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ABSTRACT The fluctuating nature of renewable energy is a key factor that limits large-scale integration
with the power grid. In this paper, a new method of utilizing multitype demand response (DR) resources
to smooth fluctuations in renewable energy on different timescales is proposed. A multiobjective robust
scheduling model considering renewable energy and DR uncertainties is established using this method.
First, the robust optimization theory is introduced, and uncertainties in renewable energy and multitype
DR resources are described in the form of robust intervals on multiple timescales. Then, the multiobjective
scheduling model is constructed with the objective of obtaining the lowest operating cost and the highest
renewable energy utilization rate, while considering renewable energy integration constraints, DR output
constraints, and system power balance constraints. Finally, according to the model characteristics, the uncer-
tainty problem is transformed into a deterministic problem by using a robust counterpart transformation, and
a nondominated set genetic algorithm-II is used to solve the deterministic problem. A case study is presented
to verify the effectiveness of the proposed scheduling model and solution method. The calculation results
show that multitype DR resources can effectively smooth fluctuations in renewable energy, and the proposed
robust scheduling method can increase the robustness of the scheduling plan.

INDEX TERMS Renewable energy generation, fluctuating nature of renewable energy, multitype demand
response, uncertainty, multiobjective robust scheduling.

I. INTRODUCTION
The development of renewable energy generation (REG) is an
important goal for future energy systems [1]. In recent years,
driven by policies such as energy conservation and emission
reduction, REGhas gradually been integrated on a large scale.
However, unlike conventional types of generation, such as
thermal power generation and natural gas power generation,
REG is usually highly intermittent and fluctuant. Therefore,
the large-scale integration of REG faces a substantial chal-
lenge for the power grid.

To effectively smooth fluctuations and improve the inte-
gration of REG, the usual practice is to increase the supply-
side investment, i.e., by configuring deeper peaking units [3],
transferring electric energy across regions [4] and installing
energy storage devices [5], [6]. However, the use of supply-
side resources to solve the large-scale integration of renew-
able energy often faces many difficulties in practice, such

as high investment costs and poor equipment flexibility [7].
In a smart grid, due to the application of modern information
and communication technologies, demand-side resources can
be used as a type of virtual power generation resource and
can participate in power system operation and management.
Therefore, demand response (DR) is introduced to smooth the
fluctuations in renewable energy, providing a new and impor-
tant way to resolve the large-scale integration and efficient
operation of REG [8], [9].

Several studies focus on using DR resources to smooth
fluctuations in renewable energy and promote the integra-
tion of renewable energy. Reference [10] proposes that DR
resources can be used as a virtual power generation resource
to include in the joint scheduling of power systems, which can
effectively reduce system operating costs. In [11], an energy
management system (EMS) is proposed to optimize the
operation of REG. Through the integration of demand-side
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management (DSM) and an active management sch-
eme (AMS), an EMS can make good use of renewable
energy and reduce customer energy consumption costs
while increasing the economic and environmental benefits.
Reference [12] uses a probability distribution function to
model the prediction errors of wind speed and solar radi-
ation and establishes a two-stage stochastic optimization
scheduling model with the objective of minimizing expected
operating costs. In [13], own-price and cross-price elasticity
models are proposed to integrate the short-term DR into the
unit commitment optimization model for DR and renew-
able energy joint scheduling. Reference [14] establishes a
two-stage stochastic optimal scheduling model that considers
the wind power and load forecasting errors, as well as the
unit random safety constraints. In [15], a DR model based
on game theory is established and applied to a multiob-
jective dynamic economic dispatch. Reference [16], using
the idea of rolling scheduling, establishes a joint decision
model for renewable energy and DR based on day-ahead
and real-time timescales, in which the day-ahead optimiza-
tion results are applied to real-time scheduling decisions.
Reference [17] considers uncertainties in renewable energy,
price, and load forecasting; the study establishes a stochastic
optimal schedulingmodel for power grids that uses renewable
energy as the main power source, while an external power
supply and DR resources are used as backups.

