10. Generation cost distribution of FA and CMFA (10-unit system).

FA and CMFA with 100 independent trials, respectively.
It intuitively shows that the results provided by the CMFA are
in a small range between 623.8334 ($/h) and 623.9062 ($/h),
and the solutions of the FA are in a larger range between
623.9351 ($/h) and 624.2512 ($/h). This demonstrates
that the CMFA is more accurate, stable and reliable than
the FA.

VOLUME 6, 2018 45917



Y. Yang et al.: Chaos FA With Self-Adaptation Mutation Mechanism for Solving Large-Scale ED

TABLE 8. Best results for case 4 (80-unit system).

D. CASE 4: 80-UNIT SYSTEM
In the third case study, an 80-unit power system 8 times
larger than the system of case-3 supplying a load demand
of 21600 MW is utilized. Multiple fuel options and the VPE
are considered. The problem has become more complex due
to the existence of as many as 80 nonconvex cost functions.
It may be more difficult to solve an ED problem under such
conditions than the real power system, because not all the
units in a real system need to consider the valve-point effects.
Table 8 shows the optimal unit output allocation results
obtained by the FA and the CMFA. It is clear that all the
constraints of the ED problem are satisfied. The comparison
of objective function values among the FA, the CMFA and
other recently reported methods are presented in Table 9,
which shows that the cost of the CMFA is the lowest among
the other methods, and the standard deviation is the least of
all methods except for the ORCSA [62].

Figure 11 shows the convergence properties of the FA
and the CMFA. It can be seen that both the FA and the
CMFA provide smooth convergence, and settles at about
240 and 200 iterations, respectively. It indicates that, in spite
of facing such a high dimension (d = 80) ED problem, both
the FA and the CMFAcan still converge at a fast speed. Fig. 12
shows the distribution of the total generation cost value pro-
vided by running the FA and the CMFA with 100 indepen-
dent trials, respectively. It intuitively shows that the results
provided by the CMFA vary between 4992.06 ($/h) and
4994.97 ($/h), and in the FA, it varies between 4994.06 ($/h)
and 5006.63 ($/h). This demonstrates that the CMFA is more
accurate, stable and reliable than the FA.

E. CASE 5: 160-UNIT SYSTEM
In this case study, a 160-unit system is generated by com-
bining sixteen 10-unit systems, and supplying a load demand
of 43200MW. Multiple fuel options and the VPE are con-
sidered. In such a large system, the cost function is highly

TABLE 9. Comparison of results in case 4 (80-unit system).

Fig. 11. Convergence characteristics of FA and CMFA (80-unit system).

non-smooth and dimensionality. Therefore, finding the global
optimal result of this system is a very difficult challenge.
In recent research, a large number of algorithms have been
applied to solve this problem. Though have shown good
results, but there still exists room for further improvement.
The detailed optimization results provided by the CMFA are
listed in Table 10. The detailed optimization results of other
methods are no longer shown, as in previous cases. Table 11
shows a comparison of the solution of the FA, the CMFA, and
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TABLE 10. Best results for case 5 (160-unit system).

Fig. 12. Generation cost distribution of FA and CMFA (80-unit system).

the other 15 methods. It’s clear that the best generation cost
provided by the CMFA is the lowest among all the methods
mentioned. Furthermore, the average generation cost is better
than the best cost value of residual algorithm, and a standard
deviation is a small number that equal to 2.5174.

Figure 13 shows the convergence curve of the FA and the
CMFA when provided the best solution for case-5. It can be
seen that the FA settles at about 350 iterations and for the
CMFA is about 500, which indicates that the FA converges

TABLE 11. Best results for case 5 (160-unit system).

faster than the CMFA. However, the cost value provided by
the CMFA is significantly better than that of the FA, which
indicates that the FA has early convergence and trapped into a
local minimum but the CMFA successfully avoided. The gen-
eration costs distribution of the 100 independent run validates
the robustness of the CMFA, which shown in Fig. 14 with the
FA. This makes clear that the CMFA has the ability to provide
a consistent and reliable optimal solution. On the other hand,
The performance of the FA is weak and the optimal solution
cannot be provided due to the high complexity of the problem.
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Fig. 13. Convergence characteristics of FA and CMFA (160-units system).

Fig. 14. Generation cost distribution of FA and CMFA (160-units system).

VI. CONCLUSION
In this paper, a new metaheuristic algorithm called firefly
algorithm (FA) is proposed in which the concept is simple
and easy to implement. The Firefly Algorithm is used to
solve non-convex and large scale economic dispatch prob-
lems when considering both the valve-point effects and the
multiple fuel options. Furthermore, a modified version of the
FA, the CMFA, is proposed for solving the ED problems
after carefully considering different components in designing
the method. A sinusoidal chaotic map was incorporated into
FA for the adaptation of the random movement factor (α),
and the absorption coefficient (γ ) was introduced into can-
didate solutions as variables that need to be optimized for
enhancing the search capability of the FA and eliminate the
need for manually tuning the algorithm. Besides, a new pow-
erful self-adaptive mutation mechanism is used to maintain
diversity in the population and enhance the global searching
ability of the CMFA. In addition to the above contribution,
a new equality constraint handling mechanism is set up,
a dynamic relaxation factor has been used and some solutions
that slight violations of the constraint but have good fit-
ness for the objective function are retained. This mechanism

biases the optimization towards the feasible region, which
enhances convergence rate and handling different constraints
in ED problems simultaneously. The FA and the CMFA were
applied to five test systems having 6, 10, 15, 80, 160-units
and the analysis of simulation results demonstrates that the
proposed methods exhibit superior performances in solv-
ing ED problems including the prohibited operating zones,
the valve-point effects, the transmission losses, the multiple
fuel options, and other constraints of power systems like ramp
rate limits and so on, compared to previously proposed state-
of-the-art methods.

In future work, we intend to apply these methods to
solve other problems related to power systems optimization
because the CMFA has shown good performance in solving
the ED problem.
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