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ABSTRACT This paper addresses the problems of robust adaptive sliding mode observer (SMO) design
and SMO-based sliding mode control (SMC) for T-S fuzzy descriptor systems with time-varying delay.
Until now, there are a few results about the adaptive SMO design problem and adaptive SMO-based SMC
for T-S fuzzy descriptor systems with time-varying delay. Therefore, we are motivated to study this issue.
First, two integral-type sliding surfaces, which involve the SMO gain matrix, are constructed for the error
system and the SMO system, respectively. Then, some delay-dependent sufficient conditions are established,
such that the sliding motions are robustly admissible with H∞ performance. New adaptive sliding mode
controllers, which need not to use the assumption that the fast subsystem of descriptor system is observable,
are synthesized for the error system and the SMO system, such that the reachability conditions can be
guaranteed. In addition, the adaptive control strategy is applied to estimate the unknown parameters. Finally,
simulation examples are discussed to show the effectiveness of our approach.

INDEX TERMS Adaptive SMO, integral-type sliding surface, T-S fuzzy descriptor systems, time-varying
delay.

I. INTRODUCTION
Descriptor system [1] is also referred to as singular sys-
tem, generalized state-space system, differential-algebraic
system or semistate system, which can be expressed
by a set of differential and algebraic equations in
mathematics [2]. Descriptor model can be used in a large
class of fields, such as, electrical circuits, mechanical systems
and moving robots. It can describe the behavior and maintain
the physical characteristics of a lot of physical systems better
than the standard state-space model. Over the past few years,
a lot of research results about descriptor system have been
reported, such as, dissipativity analysis [3], [4], stability and
stabilization problems [5]–[7], SMC [8], [9] and observer
design [10]–[12].

It is generally known that T-S fuzzy model [13], [14] has
been proved to be an effective strategy for the control of
nonlinear systems. We can describe a nonlinear system by
a family of local linear models. Then through the use of
fuzzy blending, the overall T-S fuzzy model can be obtained.
Moreover, in order to extend the T-S fuzzy model to a more
general case, Taniguchi put forward the T-S fuzzy descriptor

model, and it has provided an effective way of controlling
nonlinear descriptor systems. During the past few years, a lot
of results related to T-S fuzzy models have been reported.
For example, stability and stabilization [15], [16], sliding
mode control [17], fault tolerant control [18] and so on.
On the other hand, time-delay occurs in many physical,
industrial and engineering systems [19], [20]. It has become
a hot topic since it is often the major source of instability
and usually unavoidable. Recently, there are also many sys-
tems can be described by T-S fuzzy descriptor models with
time-delay [5], [8].

This paper addresses the problem of robust adaptive SMO
design for T-S fuzzy descriptor systems. In fact, SMO is based
on SMC approach [21]–[24]. It has a nonlinear input which is
designed to ensure that the state trajectories of the error sys-
tem can be driven onto the sliding surface in finite time. Aswe
all know, SMC [25]–[28] has been proven to be an effective
robust control scheme for systems with uncertainties, non-
linearities and disturbances. It has many attractive features,
such as fast response, good transient and strong robustness.
Based on the characteristics of SMC Strategy, the authors
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in [29]–[33] developed adaptive SMC methods to estimate
the unknown parameters. In [34] and [35], the SMC strate-
gies were introduced for extracting maximum wind power.
In addition, the essence of the SMO is to design a SMC strat-
egy for the error system. Therefore, according to the advan-
tages of SMC, the SMOhas better robustness to uncertainties,
nonlinearities and disturbances. Over the past few decades,
a lot of research results related to SMO have been extensively
reported, such as, SMO design for stochastic systems [9],
SMO design for T-S fuzzy systems [36], SMO design for
normal systems [37] and so on.

In this paper, we investigate the problems of robust adap-
tive SMO design and SMO based SMC for T-S fuzzy descrip-
tor systems with time-varying delay. There are a lot of
research results, which related to SMC or SMO design,
have been reported. Therefore, it is necessary to point out
the differences between our work and the existing works.
In [17] and [38]–[40] , the authors developed SMC strate-
gies for a class of normal or descriptor Markovian jump
systems. In [26], [41], and [42], the authors developed SMC
strategies for nonlinear descriptor systems and multi-input-
multi-output discrete-time system respectively. The authors
in [43]–[46] studied the SMOs for normal systems to estimate
the faults, they did not developed them in descriptor systems.
Furthermore, the authors in [31]–[33] considered the adaptive
SMC for T-S fuzzy systems. In [47], the authors developed a
robust H∞ SMO for a class of uncertain nonlinear T-S fuzzy
descriptor systems with time-varying delay. The assumption
that the fast subsystem of descriptor system is observable is
required in sliding mode controller design. In our paper, this
assumption is removed, which reduces the requirements of
the descriptor systems. In addition, we developed adaptive
SMC strategy to estimate the unknown parameters which is
also different from the result in [47]. By the way, in [19]
and [48], the authors developed dynamic SMC for T-S fuzzy
systems. However, dynamic SMC strategy can not be used
to design fuzzy SMO. As mentioned above, there are few
results about the adaptive SMO design problem for T-S fuzzy
descriptor systemswith time-varying delay. Therefore, we are
motivated to study this issue. The main contributions of this
paper are summarized below.
(1) Two integral-type sliding surfaces, which involve the

SMO gain matrices Li, are constructed for the error
system and the SMO system.

(2) New adaptive sliding mode controllers, which need
not to use the assumption that the fast subsystem of
descriptor system is observable, are synthesized for
the error system and the SMO system such that the
reachability conditions can be guaranteed.

(3) The adaptive control strategy is applied to esti-
mate the unknown parameters especially the bounds
of e(t) and e(t − τ (t)). This is more appropriate
and practical since the estimation error variables are
unknown.

(4) In this paper, we also develop a SMO based SMC
strategy.

This paper is organized as follows. Section II describes
the T-S fuzzy descriptor model. In section III, we focus on
the SMO design and admissibility analysis. In section IV,
a SMO based SMC strategy is developed. Finally, simula-
tion examples and conclusions are given in section V and
section VI respectively.
Notations: In this paper, ĀT and Ā−1 denote the transpose

and inverse of matrix Ā. ‖.‖ denotes the Euclidean norm of a
vector and its induced norm of a matrix. In denotes the n× n
identity matrix. Ā > 0 or (Ā < 0) means that Ā is symmetric
and positive (negative) definite. sym(Ā) stands for Ā + ĀT .
∗ denotes the transposed element in the symmetric positions
of a matrix.