The above research studies the participation of DR
resources in a smart grid. However, two problems need
to be further explored regarding the use of DR resources
to smooth fluctuations in renewable energy on multiple
timescales. First, the existing research mostly focuses on
the joint scheduling of DR resources, renewable energy,
and conventional power generation resources from multiple
timescales. However, the utilization of the complementarity
in the responses of different types of DR resources to more
effectively smooth fluctuations in renewable energy on differ-
ent timescales is rarely studied. Second, the existing research
often uses random optimization, fuzzy optimization and other
methods to address the uncertainty of DR or even ignore
it; however, for random optimization, due to information
privacy or other reasons, an accurate probability distribution
of the available capacities of DR resources at each timescale
is often difficult for decision makers to obtain, which com-
plicates the effective application of random optimization to
the above problems [18], [19]. Additionally, in the fuzzy
optimization method, the determination of the membership
function is highly dependent on the sample data and the
experience of the decision maker; therefore, the optimality
of the decision is not guaranteed in many cases [20].

Based on the abovementioned problems, this paper pro-
poses a multiobjective robust scheduling method for mul-
titype DR resources and renewable energy on multiple
timescales. Different from stochastic optimization and fuzzy
optimization, the robust optimization method describes the
range of variation in uncertain variables through an inter-
val that avoids the need for a probability distribution of

variables [21]. First, this paper establishes a robust inter-
val model for the uncertainties in the output of renewable
energy power generation and DR. Then, with the two objec-
tives of lowest system operating cost and highest renew-
able energy utilization, a multiobjective optimal scheduling
model is established that considers the constraints of REG
fluctuations, DR resource availability, and system power bal-
ance. The multiobjective model focuses on the use of DR
resources on different timescales. When the model is solved,
the counterpart transformation is introduced to convert the
uncertain problem into a deterministic problem, and then a
nondominated set ranking multiobjective genetic algorithm
with the elite strategy (NSGA-II) is used to solve the problem.
Finally, the case study for a distribution grid is presented to
verify the validity of the proposed model and method.

II. UNCERTAINTY DESCRIPTION OF RENEWABLE
ENERGY AND DEMAND RESPONSE
In a smart distribution grid, uncertainties usually come with
renewable energy and DR. In the robust optimization method,
the uncertainty is usually described in the form of robust inter-
vals as a set of parameters that contains infinite scenarios.
Therefore, in this section, we describe the uncertainties of
renewable energy and DR output as the robust intervals.

A. UNCERTAINTY DESCRIPTION OF RENEWABLE
ENERGY GENERATION
Due to the influence of the natural environment, REG
has a high degree of random fluctuations. Minute-level to
hour-level fluctuations often affect generation reserves and
generation scheduling; while second-level to minute-level
fluctuations affect the frequency regulation of the power
system [22]. Different countries have different restrictions
regarding the fluctuation of renewable energy for grid inte-
gration. For example, China has set maximum limits on the
rate of change in active power during 1 min and 10 min for
renewable energy integration [23].

The amplitude-frequency characteristics of REG exhibit
large differences for different timescales. The fluctuations on
short timescales possess a high frequency and large ampli-
tude, while the fluctuations on long timescales have a low
frequency and small amplitude. Therefore, to achieve an exact
match with relevant DR resources, classifying the uncertainty
characteristics of REG on different timescales is necessary.

To achieve the abovementioned goals, the output curve
of the day-ahead prediction of renewable energy is divided
into a smooth part, a long-timescale fluctuation part and
a short-timescale fluctuation part according to the wavelet
decompositions the long timescale (10 min) and short
timescale (1 min) [24]. The relevant mathematical equations
are as follows:

Pre(t) = Psmo(t)+ Pshort (t)+ Plong(t) (1)

where Pre(t) is the day-ahead predicted output of the renew-
able energy, Psmo(t) is the smooth part, Plong(t) is the long-
timescale fluctuation part, and Pshort (t) is the short-timescale
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fluctuation part. Since a deviation between the actual output
and the day-ahead predicted output of the renewable energy
exists, the uncertainties will need to be considered when
making a scheduling plan. Based on (1), the smooth part
and the wave parts mentioned above are given in different
timescales by (2), (3), and (4):

