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ABSTRACT Energy hub integrates various energy conversion and storage technologies, which can yield
complementarity among multiple energy and provide consumers with stable energy services, such as
electricity, heating, and cooling. This enables energy hub to be an ideal energy system design for smart
and green buildings. This paper proposes a distributed auction mechanism for multi-energy scheduling of an
energy hub that serves numbers of building energy users. In the auction, users first submit their demand data
to the hub manager. Then, the hub manager allocates energy to users via optimization of energy scheduling
based on the users’ data. The auction mechanism is designed to be incentive compatible, meaning that users
are incentivized to truthfully submit their demand data. Next, to mitigate the computational burden of the
hub manager, a distributed implementation of the auction is developed, in which an algorithm based on
alternating direction method of multipliers (ADMM) is adopted to offload auction computation onto the
users. Distributed computation offloading may bring in new chances for users to manipulate the auction
outcome since the users participate part of the auction computation. It is proven that the proposed distributed
auction mechanism can achieve incentive compatibility in a Nash equilibrium, which indicates that rational
users will faithfully report demand data and complete the assigned computation as well. Finally, simulation
results based on a household energy consumption dataset are presented to evaluate the energy scheduling
performance and to verify the incentive compatibility of the auction mechanism.

INDEX TERMS Alternating direction method of multipliers, auction, energy hub, energy scheduling.

I. INTRODUCTION
The building sector, including residential and commercial
buildings, has been always one of the biggest sectors in the
world energy consumption. As analyzed in [1], the building
sector accounts for 19.58% of the world delivered energy
consumption in 2015, which will increase to 21.21% in 2050;
total world energy consumption in buildings is projected
to increase by 47.25% between 2015 and 2050. With the
constantly growing energy demand of buildings, advanced
energy system designs are significantly needed to reach fur-
ther energy saving and enhanced energy security in buildings.
Under such circumstance, energy hub has been considered
as a promising energy system design that can serve multiple
types of building loads (e.g., electricity, heating, and cool-
ing loads) all together [2]–[4]. An energy hub represents a
combination of energy technologies, where multiple types of

energy can be converted, conditioned, and stored, and thus
it allows energy demand and supply to shift among different
energy carriers and different time scales [5]. Through opti-
mized multi-energy management, the inherent flexibility of
energy hubs can greatly improve the system efficiency and
security during energy production and consumption. In recent
years, the researches on energy hubs have attracted consid-
erable attention, and they can be categorized into single-
hub [6]–[12] and multi-hub [13]–[17] researches.

Generally, an energy hub acquires raw energy (e.g., solar
radiation, high-voltage electricity, and natural gas) at its input
ports and provides refined energy services that consumers
need (e.g., low-voltage electricity, heating, and cooling) at its
output ports [5]. An energy hub consists of various energy
conversion and storage devices, and different configurations
of the devices can lead to different benefits in economy and
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environment [7]. Energy management for a single energy hub
has been wildly studied. In [8], a probabilistic scheduling
model for an energy hub was proposed, in which a demand
response program was developed to reallocate the hub’s
responsive loads based on energy market prices. A model
was developed in [9] to analyze the capacity of an energy
hub to participate in power system demand response without
affecting the hub’s loads. In [10], robust optimization theory
was employed in energy hub management to produce robust
solutions in the presence of system parameter uncertainties.
In [11], energy hubmanagement was formulated as a stochas-
tic bi-level problem, where the hub manager determines
energy prices to clients with uncertain demands. By vehicle-
to-grid technology [18]–[20], massive electric vehicles can
be controlled to provide energy systems with storage service.
In [12], market behavior of electric vehicles was modeled in
an energy hub, where vehicles’ batteries were aggregated to
serve as a bulk storage.

In the multi-hub scenarios, energy hubs are interconnected
via energy transmission networks, forming a macro multi-
energy system. In [13], a heuristic algorithm was proposed to
solve the optimal power flow problem of a multi-hub system
with non-constant efficiency of hub devices. A long-term
expansion planning approachwas provided in [14] to estimate
appropriate investment candidates for a multi-energy system,
including power generation units, transmission lines, and hub
devices. In [15], a multi-energy demand response problem
was formulated as a game, where energy hubs are players and
their energy purchase strategies are responsive to dynamic
prices. The methodology of alternating direction method of
multipliers (ADMM) was employed in [16] to allow energy
hubs to collectively solve a global system optimization prob-
lem in a distributed fashion. In [17], energy flows among
building-level energy hubs were optimized to lower the costs
of both hubs and distribution networks.

To enable operational optimization of energy hubs, energy
consumers at the hubs’ output ports are usually asked to
report their load information, such as controllable load con-
straints and utility/cost functions. However, most of the exist-
ing energy hub studies assume that the load information
is reported truthfully. In fact, consumers are very likely to
misreport load information if they can gain more benefits by
doing so. The energy system efficiency and security will be
badly impacted when the hub manager cannot distinguish the
misreporting. In addition, most of the previous works con-
sider that an energy hub carries out the computation centrally.
In such case, the hub’s computational complexity increases as
the number of loads increases. To mitigate the computational
burden, distributed optimization methods are more beneficial
in the case where an energy hub has massive loads.