II. PROBLEM FORMULATION
In this paper, we focus on the following T-S fuzzy descriptor
system.

Fuzzy rule i: IF θ̄1(t) is M̄i1 and . . . and θ̄g(t) is M̄ig, THEN

Eẋ(t) = Aix(t)+ Adix(t − τ (t))

+B(u(t)+ fi(t, x(t), x(t − τ (t))))

+ (Hi +1Hi(t))w(t)

y(t) = Cx(t)

x(t) = ϕ̃(t), t ∈ [−τM , 0] (1)

where i = 1, 2, ..., l, l is the number of IF-THEN rules;
x(t) ∈ <n is the state vector, u(t) ∈ <m is the control
input vector, fi(t, x(t), x(t − τ (t))) represent the system non-
linearities; w(t) ∈ <q is the external disturbance which
is assumed to belong to L2 [0,∞) and y(t) ∈ <p is the
measured output; θ̄j(t) (j = 1, 2, ..., g) and M̄ij are the premise
variables and the fuzzy sets respectively; We assume that
rank(E) = r ≤ n; Ai, Adi, B, Hi and C are known
real matrices; τ (t) is the time-varying delay which satisfies
0 < τm ≤ τ (t) ≤ τM and τ̇ (t) ≤ τa < 1, where τm,
τM τa are positive constants; ϕ̃(t) is the initial function on
[−τM , 0]; 1Hi(t) represent parameter uncertainties. In this
paper, we assume that θ̄j(t) are available. Then based on (1),
the overall T-S fuzzy descriptor model can be expressed as
follows:

Eẋ(t) =
l∑
i=1

h̄i(θ̄ (t)){Aix(t)+ Adix(t − τ (t))

+B(u(t)+ fi(t, x(t), x(t − τ (t))))

+ (Hi +1Hi(t))w(t)}

y(t) = Cx(t)

x(t) = ϕ̃(t), t ∈ [−τM , 0] (2)

where

h̄i(θ̄ (t)) =
ωi(θ̄ (t))∑l
i=1 ωi(θ̄ (t))

, ωi(θ̄ (t)) =
g∏
j=1

M̄ij(θ̄j(t)) (3)
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M̄ij(θ̄j(t) represents the membership degree of θ̄j(t) in the
fuzzy set M̄ij. h̄i(θ̄ (t)) satisfies

h̄i(θ̄ (t)) ≥ 0,
l∑
i=1

h̄i(θ̄ (t)) = 1 (4)

Here, we make the following assumptions.
Assumption 1: The nonlinearities fi(t, x(t), x(t−τ (t))) are

assumed to satisfy the following condition:

‖fi(t, x(t), x(t − τ (t)))‖ ≤ σ1i + σ2i ‖y(t)‖

+ σ3i ‖y(t − τ (t))‖ (5)

where σ1i, σ2i and σ3i are unknown positive constants.
Assumption 2: 1Hi(t) are time-varying matrix represent-

ing norm-bounded parameter uncertainty and are assumed to
be of the following form:

1Hi(t) = MiF(t)Nwi (6)

where Mi and Nwi are known real constant matrices.
F(t) ∈ <

f1×f2 is unknown matrix function satisfying
FT (t)F(t) ≤ I .
Assumption 3: The external disturbance w(t) is bounded

and satisfies

‖w(t)‖ ≤ ϑ (7)

where ϑ is an unknown positive real constant.
In order to facilitate the development of the subsequent

results, we introduce some definitions and lemmas. Firstly,
consider the following descriptor system

Eẋ(t) = Ax(t)+ Adx(t − τ (t))

x(t) = ϕ(t), t ∈ [−τM , 0] (8)

Definition 1 [1]:
(1) The system (8) is said to be regular if det(sE−A) is not

identically zero.
(2) The system (8) is said to be impulse free if deg(det(sE−

A)) = rank(E).
(3) The system (8) is said to be admissible if it is regular,

impulse-free and stable.
Definition 2 [49]: The system (8) is said to be reg-

ular and impulse free if the pair (E,A) is regular and
impulse free. The system (8) is said to be asymptotically
stable if for any ε̄ > 0 there exists a scalar δ(ε̄) > 0
such that, for any compatible initial condition χ (t) with
sup−τM<t≤0 ‖χ (t)‖ < δ(ε̄), the solution x(t) of the system (8)
satisfies ‖x(t)‖ < ε̄ for t ≥ 0. Furthermore x(t) → 0,
t →∞.

The system (8) may have an impulsive solution, how-
ever, the regularity and non-impulse of (E,A) guarantee the
existence and uniqueness of impulse free solution to (8)
on [0,∞).
Lemma 1 [20]: For any constant matrix H > 0,

any scalar τM and τm with 0 < τm < τM , and vec-
tor function x(t) :

[
−τM , −τm

]
→ <

n such that the

integrals concerned are well defined, then the following
holds

−(τM − τm)
∫ t−τm

t−τM
xT (z)Hx(z)dz

≤ −

∫ t−τm

t−τM
xT (z)dzH

∫ t−τm

t−τM
x(z)dz (9)

Lemma 2 [50]: Given matrices M̃ , Ñ and Q̄ of appropri-
ate dimensions and with Q̄ symmetrical

Q̄+ M̃1Ñ + ÑT1T M̃T < 0

for any 1 satisfying 1T1 ≤ I , if and only if there exists a
scalar ξ > 0 such that

Q̄+ ξM̃M̃T
+ ξ−1ÑT Ñ < 0 (10)

Lemma 3 [51]: For a symmetric matrix P ∈ <n×n and
a singular matrix E = ELETR . EL ∈ <

n×r , ER ∈ <n×r

are full column rank. There exist nonsingular matrix X ∈
<
(n−r)×(n−r) such that PE + ŪTXV̄ T is nonsingular where

ŪT
∈ <

n×(n−r), V̄ ∈ <n×(n−r) have full column rank and
satisfying ET ŪT

= 0, EV̄ = 0 respectively. Then we can get
the following equation

(PE + ŪTXV̄ T )−1 = P̄ET + V̄ X̄ Ū

where P̄ is a symmetric matrix and X̄ is a nonsingular matrix,
and

X̄ = (V̄ T V̄ )−1X−1(UUT )−1, ETR P̄ER = (ETL PEL)
−1

III. SLIDING MODE OBSERVER DESIGN
In this section, a SMO design method is proposed for the
T-S fuzzy descriptor system, which involves four steps. The
first one is to construct a SMO for system(2). In the sec-
ond, a novel sliding surface is designed for the error sys-
tem. Thirdly, sufficient conditions are proposed to ensure the
admissibility of the sliding mode dynamic. Finally, a SMC
law is synthesized such that the reachability condition can be
guaranteed.