Psmo(t) = Psmo(t)+ ξsmoP̂smo(t) (2)

Plong(t) = Plong(t)+ ξlongP̂long(t) (3)

Pshort (t) = Pshort (t)+ ξshort P̂short (t) (4)

where Psmo(t), Plong(t), and Pshort (t) represent the smooth
part, the long-timescale part and the short-timescale part of
the actual output, respectively; P̂smo(t), P̂long(t), and P̂short (t)
represent the upper limits of deviation for the smooth part,
the long-timescale part and the short-timescale part between
the actual output and the day-ahead predicted output, respec-
tively; and ξsmo, ξlong, and ξshort are the uncertainty param-
eters that represent the uncertainty level of the deviation
between the actual output and the predicted output. The
uncertainty parameters can be given by (5):

ξsmo, ξlong, ξshort ∈ [−1, 1] (5)

The uncertainty parameters given above are used to
describe the output of the renewable energy in the following
scheduling models.

B. UNCERTAINTY DESCRIPTION OF THE DR
In a smart grid, there are various types of DR projects. Among
them, the incentive-based DR(IBDR) presents a shorter early
notification time and response time, which yield greater
potential for smoothing the fluctuations in renewable energy
and promoting the large-scale grid integration of renewable
energy [25]. Therefore, this paper mainly focuses on an opti-
mal scheduling model based on the IBDR.

In a smart distribution grid, when the fluctuations in renew-
able energy output are increased, the DR can immediately
regulate the load demand to smooth the fluctuations after
receiving relevant notifications. According to the response
time and response direction of the incentive DR, this paper
divides the overall IBDR into four types: direct controlled
interruptible load (DI), direct controlled shifting load (DS),
nondirect controlled interruptible load (NDI), nondirect con-
trolled shifting load (NDS). The response time represents
the timescale of each type of DR when it participates in
the system scheduling. The response direction represents the
increase or reduction of the load on the demand side. The
operating statuses of the IBDRs are shown in Table 1.

In Table 1, the ‘‘ascending’’ indicates that the IBDR
increases the power demand by means of shifting load, and
the ‘‘descending’’ indicates that the IBDR reduces the power
demand by cutting off load.

For IBDR projects, based on the day-ahead scheduling
plan, grid companies generally interact with DR resource
providers (load aggregators or customers) in the form of
contracts to determine the response capacity.

TABLE 1. Multitype demand response characteristics.

For DI and DS, the actual response output is equal to the
contracted capacity since these loads are directly controlled
by the grid companies:

P j
di(t) = P

j
di(t) (6)

P j
ds(t) = P

j
ds(t) (7)

where P j
di(t) and P

j
di(t) are the actual output and the con-

tracted response capacity of the DI, respectively, that cus-
tomer j offered in the period of t , while P j

ds(t) and P
j
ds(t) are

the actual output and the contracted response capacity of the
DS, respectively, that customer j offered in the period of t .
However, for NDI and NDS, considering the uncertainties

of the user behavior and willingness to respond, the actual
response will present a certain degree of uncertainty, so the
actual response output is derived with the contracted capacity.
In the robust optimization method, the interval forms can also
be used to describe this uncertainty:

P j
ndi(t) = P

j
ndi(t)+ ξ

j
ndiP̂

j
ndi(t) (8)

P j
nds(t) = P

j
nds(t)+ ξ

j
ndsP̂

j
nds(t) (9)

where P j
ndi(t) and P

j
ndi(t) are the actual output and the con-

tracted response capacity of the NDI, respectively, that cus-
tomer j offered in the period of t; P j

nds(t) and P
j
ndi(t) are

the actual output and the contracted response capacity of
the NDS, respectively, that customer j offered in the period
of t; P̂ j

ndi(t) and P̂ j
nds(t) are the upper limits of the devia-

tion between the actual output and the contracted response
capacity, which can be obtained from the history operation

data; ξ jndi and ξ
j
nds are uncertainty parameters representing the

uncertainty level of the deviation between the actual output
and the contracted response capacity:

ξ
j
ndi, ξ

j
nds ∈ [−1, 1] (10)

The uncertainty parameters given above are used to
describe the output of the DR in the following scheduling
models.