To address the aforementioned issues, this paper pro-
poses a distributed auctionmechanism for optimal scheduling
of an energy hub. We first design an auction mechanism
which is able to achieve truth-telling of energy consumers.
Then, we develop a distributed implementation of the auction,
in which an ADMM-based algorithm is employed to solve

the auction’ optimization problem, offloading computation
onto consumers. Specifically, we consider that an energy
hub serves multiple building energy users. The users submit
demand information to the hub manager at the beginning of
the auction. Given the reported demand information, the hub
manager, as an auctioneer, determines an energy allocation to
users and payments that users should make. The payment rule
is designed based on Vickrey-Clarke-Groves (VCG) pric-
ing method [21] so that the proposed auction is incentive
compatible, which means that a user’ utility is maximized
only when it truthfully reports its demand information. Next,
we develop a distributed version of the auction, where a dis-
tributed algorithm based on dual consensusADMM[22], [23]
is proposed to assign part of the auction computation to users.
A distributed auction implementation may introduce new
chances for users to manipulate the auction outcome since
users are allowed to participate in the auction computation.
The proposed distributed mechanism is designed precisely to
prevent the manipulation of users and implement an incentive
compatible outcome as well. The contributions of this paper
are as follows:
• An auction mechanism is designed for multi-energy
scheduling of an energy hub that serves numbers of
building energy users. In the auction, users are incen-
tivized to truthfully submit their demand information.

• Employing dual consensus ADMM, a distributed imple-
mentation of the auction is developed to offload auction
computation onto the users.

• It is proven that the distributed auction mechanism can
avoid user’s manipulation and ensure the incentive com-
patibility in a Nash equilibrium.

Household energy consumption data and solar data are used
in the simulation, where we evaluate the energy hub schedul-
ing performance and verify the incentive compatibility of the
auction mechanism.

The rest of this paper is organized as follows: In Section II,
the model of an energy hub is presented. In Section III,
the centralized auction mechanism is proposed for energy
hub scheduling, and the auction properties are discussed.
In Section IV, the distributed implementation of the auction
is developed, and the properties of the distributed auction
are discussed. Section V presents and analyzes simulation
results. Finally, conclusion is drawn in Section VI.

II. SYSTEM MODEL
A. ENERGY HUB FOR BUILDINGS
Fig. 1 shows the schematic model of an energy hub stud-
ied in this paper. Energy inputs of the energy hub include
solar radiation, electricity from distribution networks, and
natural gas. Output ports of the energy hub are connected
to multiple building users, providing them with electricity,
heating energy, and cooling energy. If it is a building-level
energy hub, the energy users can be apartments in a large
residential building or offices in a commercial building. If the
energy hub serves a community, the users can be individ-
ual buildings, e.g., houses. The energy hub is comprised
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FIGURE 1. Energy hub serving building energy users.

of various energy conversion and storage devices, including
a combined heat and power (CHP) unit, an electric heat
pump (EHP), an absorption chiller (AC), a photovoltaic (PV)
system, a solar combisystem (SC), an electric energy stor-
age (EES), and a thermal energy storage (TES). A hub man-
ager is responsible for optimizing multi-energy scheduling of
the energy hub and allocating energy to users.

B. ENERGY HUB MODEL
An operating day is divided into a series of time slots,
and each of them is indexed by t ∈ T = {1, . . . ,T }.
The set of energy types on the user side is denoted by
E = {e, h, c}, including electricity, heating energy, and cool-
ing energy. The following device models in the energy hub
are based on [3] and [24]. Table 1 summarizes the notions of
the models.

1) CHP
A CHP unit generates electricity and heating energy by con-
suming gas, which is described by

ychpe,t = η
chp
ge · y

chp
g,t , (1)

ychph,t = η
chp
gh · y

chp
g,t , (2)

where ychpe,t , y
chp
h,t , and y

chp
g,t (kWh) denote the electricity pro-

duction, heat production, and gas consumption of the CHP
unit at time slot t , respectively; ηchpge and ηchpgh represent the
gas-to-electricity and gas-to-heat efficiencies, respectively.
Energy production bounds of the CHP are provided by

0 ≤ ychpe,t ≤ y
chp,max
e , (3)

0 ≤ ychph,t ≤ y
chp,max
h . (4)

2) EHP
An EHP is used for space cooling. Let yehpc,t and yehpe,t denote
the cooling energy production and electricity consumption of
the EHP, respectively. We have

yehpc,t = η
ehp
· yehpe,t , (5)

0 ≤ yehpc,t ≤ y
ehp,max
c , (6)

where ηehp stands for the cooling coefficient of the EHP.

TABLE 1. Descriptions of notations.

3) AC
An AC uses heating energy to drive the cooling process. Let
yacc,t and y

ac
h,t denote the cooling energy production and heating

energy consumption of the AC, respectively; let ηac be the
cooling coefficient of the AC. We have

yacc,t = η
ac
· yach,t , (7)

0 ≤ yacc,t ≤ y
ac,max
c . (8)

4) EES
Let se,t denote the amount of electric energy stored in the
EES; let yche,t and y

dis
e,t be the charging and discharging energy

of the EES, respectively; let ηche and ηdise denote the charging
and discharging efficiencies of the EES, respectively. The
EES model is described by

se,t = se,t−1 + ηche · y
ch
e,t − (1/ηdise )ydise,t , (9)

se,1 = se,T , (10)

0 ≤ yche,t ≤ y
ch,max
e , (11)

0 ≤ ydise,t ≤ y
dis,max
e , (12)

smin
e ≤ se,t ≤ smax

e . (13)