A. CONSTRUCTION OF SLIDING MODE OBSERVER
In this paper, we will consider the following sliding mode
observer:

Fuzzy rule i: IF θ̄1(t) is M̄i1 and . . . and θ̄g(t) is M̄ig, THEN

E ˙̂x(t) = Aix̂(t)+ Adix̂(t − τ (t))+ Bu(t)

+Li(y(t)− ŷ(t))+ Bv(t)

ŷ(t) = Cx̂(t)

x̂(t) = φ̃(t), t ∈ [−τM , 0] (11)

where x̂(t) is the state estimation of x(t), ŷ(t) is the output of
the observer, Li ∈ <n×p are the SMOgain to be designed, φ̃(t)
is the initial function and v(t) is the nonlinear input. By fuzzy
blending, the overall T-S fuzzy descriptor SMO system can
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be expressed as follows:

E ˙̂x(t) =
l∑
i=1

h̄i(θ̄ (t)){Aix̂(t)+ Adix̂(t − τ (t))+ Bu(t)

+Li(y(t)− ŷ(t))+ Bv(t)}

ŷ(t) = Cx̂(t)

x̂(t) = φ̃(t), t ∈ [−τM , 0] (12)

We define e(t) = x(t)−x̂(t) and ey(t) = y(t)−ŷ(t) = Ce(t),
which represent the estimation error and the output error
respectively. Then the error system can be obtained.

Eė(t) =
l∑
i=1

h̄i(θ̄ (t)){(Ai − LiC)e(t)+ Adie(t − τ (t))

+Bfi(t, x(t), x(t − τ (t)))− Bv(t)

+ (Hi +1Hi(t))w(t)} (13)

B. SLIDING SURFACE DESIGN FOR THE ERROR SYSTEM
Here, the following integral-type sliding surface is con-
structed for the error system.

s(t) = ḠEe(t)+ Ḡ
∫ t

0

l∑
i=1

h̄i(θ̄ (z))(LiCe(z))dz (14)

where Ḡ ∈ <m×n is known matrix satisfying det(ḠB) 6= 0

and rank
[
ḠE
C

]
= rank(C).

Remark 1: By setting the initial value of the integrator,
the initial state of the system is on the sliding surface from
the beginning such that the robustness and fast response of the
system can be guaranteed. In addition, for the convenience of
calculating, we add LiCe(t) to s(t). Following these reasons,
we design the integral-type sliding surface as (14).

Remark 2: rank
[
ḠE
C

]
= rank(C) is provided to guar-

antee that there exists a matrix S such that ḠE = SC [9].
In practical applications, the state variables are unknown.
In other words, we can not use the estimation error directly.
Since ey(t) = y(t)− ŷ(t) = Ce(t). Therefore we can use ey(t)
instead of e(t), such that

s(t) = Sey(t)+ Ḡ
∫ t

0

l∑
i=1

h̄i(θ̄ (z))(Liey(z))dz (15)

can be used in the SMO design.
Remark 3: From (15), we can get the following one.

s(t) = Sy(t)− SCx̂(t)

+ Ḡ
∫ t

0

l∑
i=1

h̄i(θ̄ (z))(Liy(z)− LiCx̂(z))dz

Since y(t) is measurable, s(t) depends on x̂(t). By design-
ing Li, the solution of x̂(t) is unique. Therefore, the result of
the solution of s(t) is the only one.

According to SMC theory, when the sliding motion takes
place, we have s(t) = 0 and ṡ(t) = 0.

ṡ(t) = Ḡ
l∑
i=1

h̄i(θ̄ (t)){Aie(t)+ Adie(t − τ (t))− Bv(t)

+Bfi(t, x(t), x(t − τ (t)))+ (Hi +1Hi(t))w(t)}

Then, from ṡ(t) = 0, the equivalent control law can be
given by:

veq(t) = (ḠB)−1Ḡ
l∑
i=1

h̄i(θ̄ (t)){Aie(t)+ Adie(t − τ (t))

+ (Hi +1Hi(t))w(t)}

+

l∑
i=1

h̄i(θ̄ (t))fi(t, x(t), x(t − τ (t))) (16)

By substituting the equivalent control law (16) into (13),
the sliding mode dynamic can be obtained.

Eė(t) =
l∑
i=1

h̄i(θ̄ (t)){(RAi − LiC)e(t)+RAdie(t − τ (t))

+R(Hi +1Hi(t))w(t)} (17)

where R = I − B(ḠB)−1Ḡ.

C. ADMISSIBILITY ANALYSIS
In this subsection, we will discuss the admissibility of
system (17) and present some delay-dependent sufficient
LMI conditions.

1) NOMINAL CASE
First of all, we analyze the nominal case of (17) is admissible
with H∞ performance.
Theorem 1: For given positive scalars τm, τa, τM and γ̄ ,

the nominal case of (17) is admissible with H∞ performance
index γ , if there exist matrices P > 0, Q1 > 0, Q2 > 0,
Q3 > 0, Z1 > 0, Z2 > 0, X , such that the following LMI hold

0̃i =

0i τm0̃12iZ1 τd 0̃12iZ2
∗ −Z1 0
∗ ∗ −Z2

 < 0 (18)

where

0i =


011i 0 013i ETZ1E 015i
∗ 022 ETZ2E 0 0
∗ ∗ 033 ETZ2E 0
∗ ∗ ∗ 044 0
∗ ∗ ∗ ∗ −γ̄ I


and 011i = sym(PT (RAi − LiC)) − ETZ1E + CTC +
Q1 + Q2 + Q3, 013i = PTRAdi, 015i = PTRHi, 022 =
−Q1 − ETZ2E, 033 = −(1− τa)Q2 − 2ETZ2E, 044 =
−Q3 − ETZ1E − ETZ2E, P = PE + ŪTXV̄ T , γ̄ = γ 2,
0̃12i =

[
RAi − LiC 0 RAdi 0 RHi

]T .
Proof: Firstly, we prove the regularity and the impulse-

free of the the nominal case (17). From (18), it is easy to
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see that

011i = sym(PT (RAi − LiC))− ETZ1E + CTC

+ (Q1 + Q2 + Q3) < 0 (19)

Since Q1 > 0, Q2 > 0, Q3 > 0 and CTC ≥ 0, we can get

sym(PT (RAi − LiC))− ETZ1E < 0 (20)

In addition, we know that rank(E) = r , there must exist
two invertible matrices U ∈ <n×n and V ∈ <

n×n such
that

Ē = UEV =
[
Ir 0
0 0

]
Then, we define Ai = RAi − LiC and

UAiV =
[
¯Ai,11 ¯Ai,12
¯Ai,21 ¯Ai,22

]
,

U−TPU−1 =
[
P̄11 P̄12
P̄21 P̄22

]
U−TZ1U−1 =

[
Z̄1,11 Z̄1,12
Z̄1,21 Z̄1,22

]
, VT V̄ =

[
V̄1
V̄2

]
ŪU−1 = Ū1

[
0 In−r

]
Pre- and post-multiplying (20) by VT and V , respectively,
we can get the following inequality.[

• •

• V̄2XT Ū1 ¯Ai,22 + ¯A T
i,22Ū

T
1 XV̄

T
2

]
< 0 (21)

where • represents the terms that are not relevant to our
discussion. It is obvious that

V̄2XT Ū1 ¯Ai,22 + ¯A T
i,22Ū

T
1 XV̄

T
2 < 0

Since (4) holds, we have V̄2XT Ū1

(
l∑
i=1

h̄i(θ̄ (t)) ¯Ai,22

)
+(

l∑
i=1

h̄i(θ̄ (t)) ¯A T
i,22

)
ŪT
1 XV̄

T
2 < 0. Therefore, we can

deduce that
l∑
i=1

h̄i(θ̄ (t)) ¯Ai,22 is nonsingular. According to

Definition 1, the nominal case of system (17) is regular and
impulse free.