III. MULTIOBJECTIVE ROBUST SCHEDULING MODEL
A. PROBLEM DESCRIPTION
In day-ahead optimization scheduling, if the response capac-
ity of the DR is increased, then the effect of smoothing
the fluctuations in renewable energy is usually better, and
the system can increase the utilization rate of renewable
energy; however, the incentive subsidies (costs) paid to the
providers are also higher. If the response capacity of the DR
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is decreased, the cost of the DR is reduced, and the integra-
tion rate of the renewable energy is also decreased. There-
fore, the proposed multiobjective robust scheduling model is
designed to achieve a balance of economic system operation
and environmental benefits by scheduling the different types
of DR resources, renewable energy and external power supply
properly, as well as on the basis of the constraints of renew-
able energy integration and the safe operation of the system.
The objective functions of themodel include two goals, which
are minimizing the operation cost of the distribution grid and
maximizing the utilization rate of renewable energy.

Based on the abovementioned considerations, the multiob-
jective robust scheduling model framework is shown below
in Figure 1.

FIGURE 1. Framework of the multiobjective robust scheduling model.

B. OBJECTIVE FUNCTION
1) OPERATING COST OF THE DISTRIBUTION GRID
In the distribution grid with the DR and renewable energy, the
operational cost includes the DR costs paid to the providers
and the cost of purchasing electricity from the external power
grid. The operating cost is calculated by (11) as follows:

f 1 =
Ndr∑
j=1

T∑
t=1

[
P
j
di(t) · ρdi(t)+ P

j
ds(t) · ρds(t)

]

+

Ndr∑
j=1

T∑
t=1

[
P
j
ndi(t) · ρndi(t)+ P

j
nds(t) · ρnds(t)

]

+

T∑
t=1

Pext (t) · ρext (t) (11)

whereNdr is the number of providers that offer DR resources;
T is the total number of scheduling periods; ρdi(t), ρds(t),
ρndi(t), and ρnds(t) represent the prices of the DI, DS, NDI,
and NDS, respectively, in the period of t; Pext (t) is the power
purchased from the external power grid in the period of t;

and ρext (t) is the price of the power purchased from the
external power grid in the period of t .

2) UTILIZATION RATE OF RENEWABLE ENERGY
After using the multitype DR resources to smooth the fluc-
tuations in renewable energy, the grid-connected power from
renewable energy can be calculated by (12):

Pout (t) = Pre(t)+
Ndr∑
j=1

[
P
j
di(t)+ P

j
ds(t)

]

+

Ndr∑
j=1

[
P
j
ndi(t)+ P

j
nds(t)

]
+ Pdesert (t) (12)

where Pout (t) is the grid-connected power from renewable
energy, and Pdesert (t) is the abandoned power from REG.

Based on (12), the utilization rate of renewable energy in
the distribution grid can be expressed as the ratio of the grid-
connected power to the total power from renewable energy
and is calculated by (13):

f2 =
T∑
t=1

Pout (t)/
T∑
t=1

Pre(t) (13)

C. CONSTRAINTS
1) RENEWABLE ENERGY INTEGRATION CONSTRAINTS
The fluctuations in renewable energy will affect the power
quality and reliability of the distribution grid, and excessive
fluctuations may even affect grid stability; therefore, the fluc-
tuations in renewable energy are limited regarding integration
with the power grid. According to the renewable energy
integration regulations in [23], when renewable energy is
integrated into the power gird, the fluctuation rate of active
power should not exceed 10% in 1 min and 33% in 10 min.