5) TES
The model of the TES is similar to that of the EES. Let sh,t
denote the amount of heating energy stored in the TES; let
ychh,t and y

dis
h,t be the charging and discharging energy of the

TES, respectively; let ηchh and ηdish denote the charging and
discharging efficiencies of the TES, respectively. We have

sh,t = sh,t−1 + ηchh · y
ch
h,t − (1/ηdish )ydish,t , (14)

sh,1 = sh,T , (15)

0 ≤ ychh,t ≤ y
ch,max
h , (16)

0 ≤ ydish,t ≤ y
dis,max
h , (17)

smin
h ≤ sh,t ≤ smax

h . (18)
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6) SC
An SC is used to generate heating energy from solar thermal
collectors. Let rt (kWh/m2) denote the solar radiation on a
horizontal surface at time slot t; let αsc (m2) be the horizontal
area of solar thermal collectors; let ηsc be the efficiency of
the SC. The heating energy production of the SC is described
by

ysch,t = η
sc
· αsc · rt , (19)

0 ≤ ysch,t ≤ y
sc,max
h . (20)

7) PV
An PV system uses solar panels to generate electricity. Let
αpv denote the horizontal area of the solar panels, and ηpv be
the efficiency of the PV system. The electricity production of
the PV is described by

ypve,t = η
pv
· αpv · rt , (21)

0 ≤ ypve,t ≤ y
pv,max
e . (22)

8) ELECTRICITY AND GAS NETWORKS
Let ybuye,t denote the amount of electricity bought from the
distribution network, and let ybuyg,t denote the amount of gas
bought from the gas network at slot t . They are bounded by

0 ≤ ybuye,t ≤ y
buy,max
e , (23)

0 ≤ ybuyg,t ≤ y
buy,max
g . (24)

9) USER LOADS
Index each building energy user by i ∈ N = {1, . . . ,N }. Let
xi,ε,t denote the ε-type energy allocated to user i at time slot t .
We have

xmin
i,ε,t ≤ xi,ε,t ≤ xmax

i,ε,t , ∀ε ∈ E, (25)∑
t∈T

xi,ε,t = xdayi,ε , ∀ε ∈ E, (26)

where xmin
i,ε,t stands for the minimal amount of load that must

be satisfied at each time slot, and xdayi,ε denotes the total
amount of load that must be satisfied in one day.

10) ENERGY CONSERVATION
In the energy hub, the energy conservations of gas, electricity,
heating energy, and cooling energy are described by

ychpg,t − y
buy
g,t = 0, (27)∑

i∈N
xi,e,t+yche,t+y

ehp
e,t −y

chp
e,t −y

pv
e,t−y

dis
e,t − y

buy
e,t = 0, (28)∑

i∈N
xi,h,t + yach,t + y

ch
h,t − y

chp
h,t − y

sc
h,t − y

dis
h,t = 0, (29)∑

i∈N
xi,c,t − y

ehp
c,t − y

ac
c,t = 0. (30)

In (27)–(30), stack all the variables represented as y in vec-
tor yt , which denotes the decision vector for the energy hub
operation at time slot t . Let xi,t = [xi,e,t , xi,h,t , xi,c,t ] which
denotes the energy allocation to user i at time slot t .

III. AUCTION MECHANISM FOR ENERGY
HUB SCHEDULING
In this section, we design a centralized auctionmechanism for
multi-energy scheduling of the energy hub. At first, we pro-
vide the definition of a centralized mechanism in which
energy users are auction participants, and the hub manager
acts as a center collecting the users’ demand information,
called types.
Definition 1 (Standard Mechanism [25]): A centralized

(direct-revelation) mechanism M = (f ,Θ) defines an out-
come function f and a type space Θ = Θ1 × . . .×ΘN .
In the proposed auction mechanism, users are directly

asked to reveal their demand information θ̂ ∈ Θ , and the
hub manager centrally determines an outcome f (θ̂ ) = (x, p),
where x is the energy allocation to users and p is the payment
by users to the hub manager. In the following, we will present
the content of users’ demand information and the rules for
determining the energy allocation and payment.

A. UTILITIES
We first define the utilities of the users and hub manager
in the auction. Consider that each user has an increasing
concave function to describe its satisfaction degree of energy
consuming [26]. The satisfaction function of user i at time
slot t is defined as

vi,t (xi,t ) =
∑
ε∈E

(
βi,ε,t · xi,ε,t −

βi,ε,t

2 · xmax
i,ε,t

(xi,ε,t )2
)
, (31)

where βi,ε,t is a positive constant.
At the beginning of the auction, each user needs to report its

demand information (i.e., type) to the hub manager. A user’s
type includes parameters of its energy consumption con-
straints (25), (26) and satisfaction function (31). We define
the type of user i as

θ i = {β i, x
mim
i , xmax

i , xdayi }, (32)

where β i = {βi,ε,t |ε ∈ E, t ∈ T }, xmim
i = {xmim

i,ε,t |ε ∈

E, t ∈ T }, xmax
i = {xmax

i,ε,t |ε ∈ E, t ∈ T }, and xdayi =

{xdayi,ε |ε ∈ E}. Since θ i is only known by user i itself, users can

misreport their types. Let θ̂ i = {β̂ i, x̂
mim
i , x̂max

i , x̂dayi } denote
the reported type of user i. Receiving θ̂ = {θ̂ i|i ∈ N }, the hub
manager determines an outcome including energy allocation
x = {xi,t |i ∈ N , t ∈ T } and payment p = {pi,t |i ∈ N ,
t ∈ T } according to the outcome rule f . On the operating
day, user i will consume energy according to xi,t and make
payments according to pi,t .