Next, we will show that the nominal case of system (17)
with w(t) = 0 is asymptotically stable. Construct a
Lyapunov-Krasovskii functional as:

V (t) = eT (t)ETPEe(t)+
∫ t

t−τM
eT (z)Q1e(z)dz

+

∫ t

t−τ (t)
eT (z)Q2e(z)dz+

∫ t

t−τm
eT (z)Q3e(z)dz

+ τm

∫ 0

−τm

∫ t

t+θ
ėT (z)ETZ1Eė(z)dzdθ

+ τd

∫
−τm

−τM

∫ t

t+θ
ėT (z)ETZ2Eė(z)dzdθ (22)

where τd = τM − τm. Taking the time derivative of V (t),
we have

V̇ (t) ≤ 2eT (t)ETPEė(t)+ eT (t)(Q1 + Q2 + Q3)e(t)

− eT (t − τM )Q1e(t − τM )− eT (t − τm)Q3e(t − τm)

− (1− τa)eT (t − τ (t))Q2e(t − τ (t))

+ τ 2mė
T (t)ETZ1Eė(t)+ τ 2d ė

T (t)ETZ2Eė(t)

− τm

∫ t

t−τm
ėT (z)ETZ1Eė(z)dz

− τd

∫ t−τm

t−τM
ėT (z)ETZ2Eė(z)dz (23)

According to (23), the following inequality can be obtained.

−τd

∫ t−τm

t−τM
H̄(z)dz = −τd

∫ t−τ (t)

t−τM
H̄(z)dz

− τd

∫ t−τm

t−τ (t)
H̄(z)dz

≤ −(τM − τ (t))
∫ t−τ (t)

t−τM
H̄(z)dz

− (τ (t)− τm)
∫ t−τm

t−τ (t)
H̄(z)dz (24)

where H̄(z) = ėT (z)ETZ2Eė(z). Then according to
Lemma 1 and Newton-Leibniz formula, we have

−τm

∫ t

t−τm
ėT (z)ETZ1Eė(z)dz

≤ −eT (t)ETZ1Ee(t)

+ 2eT (t)ETZ1Ee(t − τm)

− eT (t − τm)ETZ1Ee(t − τm) (25)

and

−τd

∫ t−τm

t−τM
H̄(z)dz

≤ −2eT (t − τ (t))ETZ2Ee(t − τ (t))

− eT (t − τM )ETZ2Ee(t − τM )

− eT (t − τm)ETZ2Ee(t − τm)

+ 2eT (t − τ (t))ETZ2Ee(t − τM )

+ 2eT (t − τ (t))ETZ2Ee(t − τm) (26)

In addition, according to Lemma 3 and (23), (25), (26),
we can obtain

V̇ (t) ≤
l∑
i=1

h̄i(θ̄ (t))ηT1 (t)(8i + τm8̃12iZ1τm8̃T
12i

+ τd8̃12iZ2τd8̃T
12i)η1(t)

where

8i =


811i 0 813i ETZ1E
∗ 822 ETZ2E 0
∗ ∗ 833 ETZ2E
∗ ∗ ∗ 844
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and 811i = sym(PT (RAi − LiC)) + (Q1 + Q2 +

Q3) − ETZ1E , 813i = PTRAdi, 822 = −Q1 − ETZ2E ,
833 = −(1− τa)Q2 − 2ETZ2E , 844 = −Q3 − ETZ1E −
ETZ2E , 8̃12i =

[
RAi − LiC 0 RAdi 0

]T , η1(t) =[
eT (t) eT (t − τM ) eT (t − τ (t)) eT (t − τm)

]T .
Using Schur complement, we can obtain that if 8̃i < 0

hold, then V̇ (t) < 0.

8̃i =

8i τm8̃12iZ1 τd8̃12iZ2
∗ −Z1 0
∗ ∗ −Z2


From (18), it is easy to see that 8̃i < 0. Hence,

V̇ (t) < 0, which implies that the nominal case of system (17)
with w(t) = 0 is asymptotically stable.

Let us analyze the H∞ performance. Our purpose is
to ensure the nominal case of system (17) is admis-
sible with the following specified H∞ norm upper
bound ∫

∞

t0
eTy (t)ey(t)dt <

∫
∞

t0
γ 2wT (t)w(t)dt (27)

for all nonzero w(t) belong to L2 [0,∞) under zero initial
condition e(t̃) = 0, for all t̃ ∈ [tr , t0] where t0 = tr + τM and
tr is the time when the sliding surface is reached.

For this purpose, consider the performance index:

J (t) = V̇ (t)+ eTy (t)ey(t)− γ
2wT (t)w(t) (28)

Following the same procedure as used above, we can obtain
that if 0̃i < 0 hold, then J (t) < 0. Under the zero initial
condition, integrating both sides of the inequality V̇ (t) <
−eTy (t)ey(t) + γ 2wT (t)w(t) in t form t0 to ∞, we obtain
that ∫

∞

t0
eTy (t)ey(t)dt <

∫
∞

t0
γ 2wT (t)w(t)− V (∞)

Since V (∞) ≥ 0, so we have∫
∞

t0
eTy (t)ey(t)dt <

∫
∞

t0
γ 2wT (t)w(t)

Thus, the nominal case of system (17) is asymptotically
stable with H∞ performance. Thus completes the proof. �

2) UNCERTAIN CASE
Based on Theorem 1, we develop a delay-dependent suffi-
cient condition such that system (17) is admissible with H∞
performance.
Theorem 2: For given positive scalars τm, τa, τM and γ̄ ,

system (17) is admissible with H∞ performance index γ ,
if there exist matrices P > 0, Q1 > 0, Q2 > 0, Q3 > 0,
Z1 > 0, Z2 > 0, X and positive scalar ε, such that the
following LMI hold 0̃i 4̄12i ε4̄T