To accurately describe the above constrains, the short-
term scale (1 min) is taken as an example to illustrate the
integration constraints of renewable energy. Assuming that
the sampling period of renewable energy is 1t , then accord-
ing to (12), the change in the grid-connected power from
renewable energy between t0 and t0+1tis calculated by (14)
as follows:

1Pshort (t0) = Pout (t0 +1t)− Pout (t0) (14)

where 1Pshort (t0) is the change in the grid-connected power
from the renewable energy between t0 and t0+1t . Using (14),
each change in the grid-connected power from renewable
energy from t0 to (t0 + 1) for the short timescale (1 min)
is calculated, and then, the maximum power fluctuation
1Pmax

short (t0)is selected. In day-ahead scheduling, the maxi-
mum power fluctuation 1Pmax

short (t) in each (t + 1)− t period
can be selected. Therefore, for each period of t , the integration
constraint of renewable energy for the short timescale is
determined by (15):

1Pmax
short (t)/Pout (t) ≤ 10% (15)
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Similarly, for the long timescale (10 min), the maximum
power fluctuation during each (t + 10) − t period can be
calculated, and for each period of t , the integration constraint
of renewable energy for the long timescale is depicted in (16):

1Pmax
long(t)/Pout (t) ≤ 33% (16)

2) DR OUTPUT CONSTRAINTS
In the scheduling process, due to the characteristics of theDR,
there are specific constraints on the response capacity and
response speed. Taking the DI as an example, the constraints
of the DR output are given in (17), (18) and (19).

The constraint of the maximum response capacity is
described in (17):

0 ≤ P j
di(t) ≤ M

j
di(t) (17)

whereM j
di(t) is the maximum capacity for the DI response of

customer j in period t .
The constraints of the response speed are described

in (18) and (19):

P j
di(t + 1)− P j

di(t) ≤ U
j
di(t) (18)

P j
di(t + 1)− P j

di(t) ≤ D
j
di(t) (19)

where U j
di(t) is the maximum ascending speed of the DI

response of user j in period t , and D j
di(t) is the maximum

descending speed of the DI response of user j in period t .

3) POWER BALANCE CONSTRAINS
For the operation of the distribution grid, the system oper-
ator can comprehensively use the renewable energy output,
external gird output and DR to satisfy the end-customer load
demand. Therefore, the constraint of the power balance can
be described as (20):

Pload (t) = Pext (t)+ Pre(t)+
Ndr∑
j=1

[
P
j
di(t)+ P

j
ds(t)

]

+

Ndr∑
j=1

[
P
j
ndi(t)+ P

j
nds(t)

]
+ Pdesert (t) (20)

where Pload (t) is the active power of the load demand in
period t .
The constrains of the other types of DR resources are

similar and are not depicted.

IV. MULTIOBJECTIVE ROBUST OPTIMIZATION
SOLVING ALGORITHM
The established scheduling model is a typical multiobjective
robust optimization problem. As the uncertainty is described
in the form of a robust interval, the problem cannot be solved
directly. Therefore, performing a robust counterpart transfor-
mation of the uncertainties in the model is necessary. First,
the robust counterpart transformation is used to transform the
uncertain multiobjective problem into a deterministic mul-
tiobjective problem. Then, the NSGA-II is implemented to
solve the deterministic multiobjective problem.

A. ROBUST COUNTERPART TRANSFORMATION
1) PROCESSING OF THE GENERAL MODEL
The general model of robust optimization is described
by (21):{
min fi(x, ξ )
s.t. gi(x, ξ ) ≤ 0, ∀ξ ∈ U , (i = 1, . . . ,m), x ∈ X

(21)

where fi is the ith objective function, x is the decision variable,
gi is the i th constraint, ξ is the uncertainty coefficient, and
U is the set of uncertainty coefficients.
The basic idea of solving the abovementioned robust

optimization problem is to convert uncertain problems into
deterministic ones through a counterpart transformation.
Therefore, the decision variable is first divided into two parts,
the deterministic component and the uncertain component:

gi(x, ξ ) = ḡi(x)+ ĝi(x, ξ ) (22)

According to the robust optimization theory, the robust
optimization model should adapt to all uncertainties in the
uncertainty set. Therefore, the constraint should match the
maximum uncertainty, and according to (21) and (22),
the uncertainty constraint can be further rewritten as (23):