The utility of user i is defined as its satisfaction minus the
payment that it makes, which is denoted by

ui(f (θ̂ ), θ i) =
∑
t∈T

vi,t (xi,t )−
∑
t∈T

pi,t (θ̂ ), (33)

where vi,t (xi,t ) = vi,t (θ i, xi,t ).
The cost of the hub manager at time slot t is given by

ct (yt ) = cdt (yt )+ c
b
t (yt ), (34)
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which shows that the hub’s cost includes two parts: the energy
hub operating cost and the cost of buying energy from elec-
tricity and gas networks. An increasing convex function is
used to estimate the operating cost [16], which is given by

cdt (yt ) =
10∑
k=1

γ1,k (ydt,k )
2
+ γ2,k · ydt,k , (35)

where γ1,k and γ2,k are positive constants; ydt,k denotes the kth

component of ydt = [ychpe,t , y
chp
h,t , y

ehp
c,t , y

ac
c,t , y

ch
e,t , y

dis
e,t , y

ch
h,t , y

dis
h,t ,

ysch,t , y
pv
e,t ]. The energy purchase cost is given by

cbt (yt ) = ρe,t · y
buy
e,t + ρg,t · y

buy
g,t , (36)

where ρe,t and ρg,t denotes the prices of electricity and gas
at time slot t , respectively. The utility of the hub manager is
defined as the total payment received minus the total cost,
which is denoted by∑

i∈N

∑
t∈T

pi,t (θ̂ )−
∑
t∈T

ct (yt ). (37)

B. ENERGY ALLOCATION RULE
Temporarily suppose that all users truthful report their types.
The social welfare is defined as the hub manager’s utility (37)
plus the sum of (33) over all users. Let xi = [xi,1, . . . , xi,T ],
y = [y1, . . . , yT ], vi(xi) =

∑
t∈T vi,t (xi,t ), and c(y) =∑

t∈T ct (yt ). The energy allocation rule of the auction mech-
anism is described by the following social welfare maximiza-
tion problem, denoted as problem M .

M : max
x,y

∑
i∈N

vi(xi)− c(y), (38a)

s.t. xi ∈ Xi, ∀i ∈ N , (38b)

y ∈ Y, (38c)∑
i∈N

Aixi + By = 0, (38d)

where Xi is the constraint set of user i for meeting
(25) and (26) ∀t ∈ T ; Y is the constraint set of the energy
hub for satisfying (1)–(24), (27) ∀t ∈ T ; Ai and B are the
coefficient matrices, making constraint (38d) equivalent to
(28)–(30) ∀t ∈ T . The optimal solution to problem M is
denoted by {x∗, y∗}, in which x∗ is the outcome of energy
allocation to users.

C. PAYMENT RULE
Based on VCG payment rule [21], [27], we define the pay-
ment by user i at time slot t as

pi,t (θ ) =
∑
j 6=i

vj,t (x−ij,t )−
∑
j 6=i

vj,t (x∗j,t )+ ct (y
∗
t ), (39)

where we have x−i = {x−ij,t |j ∈ N \{i}, t ∈ T }, which is
the optimal solution to the following maximization problem,

denoted as problem M−i.

M−i : max
x

∑
j 6=i

vj(xj), (40a)

s.t. xj ∈ Xj,∀j ∈ N /{i}. (40b)

Notice that user i is excluded in problem M−i.

D. ANALYSIS OF THE AUCTION MECHANISM
Consider that users know the energy allocation rule (38) and
payment rule (39), and each user will strategically choose
the reported type θ̂ i to maximize its utility (33). The pro-
posed auction mechanism is able to achieve that each user
has a maximum utility only when it truthfully reports θ i.
Formally, amechanism is characterized by incentive compati-
bility if truth-revelation of users is achieved in an equilibrium
[21], [25]. In the following, we introduce the definition of
a dominant-strategy equilibrium and then prove that the pro-
posed auctionmechanism is incentive compatible in this equi-
librium. Let si(θ i) denote the strategy of user i given θ i. Since
a user’s strategy in the auction is to choose a reported type,
we have si(θ i) ∈ Θi. Let θ−i = {θ1, . . . , θ i−1, θ i+1, . . . , θN }.

Definition 2 (Dominant-Strategy Equilibrium [28]): A
strategy profile s∗ = {s∗1, . . . , s

∗
N } ∈ Θ is in a dominant-

strategy equilibrium, if

ui(f (s∗i (θ i), s−i(θ−i)), θ i) ≥ ui(f (si(θ i), s−i(θ−i)), θ i) (41)

holds ∀i ∈ N , ∀si 6= s∗i , ∀θ i, and ∀θ−i.
Thus, a mechanism is incentive compatible in a dominant-

strategy equilibrium if it can achieve

ui(f (θ i, θ̂−i), θ i) ≥ ui(f (θ̂ i, θ̂−i), θ i), (42)

which means that truthfully reporting type θ i is the best
strategy of user i whatever the other users report. It is also
said that a mechanism is strategy-proof if (42) holds.
Theorem 1: The proposed centralized auction mechanism

with energy allocation rule (38) and payment rule (39) is
strategy-proof.