13i
∗ −εI 0
∗ ∗ −εI

 < 0 (29)

where

4̄12i =
[
P 0 0 0 0 τmZ1 τdZ2

]T RMi

4̄13i =
[
0 0 0 0 Nwi 0 0

]
Proof: Replacing Hi by Hi+1Hi(t), we can obtain that

system (17) is admissible with H∞ performance if

0̃i + sym(4̄12iF(t)4̄13i) < 0 (30)

Then, by using Lemma 2 and the Schur complement,
(29) can be obtained. Thus completes the proof. �

3) ANALYSIS OF GAIN MATRIX
In this subsection, we focus on the determination of gain
matrix Li.
Theorem 3: For given positive scalars τm, τa, τM , γ̄ , sys-

tem (17) is admissible with H∞ performance index γ , if there
exist matrices P > 0, Q1 > 0, Q2 > 0, Q3 > 0, Z1 > 0,
Z2 > 0, X , Ki and positive scalars ε, such that the following
LMI hold

�i τm�̃12i τd �̃12i 2̃1i 2̃2i

∗ �̃22 0 τmPTRMi 0
∗ ∗ �̃33 τdPTRMi 0
∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ −εI

 < 0

(31)

where

�i =


�11i 0 �13i ETZ1E �15i
∗ �22 ETZ2E 0 0
∗ ∗ �33 ETZ2E 0
∗ ∗ ∗ �44 0
∗ ∗ ∗ ∗ −γ̄ I


and �11i = sym(PTRAi − KT

i C) − ETZ1E + CTC +
Q1 + Q2 + Q3, �13i = PTRAdi, �15i = PTRHi,
�22 = −Q1 − ETZ2E, �33 = −(1− τa)Q2 − 2ETZ2E,
�44 = −Q3 − ETZ1E − ETZ2E, �̃22 = Z1 − sym(P),
�̃33 = Z2 − sym(P), 2̃1i =

[
MT
i RTP 0 0 0 0

]T ,
2̃2i =

[
0 0 0 0 εNwi

]T , Ki = LTi P , �̃12i =[
PTRAi −Ki

TC 0 PTRAdi 0 PTRHi
]T
.

Proof: Since Zī > 0, (ī = 1, 2), it is easy to see that
(P − Zī)TZ

−1
ī

(P − Zī) ≥ 0, which implies that

−PTZ−1
ī

P ≤ Zī − sym(P) (32)

By utilizing (32) and performing congruence transforma-
tions to (31) by

diag{I(4n+q),P−T ,P−T , If1 , If2 }

and

diag{I(4n+q),Z1,Z2, If1 , If2 }

We can obtain the inequality (29). Then the SMO gain
matrix Li can be obtained by Li = P−TKT

i . Thus completes
the proof. �

VOLUME 6, 2018 46007



Q. Zhang et al.: Robust Adaptive SMO Design for T-S Fuzzy Descriptor Systems With Time-Varying Delay

D. ADAPTIVE SLIDING MODE CONTROL LAW SYNTHESIS
In this subsection, we will design a novel adaptive SMC law,
such that the trajectories of the system (13) can be driven onto
the sliding surface s(t) = 0. If (31) is solvable, then it implies
that e(t) and e(t − τ (t)) are bounded, and for some small
λ1 > 0 and λ2 > 0, we have

sup
0≤t<∞

‖e(t)‖ ≤ λ1, sup
0≤t<∞

‖e(t − τ (t))‖ ≤ λ2 (33)

Here the adaptive control method is applied to estimate the
unknown parameters. Firstly, we define the adaptive param-
eters λ̂1(t), λ̂2(t), σ̂1i(t), σ̂2i(t), σ̂3i(t), ϑ̂(t) to estimate λ1,
λ2, σ1i, σ2i, σ3i, ϑ . Then the estimation errors are denoted as
λ̃1(t) = λ̂1(t)− λ1, λ̃2(t) = λ̂2(t)− λ2, σ̃1i(t) = σ̂1i(t)− σ1i,
σ̃2i(t) = σ̂2i(t)−σ2i, σ̃3i(t) = σ̂3i(t)−σ3i and ϑ̃(t) = ϑ̂(t)−ϑ .
Theorem 4: For given appropriate matrix T , the trajecto-

ries of the T-S fuzzy descriptor system (13) can be driven onto
the sliding surface s(t) = 0 by the following adaptive SMC
law:

v(t) = (ḠB)−1
l∑
i=1

h̄i(θ̄ (t)){−ḠAiT Ce(t)

− ḠAdiT Ce(t − τ (t))+ ρi(t)
s(t)
‖s(t)‖

} (34)

where

ρi(t) =
∥∥ḠAi + ḠAiT C

∥∥ λ̂1(t)+ ∥∥ḠAdi + ḠAdiT C
∥∥ λ̂2(t)

+
∥∥ḠB∥∥ σ̂1i(t)+ ∥∥ḠB∥∥ ‖y(t)‖ σ̂2i(t)

+
∥∥ḠB∥∥ ‖y(t − τ (t))‖ σ̂3i(t)

+ (
∥∥ḠHi∥∥+ ∥∥ḠMi

∥∥ ‖Nwi‖)ϑ̂(t)+ ε0 (35)

with the adaptive laws

˙̂
λ1(t) = q1

l∑
i=1

h̄i(θ̄ (t)){
∥∥ḠAi + ḠAiT C

∥∥} ‖s(t)‖
˙̂
λ2(t) = q2

l∑
i=1

h̄i(θ̄ (t)){
∥∥ḠAdi + ḠAdiT C

∥∥} ‖s(t)‖
˙̂σ1i(t) = h̄i(θ̄ (t))q3i

∥∥ḠB∥∥ ‖s(t)‖
˙̂σ2i(t) = h̄i(θ̄ (t))q4i

∥∥ḠB∥∥ ‖y(t)‖ ‖s(t)‖
˙̂σ3i(t) = h̄i(θ̄ (t))q5i

∥∥ḠB∥∥ ‖y(t − τ (t))‖ ‖s(t)‖
˙̂
ϑ(t) = q6

l∑
i=1

h̄i(θ̄ (t)){(
∥∥ḠHi∥∥+ ∥∥ḠMi

∥∥ ‖Nwi‖)} ‖s(t)‖
(36)

and ε0 is a small positive constant, q1, q2, q3i, q4i, q5i, q6 are
designed constants.