ḡi(x)+max(ĝi(x, ξ )) ≤ 0 (23)

For the proposed optimization model, the distribution grid
operating cost function f1 and renewable energy utilization
rate function f2 are transformed into the general form of
robust optimization:

f ∗1 = f1, f ∗2 = −f2 (24)

We move the uncertainties in the constraints to the left
side of the equation. In conjunction with the definition of
variable uncertainties, the general robust optimization model
is rewritten as (25):min (f ∗1 , f

∗

2 )∑
j
āij + [max

ξ∈U
{
∑
j∈J
ξjâij}] ≤ bi (25)

where f ∗1 is the operation cost of the distribution grid, f ∗2 is
the negative value of the renewable energy utilization rate,
āij is the deterministic component of the decision variable,
and âij is the upper limit of the uncertain component.

2) COUNTERPART TRANSFORMATION
From (25), we can see that the rewritten optimization model
is a two-stage optimization problem. The model contains
a variety of uncertainties and couplings between maximum
and minimum values, so the model will be difficult to solve.
In this paper, we adopt the dual cone method to carry out
the counterpart transformation of the two-stage optimiza-
tion. The second-order dual cone method is briefly described
below.
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The set Uj of the uncertainty coefficients ξij is depicted
in (26):

Uj =

ξ
∣∣∣∣∣∣
∑
j∈J

∣∣ξj∣∣ ≤ µ0 , ξj ∈ [−1, 1]


µ ∈ [−1, 1] , 0 ∈ [0,L] (26)

where 0 is the total uncertainty, µis the adjustable robust
coefficient, and L is the upper limit of the robust interval;
µ can be adjusted to control the robustness of each variable
in the robust optimization.

Then, two matrices are defined:

M1 = [IL×L; 01×L]

m1 = [0L×1;0] (27)

The convex cone is given as follows:

K1 = {[τL×1; t] ∈ RL+1 |‖τ‖ 1 ≤ t} (28)

max
ξ∈U
{
∑
j∈J
ξijâij} can be described as follows:

max
ξ
{

∑
j∈J

ξijâij : M1ξ + m1 ∈ K1} (29)

(29) describes the ∞ norm cone, and the dual of the ∞
norm cone is the 1 norm cone:

sup{zT x |‖x‖∞ ≤ 1}

=

n∑
i=1

|zi| = ‖z‖1 (30)

K∗∞ = K1 = {[τL×1; t] ∈ RL+1 |‖τ‖∞ ≤ t} (31)

In summary, the constraints can be converted to (32):

max
ξ∈U
{

∑
j∈J

ξijâij}∗ = 0max(âij) (32)

Therefore, the constraints in the proposed optimization
model can be transformed into (33)-(41):

P
j
ndi(t) ≥ 0 (33)

P
j
ndi(t)+ 0

j
ndi(t) ·max(P̂ j

ndi) ≤ M
j
ndi(t) (34)

[1Pshort (t)+0short (t)·max(P̂short (t))]/Pout (t)≤10% (35)
[1Plong(t)+ 0long(t) ·max(P̂long(t))]/Pout (t) ≤ 33% (36)

P
j
ndi(t + 1)− P

j
ndi(t)+ 0

j
ndi(t + 1) ·max[P̂ j

ndi(t + 1)]

+0
j
ndi(t) ·max[P̂ j

ndi(t)] ≤ U
j
ndi(t) (37)

P
j
ndi(t)− P

j
ndi(t + 1)+ 0 j

ndi(t) ·max[P̂ j
ndi(t)]

+0
j
ndi(t + 1) ·max[P̂ j

ndi(t + 1)] ≤ D j
ndi(t) (38)

P
j
nds(t + 1)− P

j
nds(t)+ 0

j
nds(t + 1) ·max[P̂ j

nds(t + 1)]

+0
j
nds(t) ·max[P̂ j

nds(t)] ≤ U
j
nds(t) (39)

P
j
nds(t)− P

j
nds(t + 1)+ 0 j

nds(t) ·max[P̂ j
nds(t)]

+0
j
nds(t + 1) ·max[P̂ j

nds(t + 1)] ≤ D j
nds(t) (40)

0 = (0ndi, 0nds, 0short , 0long) (41)

where 0ndi, 0nds are the total uncertainties in the DR out-
put, and 0short , 0long are the total uncertainties in REG.