Proof: See Appendix A. �
In addition, the auction can achieve budget balance of the

hub manager, which means that the total received payment is
no less than the total cost.
Theorem 2: The proposed auction mechanism with energy

allocation rule (38) and payment rule (39) is budget-
balanced.

Proof: See Appendix B. �

IV. DISTRIBUTED IMPLEMENTATION
In this section, we develop a distributed implementation of the
centralized auction mechanism, offloading computation onto
users. At first, we analyze the problems that the hub manager
needs to solve in the centralized mechanism.

To determine the energy allocation and payment, the hub
manager has to attain the optimal solution to each problem in
{M ,M−1,M−2, . . . ,M−N }. But, we do not have to solve
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these problems individually. The objective function and con-
straints of problem M−i are separable, which greatly reduces
the amount of computation. Specifically, in the distributed
implementation, let user i ∈ N solve the following maxi-
mization problem, called problem Mi.

Mi : max
xi∈Xi

vi(xi). (43)

Let x?i be the optimal solution to problem Mi. Then, the opti-
mal solution to problem M−i is given by x−i = {x?j |j ∈
N \{i}}. Solving problem Mi only requires local infor-
mation of user i, so the user is able to solve the prob-
lem independently. Therefore, by collecting x?i from all
users, the hub manager can attain the optimal solutions to
M−1,M−2, . . . ,M−N , respectively.
Then, we focus on problem M , in which constraint (38d)

couples the hub manager and users altogether. To solve prob-
lem M in a distributed manner, we employ dual consensus
ADMM [22], [23].

A. DUAL CONSENSUS ADMM
In the following, problem M is reformulated and solved in
the framework of dual consensus ADMM. Let λ be the dual
variable of constraint (38d). The Lagrange dual problem of
M is provided by

min
λ

∑
i∈N

φi(λ)+ ψ(λ), (44)

where

φi(λ) = max
xi∈Xi

{
vi(xi)− λTAixi

}
, ∀i ∈ N , (45)

ψ(λ) = max
y∈Y

{
− c(y)− λTBy

}
. (46)

Problem M is a concave maximization problem, so strong
duality holds. This indicates that solving problem (44) is
equivalent to solving problem M . Consider that each user
only communicates with the hub manager. Let the hub man-
ager manages the dual variable λ, and let user i manages
a copy of λ, denoted by λi. We construct the following
problem:

min
λ,{λi},{λ

′
i}

∑
i∈N

φi(λi)+ ψ(λ) (47a)

s.t. λi = λ′i, ∀i ∈ N , (47b)

λ = λ′i, (47c)

where λ′i is a slack variable. Constraints (47b) and (47c)
ensure a global consensus of the dual variable, which makes
problem (47) equivalent to problem (44). Next, consensus
ADMM technique [29] is employed to solve problem (47).

According to [22] and [23], the variable update steps of the
hub manager at iteration τ are presented as

µ[τ ]
= µ[τ−1]

+ q
∑
i∈N

(λ[τ−1]
− λ

[τ−1]
i ), (48)

y[τ ] = argmin
y∈Y

{
c(y)+

q
4N

∥∥∥1
q
By−

1
q
µ[τ ]

+

∑
i∈N

(λ[τ−1]
+ λ

[τ−1]
i )

∥∥∥2
2

}
, (49)

λ[τ ]
=

1
2 N

(1
q
By[τ ]−

1
q
µ[τ ]
+

∑
i∈N

(λ[τ−1]
+λ

[τ−1]
i )

)
, (50)

where µ is associated with the dual variables of constraints
(47b) and (47c), and q is a positive constant. The variable
update steps of user i at iteration τ are given by

µ
[τ ]
i = µ

[τ−1]
i + q(λ[τ−1]

i − λ[τ−1]), (51)

x[τ ]i = argmin
xi∈Xi

{
− vi(xi)+

q
4

∥∥∥1
q
Aixi −

1
q
µ
[τ ]
i

+λ[τ−1]
+ λ

[τ−1]
i

∥∥∥2
2

}
, (52)

λ
[τ ]
i =

1
2q
Aix

[τ ]
i −

1
2q

µ
[τ ]
i +

1
2
(λ[τ−1]

+ λ
[τ−1]
i ). (53)

Notice that the update steps of the hub (or user i) only
requires local information and iterative exchange of λ and λi.
Algorithm 1 shows the dual consensus ADMM framework
for solving problem M . To allow the hub manager to be
aware of the success of convergence, the stopping criteria are
defined as∥∥λ[τ ]

− λ̄
[τ ]∥∥2

2 +
∑
i∈N

∥∥λ[τ ]
i − λ̄

[τ ]∥∥2
2 ≤ ε1, (54)

∥∥λ̄[τ ]
− λ̄

[τ−1]∥∥2
2 ≤ ε2, (55)

where λ̄
[τ ]
= (λ[τ ]

+
∑

i∈N λ
[τ ]
i )/(N + 1), and ε1 and

ε2 are very small positive constants. The stopping criteria
(54) and (55) are based on the primal and dual residuals of
consensus ADMM [29].