Proof: We choose the following Lyapunov functional
candidate

Vs(t) =
1
2
sT (t)s(t)+

1
2q1

λ̃21(t)+
1
2q2

λ̃22(t)

+

l∑
i=1

{
1

2q3i
σ̃ 2
1i(t)} +

l∑
i=1

{
1

2q4i
σ̃ 2
2i(t)}

+

l∑
i=1

{
1

2q5i
σ̃ 2
3i(t)} +

1
2q6

ϑ̃2(t) (37)

Then, based on (17) and (37), we can obtain that

V̇s(t) = sT (t)
l∑
i=1

h̄i(θ̄ (t)){ḠAie(t)+ ḠAiT ey(t)

+ ḠAdie(t − τ (t))+ ḠAdiT ey(t − τ (t))
+ ḠBfi(t, x(t), x(t − τ (t)))+ Ḡ(Hi +1Hi)w(t)
− ḠAiT ey(t)− ḠAdiT ey(t − τ (t))} − sT (t)ḠBv(t)

+
1
q1
˙̂
λ1(t)λ̃1(t)+

1
q2
˙̂
λ2(t)λ̃2(t)+

1
q6
˙̂
ϑ(t)ϑ̃(t)

+

l∑
i=1

{
1
q3i
˙̂σ1i(t)σ̃1i(t)} +

l∑
i=1

{
1
q4i
˙̂σ2i(t)σ̃2i(t)}

+

l∑
i=1

{
1
q5i
˙̂σ3i(t)σ̃3i(t)} (38)

It follows from (34), (35), (36) and (38) that

V̇s(t) ≤ −ε0 ‖s(t)‖ < 0, ∀ ‖s(t)‖ 6= 0 (39)

which implies that the trajectories of the T-S fuzzy descriptor
system (15) can be driven onto the sliding surface s(t) = 0 in
finite time, thus ends the proof. �
Remark 4: In this paper, our main purpose is to design

a state feedback control law for the error system such that
the closed-loop system is admissible. However, in engineer-
ing applications, the estimation error variables are unknown.
So we have to use ey(t) in stead of e(t). Here, we do not use
the assumption that the fast subsystem of descriptor system is
observable [47]. We introduce an appropriate matrix T such
that ḠAiT ey(t) and ḠAdiT ey(t − τ (t)) can be obtained. This
reduces the system’s constraints.
Remark 5: Our theorems proposed in this paper are also

feasible for normal system. In fact, the normal system is a
special case of the descriptor system, and when we set E = I ,
the descriptor system becomes a normal system.

IV. SMO BASED SLIDING MODE CONTROL
In this section, a SMO based SMC strategy is developed for
the T-S fuzzy descriptor system (2).

A. SLIDING SURFACE DESIGN FOR THE SMO SYSTEM
Here, we consider the following novel integral-type sliding
function for the SMO system (12).

s1(t) = G1Ex̂(t)− G1

∫ t

0

l∑
i=1

h̄i(θ̄ (t)){(Ai + BQi)x̂(z)

+LiCe(z)}dz (40)

where G1 ∈ <
m×n is known matrix satisfying det(G1B) 6= 0

and Li are defined in (12). Qi ∈ <
m×n is chosen so that Ai +

BQi is Hurwitz. This requires that (Ai,B) are controllable.
Remark 6: In order to avoid the complex nonlinear terms

in the following derivations, we have added LiCe(t) in (40).
Since ey(t) = y(t) − ŷ(t) = Ce(t). Therefore the sliding
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surface (40) can be written as

s1(t) = G1Ex̂(t)− G1

∫ t

0

l∑
i=1

h̄i(θ̄ (t)){(Ai + BQi)x̂(z)

+Li(y(z)− Cx̂(z))}dz
According to SMC theory, when the sliding motion takes
place, we have s1(t) = 0 and ṡ1(t) = 0. Thus, from ṡ1(t) = 0,
the equivalent control law can be given by:

ueq(t) = −(G1B)−1G1

l∑
i=1

h̄i(θ̄ (t)){−BQix̂(t)

+Adix̂(t − τ (t))} − v(t) (41)

Furthermore, by substituting the equivalent control
law (41) into (12), we can obtain the following equation.

E ˙̂x(t) =
l∑
i=1

h̄i(θ̄ (t)){(Ai + BQi)x̂(t)+ R1Adix̂(t − τ (t))

+LiCe(t)} (42)

where R1 = I − B(G1B)−1G1.

B. ADMISSIBILITY ANALYSIS OF THE SLIDING MOTION
In this subsection, we will analyze the admissibility of (17)
and (42) simultaneously.
Theorem 5: For given positive scalars τm, τa, τM and γ̄1,

system (17) and (42) are admissible with H∞ performance
index γ1, if there exist matrices P1 > 0, Q̄1 > 0, Q̄2 > 0,
Q̄3 > 0, Q̄4 > 0, Z̄1 > 0, Z̄2 > 0, X̃ and positive scalar ε̄,
such that the following LMI holdϒi 4̃12i ε̄4̃T

13i
∗ −ε̄I 0
∗ ∗ −ε̄I

 < 0 (43)

where

ϒi =

 ϒ̃1i τmϒ̃
T
2iZ̄1 τmϒ̃

T
3iZ̄2

∗ −Z̄1 0
∗ ∗ −Z̄2


4̃12i =

[
P̄ 0 0 0 0 0 0 τmZ̄1 0

]T RMi

4̃13i =
[
0 0 0 0 0 0 Nwi 0 0

]
.

and ϒ̃1i, as shown at the top of the next page, with ϒ11i =

sym(P̄T (RAi − LiC)) + Q̄1 + Q̄2 − ET Z̄1E + CTC,
ϒ22 = −(1 − τa)Q̄1, ϒ33 = −Q̄2 − ET Z̄1E, ϒ44i =

sym(P̄T (Ai + BQi)) + Q̄3 + Q̄4 − ET Z̄2E, ϒ55 = −(1 −
τa)Q̄3, ϒ66 = −Q̄4 − ET Z̄2E, P̄ = P1E + ŨT X̃ Ṽ T ,
γ̄1 = γ 2

1 , ϒ̃2i =
[
RAi − LiC RAdi 0 0 0 0 RHi

]
, ϒ̃3i =[

LiC 0 0 Ai + BQi R1Adi 0 0
]
.