The different optimal results under different uncertainties can
be obtained by modifying the adjustable robust coefficientµ.
The model can also present the influence of any uncertainty
on the optimization result.

B. NONDOMINATED SET GENETIC ALGORITHM (NSGA-II)
The objective function in the scheduling model includes the
minimum operating cost of the distribution grid and the
maximum utilization rate of renewable energy. To solve this
multiobjective model, this paper adopts the NSGA-II, which
is widely used in multiobjective problems. The calculation
process is described below:
(1) Initialization. In the scheduling period, the scheduling

plan is randomly initialized, and it is denoted as P0.
Then, the convergence indicator and maximum evolu-
tion times are given.

(2) Evolutionary operation. The next genus group is gen-
erated by adopting selection, crossover and mutation.

(3) Elite strategy. R0 is formed by combining the new
population with the parent population.

(4) Nondominated set sorting and crowding degree sorting.
The nondominated set R0 is sorted, and the crowding
degree of each dominating set is calculated.

(5) Convergence criteria. If the convergence criteria
are satisfied or the maximum calculation times are
reached, then the calculation is finished. Otherwise,
steps (2)-(5) are revisited to generate the next-
generation population.

V. CASE STUDY
A. AN ACTUAL DISTRIBUTION GRID
The case study of an actual distribution grid is presented in
this paper to verify the validity of the proposed model and
algorithm.
The parameters of the renewable energy and load demands

for the distribution grid are as follows. There are 74 wind-
power generating units, each with a unit capacity of 1.5 MW.
The maximum forecast output of renewable energy is
104.58 MW, and the minimum forecast output is 25.35 MW.
The total load includes industrial, commercial and residential
loads, with a daily maximum forecast load of 148.80MWand
a minimum forecast load of 31.5 MW. There are 427 users in
the grid who can provide DR, of which 120 users respond to
DI, 205 users respond to NDI, 76 users respond to DS and
55 users respond to NDS.
The day-ahead renewable energy forecast output and load

forecast are shown below in Figure 2.
The time-of-use electricity price and multitype DR prices

are shown below in Table 2.
The response characteristics of multitype DR resources are

shown in Table 3.

B. EFFECT OF THE DR TO SMOOTH THE FLUCTUATION
OF RENEWABLE ENERGY
To verify the effect of the DR on the smoothing of renewable
energy fluctuations, a comparison of the renewable energy
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FIGURE 2. Day-ahead forecasting of renewable energy output and load.

TABLE 2. Electricity price and demand response price.

TABLE 3. Response capability of demand-side resource.

FIGURE 3. The renewable energy output before and after smoothing.

output before and after smoothing is performed. The result is
shown below in Figure 3.

Figure 3 reveals that the renewable energy output contains
clear fluctuations before smoothing, while the fluctuation
magnitude is less after smoothing. Therefore, the DR can
effectively smooth the fluctuations in renewable energy.

To further illustrate the smoothing effect of the DR on the
fluctuations in renewable energy, we introduce the smooth-
ness criterion proposed in [27]. Taking the smooth part of the

renewable energy output as a benchmark, the smoothness of
renewable energy before and after smoothing is calculated,
with ±10% as the limit. The calculation results are shown
in Figure 4.

FIGURE 4. Smoothness of renewable energy output before and after
smoothing.

By comparing the smoothness values of the output
of renewable energy sources before and after smoothing,
the fluctuation magnitude of renewable energy is effectively
suppressed after adopting multiple types of DRs.