Algorithm 1 Dual Consensus ADMM for Solving M

1 Set τ = 0. For the hub manager, set µ[0]
= 0,

y[0] ∈ R15T , λ[0]
∈ R3T . For user i ∈ N , set µ[0]

i = 0,
x[0]i ∈ R3T , λ[0]

i ∈ R3T .
2 repeat
3 τ ← τ + 1.
4 The hub manager sends λ[τ−1] to each user and

updates µ[τ ], y[τ ], and λ[τ ] according to (48)–(50).
5 for i ∈ N (in parallel) do
6 User i sends λ

[τ−1]
i to the hub manager and

updates µ
[τ ]
i , x[τ ]i , and λ

[τ ]
i according to

(51)–(53).
7 until stopping criteria (54) and (55) are satisfied ;

B. DISTRIBUTED MECHANISM
Based on the aforementioned distributed approaches for solv-
ing problems {M ,M−1,M−2, . . . ,M−N }, we develop a
distributed mechanism that can produce the same outcome as
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the centralized mechanism. The distributed mechanism can
be summarized into the following steps.
Step 1: User i ∈ N submits type θ̂ i to the hub manager.
Step 2: User i ∈ N solves problem Mi and sends the

optimal solution x?i to the hub manager. Then, the manager
determines x−i = {x?j |j ∈ N \{i}}, the optimal solution to
problem M−i, for all i ∈ N .
Step 3: Run Algorithm 1 to get the optimal solution to

problem M . At the end of the algorithm, the hub manager
has y∗ and λ∗, and user i has x∗i and λ∗i . Then, user i ∈ N
sends x∗i to the hub.
Step 4: Given x∗ and x−i,∀i ∈ N , the hub manager

calculates payment according to (39), and executes energy
allocation x∗ on the operating day.

Note that users are obliged to submit their types (in Step 1)
even if the hub manager does not need to users’ information
to complete its computation in the distributed mechanism.
Collecting users’ types reserves the ability of the hubmanager
to check computation results from users. In Step 3, for exam-
ple, the hub manager can obtain x∗i by solving (45) given λ∗,
and check the x∗i sent by user i. But, checking every user’s
results leads to additional computation burden of the hub
manager.We prefer that the distributedmechanism can incen-
tive users to faithfully complete the assigned computation.

C. ANALYSIS OF THE DISTRIBUTED MECHANISM
In the centralized mechanism, the only action that a user takes
is to report its type. In contrast, a distributed mechanism
allows users to participate in auction computation, which
gives users opportunities to strategically change computa-
tional results and in turn manipulate the auction outcome.
In the proposed distributed mechanism, the actions of user i
include 1) reporting θ̂ i, 2) solvingMi, 3) sending x?i , 4) updat-
ing µ[τ ], y[τ ], and λ[τ ], 5) sending λ[τ ], and 6) sending x∗i .
In the following, we prove that a user will faithfully complete
all of these actions in the distributed mechanism. At first,
the definition of a distributed mechanism is given.
Definition 3 (Distributed Mechanism [25]): A distributed

mechanism Md
= (g,Σ, sM) defines an outcome function g,

a feasible strategy spaceΣ = Σ1×. . .×ΣN , and an intended
strategy profile sM = {sM1 , . . . , s

M
N }.

The outcome function g determines an outcome g(s(θ ))
when users have types θ and take strategy s ∈ Σ . A strategy
si ∈ Σi is a mapping from user i’s type to the aforementioned
6 types of actions.
Definition 4 (Intended Strategy [28]): Given a strategy-

proof direct-revelation mechanism M that implements out-
come f (θ ), sM is the intended strategy of a distributed
mechanism Md when

g(sM(θ )) = f (θ ), ∀θ ∈ Θ. (56)

The intended strategy sM can be taken as a strategy that
the mechanism designer expects every user to follow. In the
proposed distributed mechanism, the intended strategy is
that all users faithfully complete the 6 types of actions,

producing the same outcome as the centralized mechanism.
Next, we introduce the concept of faithful implementation.
Definition 5 (Faithful Implementation [25]): A distributed

mechanism Md
= (g,Σ, sM) is a faithful implementation of

outcome g(sM(θ )) when the intended strategy sM is in an ex-
post Nash equilibrium.

Definition 6 (Ex-Post Nash Equilibrium [25], [28]): A
strategy profile s∗ = {s∗1, . . . , s

∗
N } ∈ Σ is in an ex-post Nash

equilibrium, if

ui(g(s∗i (θ i), s
∗
−i(θ−i)), θ i) ≥ ui(g(si(θ i), s

∗
−i(θ−i)), θ i) (57)

holds ∀i ∈ N , ∀si 6= s∗i , ∀θ i, and ∀θ−i.
In other words, user i will not deviate from s∗i when other

users are taking s∗
−i. It is shown that an ex-post Nash equilib-

rium depends on the common knowledge that (other) users
are rational. In a faithful distributed mechanism, a user will
follow the intended strategy if no unilateral deviation can
increase its utility. Finally, we derive the following theorem.
Theorem 3: The proposed distributed mechanism

(Section IV-B) is a faithful distributed implementation of
energy allocation (38) and payment (39).