Proof: Firstly, we prove the regularity and the no-
impulse of (17) and (42). According to (43), we have ϒ11i <

0 and ϒ44i < 0. Since Q̄1 > 0, Q̄2 > 0, Q̄3 > 0, Q̄4 > 0,
Z̄1 > 0, Z̄2 > 0 and CTC ≥ 0, we can get the following
inequalities.

sym(P̄T (RAi − LiC))− ET Z̄1E < 0 (44)

and

sym(P̄T (Ai + BQi))− ET Z̄2E < 0 (45)

In addition, since rank(E) = r , there must exist two
invertible matrices Ū ∈ <n×n and V̄ ∈ <n×n such that

ŪEV̄ =
[
Ir 0
0 0

]
Then we define Ai = RAi − LiC , Ai = Ai + BQi and

ŪAiV̄ =
[
˜Ai,11 ˜Ai,12
˜Ai,21 ˜Ai,22

]
,

ŪAiV̄ =
[
Ãi,11 Ãi,12

Ãi,21 Ãi,22

]
Ū−TP1Ū−1 =

[
P̄11 P̄12
P̄21 P̄22

]
, V̄T Ṽ =

[
Ṽ1
Ṽ2

]
Ū−T Z̄2Ū−1 =

[
Z̃2,11 Z̃2,12
Z̃2,21 Z̃2,22

]
, Ũ Ū−1 = Ũ1

[
0 In−r

]
Ū−T Z̄1Ū−1 =

[
Z̃1,11 Z̃1,12
Z̃1,21 Z̃1,22

]

Pre- and post-multiplying (44) and (45) by VT and V respec-
tively, we can get the following inequality.[

• •

• Ṽ2X̃T Ũ1 ˜Ai,22 + ˜A T
i,22Ũ

T
1 X̃ Ṽ

T
2

]
< 0 (46)[

• •

• Ṽ2X̃T Ũ1Ãi,22 + ÃT
i,22Ũ

T
1 X̃ Ṽ

T
2

]
< 0 (47)

where • represents the terms that are not relevant to our
discussion. (46) implies that ˜Ai,22 and Ãi,22 are nonsingular.
Therefore according to Definition 1, system (17) and (42) are
regular and impulse free.
Next, we will prove that (17) and (42) are asymptoti-

cally stable. Construct the following Lyapunov-Krasovskii
functional.

V(t) = V1(t)+ V2(t) (48)

where

V1(t) = eT (t)ETP1Ee(t)+
∫ t

t−τ (t)
eT (z)Q̄1e(z)dz

+

∫ t

t−τm
eT (z)Q̄2e(z)dz

+ τm

∫ 0

−τm

∫ t

t+θ
ėT (z)ET Z̄1Eė(z)dzdθ

V2(t) = x̂T (t)ETP1Ex̂(t)+
∫ t

t−τ (t)
x̂T (z)Q̄3x̂(z)dz

+

∫ t

t−τm
x̂T (z)Q̄4x̂(z)dz

+ τm

∫ 0

−τm

∫ t

t+θ

˙̂x
T
(z)ET Z̄2E ˙̂x(z)dzdθ
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ϒ̃1i =



ϒ11i P̄TRAdi 2ET Z̄1E CTLTi P̄
∗ ϒ22 0 0
∗ ∗ ϒ33 0
∗ ∗ ∗ ϒ44i
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

0 0 P̄TRHi
0 0 0
0 0 0

P̄TR1Adi 2ET Z̄2E 0
ϒ55 0 0
∗ ϒ66 0
∗ ∗ −γ̄1



Then, the time-derivative of V(t) can be obtained.

V̇(t) ≤ 2eT (t)ETP1Eė(t)+ eT (t)Q̄1e(t)+ eT (t)Q̄2e(t)

− (1− τa)eT (t − τ (t))Q̄1e(t − τ (t))

− eT (t − τm)Q̄2e(t − τm)+ τ 2mė
T (t)ET Z̄1Eė(t)

− τm

∫ t

t−τm
ėT (z)ET Z̄1Eė(z)dz

+ 2x̂T (t)ETP1E ˙̂x(t)+ x̂T (t)Q̄3x̂(t)+ x̂T (t)Q̄4x̂(t)

− (1− τa)x̂T (t − τ (t))Q̄2x̂(t − τ (t))

− x̂T (t − τm)Q̄4x̂(t − τm)+ τ 2m ˙̂x
T
(t)ET Z̄2E ˙̂x(t)

− τm

∫ t

t−τm

˙̂x
T
(z)ET Z̄2E ˙̂x(z)dz

Considering the following specified H∞ norm upper bound∫
∞

t3
eTy (t)ey(t)dt <

∫
∞

t3
γ 2
1 w

T (t)w(t)dt

for all nonzero w(t) belong to L2 [0,∞) under zero initial
condition e(t̃1) = 0 and x̂(t̃1) = 0, for all t̃1 ∈ [t2, t3] where
t3 = t1 + τM , t1 is the time when the sliding surface s1(t) is
reached for x̂(t) and t2 is the timewhen the sliding surface s(t)
is reached for e(t). We also assume that t1 ≥ t2. Of course,
the case of t1 < t2 is also the same processing method. For
this purpose, consider the performance index:

J (t) = V̇(t)+ eTy (t)ey(t)− γ 2
1 w

T (t)w(t)

Following the same procedure as used above, we can obtain
that if (43) hold, then J (t) < 0. Under the zero initial
condition, integrating both sides of the inequality V̇(t) <
−eTy (t)ey(t)+ γ

2
1 w

T (t)w(t) in t form t3 to∞, we obtain that∫
∞

t3
eTy (t)ey(t)dt <

∫
∞

t3
γ 2
1 w

T (t)w(t)− V (∞)

Since V (∞) ≥ 0, so we have∫
∞

t3
eTy (t)ey(t)dt <

∫
∞

t3
γ 2
1 w

T (t)w(t)

Hence (17) and (42) are asymptotically stable with H∞
performance. According to Definition 1 and Definition 2,
(17) and (42) are admissible. Thus completes the proof. �
Theorem 6: For given positive scalars τm, τa, τM , γ̄1, sys-

tem (17) and (42) are admissible withH∞ performance index
γ1, if there exist matrices P1 > 0, Q̄1 > 0, Q̄2 > 0, Q̄3 > 0,

Q̄4 > 0, Z̄1 > 0, Z̄2 > 0, X̃ and positive scalars ε̄, such that
the following LMI hold
ϒ̃1i τmϒ̃

T
2iP̄ τmϒ̃

T
3iP̄ ϒ̃4i ε̄ϒ̃5i

∗ ϒ̃22 0 τmP̄TRMi 0
∗ ∗ ϒ̃33 0 0
∗ ∗ ∗ −ε̄I 0
∗ ∗ ∗ ∗ −ε̄I

 < 0

(49)

where ϒ̃4i =
[
MT
i RT P̄ 0 0 0 0 0 0

]T
, ϒ̃22 = Z̄1−sym(P̄),

ϒ̃5i =
[
0 0 0 0 0 0 Nwi

]T , ϒ̃33 = Z̄2 − sym(P̄).
Proof: The proof is similar to Theorem 3. Here, we do

not make a detailed proof. By the way, (49) has P̄TLi and
LTi P̄ , we can use the variable K1i = LTi P̄ . Thus the
SMO gain matrix can be obtained by Li = P̄−TKT

1i.
�

C. SLIDING MODE CONTROL LAW SYNTHESIS
In this subsection, we will design a SMC law, such that the
trajectories of (12) can be driven onto the sliding surface
s1(t) = 0.
Theorem 7: For given appropriate matrix T , the trajec-

tories of the T-S fuzzy descriptor system (12) can be driven
onto the sliding surface s1(t) = 0 by the following adaptive
SMC law:

u(t) =
l∑
i=1

h̄i(θ̄ (t)){Qix̂(t)− (G1B)−1G1Adix̂(t − τ (t))

+ (ḠB)−1ḠAiT ey(t)+ (ḠB)−1ḠAdiT ey(t − τ (t))

− (G1B)−1βi
s1(t)
‖s1(t)‖

} (50)

where βi =
∥∥∥(G1B)(ḠB)

−1
∥∥∥ ρi + β0

Proof: We choose the following Lyapunov functional
candidate Vs(t) = 1

2 s
T
1 (t)s1(t) and take the time-derivative of

Vs(t).