C. INFLUENCE OF ROBUSTNESS ON
OPTIMIZATION OBJECTIVE
To verify the influence of different robustness levels on
the optimization objectives, 0, 0.5 and 1 are utilized as the
adjustable robust coefficient, and the Pareto fronts for differ-
ent robustness values are calculated. The results are shown
in Figures 5 – 7.

FIGURE 5. Pareto front for µ = 0.

FIGURE 6. Pareto front for µ = 0.5.

Figure 5 and Figure 6 show that compared with determinis-
tic optimization, the operating cost of the grid is significantly
increased when the uncertainty in renewable energy and the
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FIGURE 7. Pareto front for µ = 1.

DR is considered. To ensure that renewable energy is effec-
tively integrated into the grid, robust scheduling is required
to invoke more DR resources in the extreme scenarios of
renewable energy output and DR output, which increases the
operating costs of the system.

A comparison of Figures 5 – 7 shows that as the robust-
ness increases, the operating cost of the grid demonstrates
a clear upward trend, and the utilization rate of renewable
energy gradually declines. Therefore, as the system robust-
ness increases, the uncertainty of the renewable energy output
and DR output increases. According to the robust optimiza-
tion objective, the system needs to maintain operability for
all scenarios within the uncertain set; as such, the DR output
must be increased, clearly increasing operating costs. At the
same time, as the fluctuations in renewable energy increase,
the probability of abandoning renewable energy increases;
thus, the utilization rate of renewable energy exhibits a
downward trend.

D. SCHEDULING PLANS FOR THE DR WITH DIFFERENT
OPERATION OBJECTIVES
Taking µ = 1 as the adjustable robust coefficient to illustrate
the scheduling plans for different operation objectives, the
multiobjective Pareto front is shown in Figure 7. The TOPSIS
method proposed in [28] is used to obtain the relative optimal
solution. The weights of the operation cost and renewable
energy utilization rate areW = [0.2, 0.8]. The corresponding
points of the maximum utilization rate of renewable energy
solution, the minimum operating cost solution, and the rela-
tively optimal solution are shown in red circles in Figure 7.
The objective values are as given below in Table 4.

TABLE 4. Objective values for different schemes.

Taking time (3:00-4:00) when the renewable energy output
at peak as an example, Figures 8 to 10 show the DR plan out-
puts under different scheduling objectives. The positive value

FIGURE 8. DR power under maximum renewable energy utilization.

FIGURE 9. DR power under minimum operating cost.

FIGURE 10. DR power under relative optimum.

indicates a load reduction, while the negative value indicates
a load increase. For the DI and NDI, the DR power assumes
a positive value for load reduction. Since the response power
cannot increase the load, there is no case in which its value
is negative. For the DS and NDS, the DR power is positive
for a load reduction, and the DR power is negative for a load
increase.

A comparison of Figure 8 with Figure 10 shows that,
due to the contrasting goals of maximum utilization rate
of renewable energy and minimum operating cost, as the
utilization rate of renewable energy increases, the DR output
and operating cost increase, whereas the utilization rate of
renewable energy decreases with the operating cost of the
system. Therefore, the distribution network operators can
reasonably formulate scheduling plans based on actual needs
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to achieve a balance between the maximum utilization rate of
renewable energy and minimum operating cost.

VI. CONCLUSION
This paper proposes a new method that uses multitype DR
resources to co-smooth fluctuations in renewable energy.
Considering the uncertainties of renewable energy output and
the DR, a multiobjective robust scheduling model is estab-
lished. The model is solved using a robust counterpart trans-
formation method and a multiobjective genetic algorithm.
The case study of an actual distribution grid is evaluated to
verify the validity of the proposed model and algorithm. The
results show the following:

Utilizing the response characteristics of multitype DR
resources at different timescales can effectively smooth the
fluctuations in renewable energy and increase the utilization
rate of renewable energy.

The robust optimization model can address the uncertainty
problems of both supply and demand sides, which are unsolv-
able in the traditional deterministic model, and the optimiza-
tion scheme can satisfy all extreme scenarios.

Given the uncertainty of demand/load increases, to ensure
the reliability of the optimization results, the system must
balance operating costs with renewable energy utilization.
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