Proof: See Appendix C. �

V. PERFORMANCE EVALUATION
A. SIMULATION SETTING
Consider an energy hub serving 50 house buildings. Each
house acts as an energy user in the auction, buying electricity,
heating energy, and cooling energy from the hub manager
to meet its energy demand on the next day. The length of
one time slot is set to one hour, i.e., T = {1, . . . , 24}.
Residential building hourly load data in the U.S. [30] is used
to characterize the users’ demands. Fig. 2 shows a sample
of load profiles of a house in a day. Let xdatai,ε,t be the load

point given by the dataset. Then, we set xdayi,ε =
∑

t∈T xdatai,ε,t ,
xmin
i,ε,t = (1 − γ )xdatai,ε,t and x

max
i,ε,t = (1 + γ )xdatai,ε,t , where γ

describes the flexibility of load. We set γ = 0.1 initially and
will vary it in simulation. A user’s satisfaction parameter βi,ε,t
is uniformly distributed over [80, 100]. The electricity and
gas prices of outer energy networks are set according to [2].
The gas price is 16 Mu/kWh and unchanged in a day. Mu is
a monetary unit [2]. The electricity prices are determined by
time-of-use pricing, shown in Fig. 3. Consider three different
scenarios in which the configurations of the energy hub are

FIGURE 2. Load profiles of a house [30].
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FIGURE 3. Electricity and gas buy prices [2].

TABLE 2. Energy hub configurations.

given in Table 2. The parameters of devices in the energy
hub are set based on [3] and [16]. The solar radiation data
is provided by U.S. solar radiation database [31].

B. SIMULATION RESULTS
1) MULTI-ENERGY SCHEDULING
Focus on scenario 1 at first. Fig. 4 shows the energy schedul-
ing result of the proposed mechanism. As the gas price is
much lower than the electricity prices, the CHP unit is used a
lot to produce electricity and heat. In the daylight, the PV and
SC provide solar power and solar heat, respectively. Around
12 h and 20 h, electricity prices are high, so the EES is
scheduled to discharge to support the electricity load. Note
that the electricity load in Fig. 4(a) includes the houses, EHP,
and EES (when charging), and the heating load in Fig. 4(b)
includes the houses, AC, and TES (when charging).
At 17–18 h, the TES is discharged to release heating energy
that is used by the AC to produce cooling energy during
the cooling load peak. The cooling load in Fig. 4(c) is only
contributed by the houses. As observed, the proposed auction
mechanism is able to balance the energy supply and demand,
and flexibly schedule the energy devices to optimize the
social welfare.

2) LOAD FLEXIBILITY
Fig. 5 shows social welfares changing with load flexibility γ .
Increasing γ means that the controllable range of user’s loads
at each time is increased. Hence, the growth of γ enlarges
the feasible region of the social welfare maximization prob-
lem and in turn improves the social welfare. Observe that
scenario 1 always achieves the highest welfares because it
has a full configuration of the energy hub. Scenario 3 has
no storage or renewable device, which largely reduces the
elasticity of energy scheduling and thus leads to lower social
welfares.

3) INCENTIVE COMPATIBILITY
Here, the incentive compatibility of the auction mechanism
is verified. As discussed in the proof of Theorem 1, it is

FIGURE 4. Energy production and consumption of the energy hub in
scenario 1.

straightforward to prove that a user will truthfully report xmin
i ,

xmax
i , and xdayi . Also, any act of deviation in the distributed
computation process may lead to deviation from the optimal
social welfare and even the failure in convergence. Thus, it is
clear that a rational user will faithfully complete the assigned
computation. Here, we mainly analyze how the reported β̂ i
influences the utility of user i. In each of the three scenarios,
select a user, fix its β i, and then make its reported β̂ i deviate
from β i. Each deviation is simulated in one trial, in which
other users’ β−i is uniformly distributed over [80, 100], and
β̂−i = β−i. We repeat each trial 200 times and attain the
probabilities of the selected users getting maximum utilities,
which is shown in Fig. 6. The deviation of x axis is defined
as
∑
ε∈E

∑
t∈T (β̂i,ε,t − βi,ε,t )/βi,ε,t . As illustrated, the users

have a 100% chance of getting maximum utilities only when
they truthfully report β i, which verifies the incentive compat-
ibility of the mechanism.
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FIGURE 5. Social welfare versus load flexibility γ .

FIGURE 6. Probability of a user getting a maximum utility.

FIGURE 7. Convergence of Algorithm 1.

4) CONVERGENCE
Fig. 7 illustrates the convergence performance of
Algorithm 1, in which we set q = 0.01. The error of y axis is
defined as (SW [τ ]

− SW ∗)/SW ∗, where SW ∗ is the optimal
social welfare obtained by solving problem M directly in
a centralized manner, and SW [τ ] is the social welfare at the
τ th iteration of Algorithm 1. As shown in Fig. 7, the algorithm
is able to converge to the optimum in a small number of
iterations.

VI. CONCLUSION
This paper proposes a distributed auction mechanism for
multi-energy scheduling of an energy hub. At first, we design
a centralized auction, in which building energy users buy
electricity, heating energy, and cooling energy from the
energy hub manager. The buyers submit their demand infor-
mation (i.e., types) to the hub manager. Given the reported
types, the hub allocates energy to the users according to the
optimal solution to the social welfare maximization prob-
lem. Users pay for the energy according to the VCG-based

payment rule. With these energy allocation and payment
rules, the proposed centralized mechanism can achieve
incentive compatibility in a dominant-strategy equilibrium.
Then, we develop a distributed implementation of the auc-
tion, in which the auction’s computation is partitioned and
assigned to users. Dual consensus ADMM is employed to
enable the hub and users to jointly solve the social welfare
maximization problem in a distributed manner. The proposed
distributed mechanism is carefully designed so that users will
faithfully complete the assigned computation, producing the
same outcome as the centralized mechanism in an ex-post
Nash equilibrium. In the simulation, we employ building load
data and solar data to evaluate energy scheduling performance
and verify the incentive compatibility of the mechanism.

APPENDIX A
PROOF OF THEOREM 1
A reported type contains 4 components: satisfaction param-
eter β i, lower load bound xmim

i , upper load bound xmax
i , and

daily load xdayi . To show that the proposed auction mecha-
nism is strategy-proof, we need to prove that each user will
truthfully report each of the type components.

A. SATISFACTION PARAMETER βi
Let {x∗, y∗} denote the optimal solution to problem (38) when
user i truthfully reports θ i; let {x′, y′} denote the optimal
solution to problem (38) when user i reports θ̂ i in which only
β̂ i is misreported. Accordingly, we have

vi(x∗i )+
∑
j 6=i

v̂j(x∗j )−c(y
∗)≥vi(x′i)+

∑
j 6=i

v̂j(x′j)− c(y
′), (58)

where v̂j(·) = vj(β̂ j, ·). Adding −
∑

j 6=i v̂j(x
−i
j ) to the both

sides of (58), according to (39), we have

vi(x∗i )− pi(θ i, θ̂−i) ≥ vi(x
′
i)− pi(θ̂ i, θ̂−i), (59)

which leads to (42), indicating that truthfully reporting β i can
attain a higher utility than misreporting. Therefore, user iwill
truthfully reveal β i.

B. LOWER LOAD BOUND xmim
i

To ensure that the energy consumption minimum is satisfied,
user i will not understate xmim

i . To prove that a user will not
overstate xmim

i neither, according to (39), we write the utility
of user i as

ui(f (θ̂ ), θ i)=vi(x∗i )+
∑
j 6=i

vj(x∗j )−c(y
∗)−

∑
j 6=i

vj(x−ij ). (60)

Notice that we use vj instead of v̂j in (60) since it has been
proven that every user chooses to truthfully reveal β j. User i
cannot influence the last term in (60) by changing θ̂ i. Thus,
a user aiming at utility maximization will try to maximize
the first three terms, i.e, the social welfare. Overstating xmim

i
narrows the feasible range of xi, in turn limits the growth of
the social welfare. Therefore, user i will not overstate xmim

i .
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C. UPPER LOAD BOUND xmax
i

Similarly, understating xmax
i limits the growth of the social

welfare, so user i will not understate xmax
i . Overstating xmax

i
may lead to the allocated energy larger than the actual user
demand. The hub manager can observe this situation on
the operating day and then penalizes the user. To avoid the
penalty of energy surplus, user i will not overstate xmax

i
neither.

D. DAILY LOAD xday
i

To avoid the shortage of daily energy consumption, xdayi will
not be understated. To avoid the penalty of energy surplus,
xdayi will not be overstated neither.

APPENDIX B
PROOF OF THEOREM 2
The total payment that the hub manager receives can be
denoted by∑
i∈N

∑
t∈T

pi,t (θ )=
∑
i∈N

∑
j 6=i

vj(x−ij )−
∑
i∈N

∑
j6=i

vj(x∗j )+N · c(y
∗).

(61)

Since x−i is the optimal solution to problem (40), we have∑
j 6=i vj(x

−i
j ) ≥

∑
j 6=i vj(x

∗
j ). Further, according to the defi-

nition of the hub cost function, c(y∗) ≥ 0 holds. Therefore,
we have ∑

i∈N

∑
t∈T

pi,t (θ ) ≥ N · c(y∗) ≥ c(y∗), (62)

which completes the proof.

APPENDIX C
PROOF OF THEOREM 3
The design of the distributed mechanism follows static-
partitioning principle [25], which is a distributed algorithm
design principle for VCG mechanism. The proposed dis-
tributed mechanism has the following three properties:
• Users only communicate with the hub manager.
• The computation of user i does not contribute to solving
problem M−i.

• The computation of a user does not rely on the compu-
tation results from any other user.

With these properties, a rational user will follow the intended
strategy, i.e., it will faithfully complete the following actions:
1) reporting θ̂ i, 2) solvingMi, 3) sending x?i , 4) updatingµ[τ ],
y[τ ], and λ[τ ], 5) sending λ[τ ], and 6) sending x∗i .
Specifically, according to payment rule (39), the payment

made by user i is related to
∑

j 6=i vj(x
−i
j ), so a user would

always want to tamper other users’ θ−i and x−i to lower its
payment if this is possible. The first property ensures that
users do not communicate with each other, which avoids
the tampering. The second property makes sure that user i
cannot influence the term

∑
j 6=i vj(x

−i
j ) in the payment rule,

so a rational user will faithfully complete actions 2) and 3).
The third property prevents rational users’ computation from
being affected by potentially irrational users.

Moreover, as analyzed in the proof of Theorem 1,
the centralized mechanism implements truth-revelation in
a dominant-strategy equilibrium, which implies that truth-
revelation can also be achieved in the ex-post Nash imple-
mentation. Thus, users will truthfully take action 1) as well.
The proof of Theorem 1 also shows that a user can maximize
its utility only by maximizing the social welfare. Therefore,
user i will faithfully perform actions 4)–6) as well, since
this is the only way to maximize the social welfare when
other users are following the intended strategy. Once all users
follow the intended strategy, the distributedmechanism yields
the same outcome of the centralized mechanism.
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