V̇s(t) = −sT1
l∑
i=1

h̄i(θ̄ (t))βi
s1(t)
‖s1(t)‖

+ sT1

l∑
i=1

h̄i(θ̄ (t))(G1B)(ḠB)−1ρi
s(t)
‖s(t)‖

It follows from (34), (35), (36) and (50) that

V̇s(t) ≤ −β0 ‖s1(t)‖ < 0, ∀ ‖s1(t)‖ 6= 0 (51)
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which implies that the trajectories of the T-S fuzzy descriptor
system (12) can be driven onto the sliding surface s1(t) = 0
in finite time, thus ends the proof. �

V. ILLUSTRATIVE EXAMPLES
In this section, we will introduce three examples to show the
feasibility of our results.
Example 1: Here, we consider a truck-trailer system [18].

ẋ1(t) = −a
v1 t̄
Ll t0

x1(t)− (1− a)
v1 t̄
Ll t0

x1(t − h)+
v1 t̄
lt0

u(t)

ẋ2(t) = a
v1 t̄
Ll t0

x1(t)+ (1− a)
v1 t̄
Ll t0

x1(t − h)

ẋ3(t) =
v1 t̄
t0

sin
(
x2(t)+ a

v1 t̄
2Ll

x1(t)+ (1− a)
v1 t̄
2Ll

x1(t − h)
)

0 = x2(t)− a
v1 t̄
Ll t0

x1(t)− (1− a)
v1 t̄
Ll t0

x1(t − h)− x4(t)

where x1(t) is the angle difference between the truck and the
trailer, x2(t) is the angle of the trailer, x3(t) is the vertical
position of the rear end of the trailer, x4(t) is a new variable
for the descriptor system, u(t) is the steering angle, a = 0.7
is the retarded coefficient, v1 = −1 is the constant speed of
backing up, l = 2.8 is the length of the truck, and Ll = 5.5 is
the length of the trailer. Furthermore t̄ = 2.0, t0 = 0.5.

In this model, we consider time-varying delay, external
disturbance, nonlinearities and uncertainty simultaneously.
Therefore the following T-S fuzzy descriptor system can be
established.

Eẋ(t) =
2∑
i=1

h̄i(θ̄ (t)){Aix(t)+ Adix(t − τ (t))

+Bi(u(t)+ fi(t))+ (Hi +1Hi(t))w(t)}

y(t) = Cx(t) (52)

where

E =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

,

A1 =



−a
v1 t̄
Ll t0

0 0 0

a
v1 t̄
Ll t0

0 0 0

−a
v21 t̄

2

2Ll t0

v1 t̄
t0

0 0

−a
v1 t̄
Ll t0

1 0 −1



A2 =



−a
v1 t̄
Ll t0

0 0 0

a
v1 t̄
Ll t0

0 0 0

−a
ϕ̄v21 t̄

2

2Ll t0

ϕ̄v1 t̄
t0

0 0

−a
v1 t̄
Ll t0

1 0 −1


, Bi =


v1 t̄
lt0
0
0
0



Ad1 =



−(1− a)
v1 t̄
Ll t0

0 0 0

(1− a)
v1 t̄
Ll t0

0 0 0

(1− a)
v21 t̄

2

2Ll t0
0 0 0

−(1− a)
v1 t̄
Ll t0

0 0 0


, Hi =


0
0
−1
0



Ad2 =



−(1− a)
v1 t̄
Ll t0

0 0 0

(1− a)
v1 t̄
Ll t0

0 0 0

(1− a)
ϕ̄v21 t̄

2

2Ll t0
0 0 0

−(1− a)
v1 t̄
Ll t0

0 0 0


,

C =
[
1 0 0 0
1 0 1 1

]

ϕ̄ =
10t0
π
, Mi =


0
0
0
1

, Nwi = 0.1

For simulation purpose, we take the time-varying delay
τ (t) = 0.3 + 0.1sin(t), the external disturbance w(t) =
4 sin(t)e−0.3t , the system nonlinearities f1(t) = sin(x1(t)) and
f2(t) = sin(x1(t − τ (t))). Furthermore we define

h̄1(θ̄ (t)) =
(
1−

1

1+e(−3(θ̄ (t)−0.5π ))

)(
1

1+e(−3(θ̄ (t)+0.5π ))

)
h̄2(θ̄ (t)) = 1− h̄1(θ̄ (t))

where θ̄ (t) = x2(t)+ a
v1 t̄
2Ll
x1(t)+ (1− a) v1 t̄2Ll

x1(t − τ (t)).
By solving the inequality (36), we can obtain that a feasible

solution is

L1 =


1.1570 1.1938
1.2789 −1.0430
−2.3716 3.6694
−0.5632 0.3185

,

L2 =


0.8723 1.4911
1.6510 −1.4270
−2.5100 3.4389
−0.7978 0.5554


Here, we set Ḡ =

[
−

1
1.429 0 0 0

]
. Thus ḠB = 1

is nonsingular. As we can see, we need to design an
adaptive sliding mode control law v(t) as given in (34)
(35) and (36) such that the closed loop system (17) is
admissible with H∞ performance. Therefore, we take the
matrices

S =
[
−

1
1.429 0

]
, T =


0.5 0
0 0
0 0
−0.5 1
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FIGURE 1. State trajectories. (a) Response and estimation of state x1(t).
(b) Response and estimation of state x2(t). (c) Response and estimation
of state x3(t).

and set the initial conditions ϕ̃(t) =
[
1 0 0 0.509

]T ,
φ̃(t) =

[
0 0 0.1 −0.1365

]T . The states trajectories of
the system (52) and the observer system are displayed
in Fig. 1.

It is observed from Fig. 1 that the SMO system can accu-
rately track the original system.

FIGURE 2. State trajectories of the error system.

FIGURE 3. Switching surface and controller. (a) Sliding mode
controller v (t). (b) Switching surface function s(t).

Fig. 2 depicts the trajectories of the error system. It is
observed from Figure 2 that the estimation error variables
converge to zero quickly. In other words, the error system
can be stabilized by the proposed method. Furthermore,
Fig. 3 plots the switching surface function s(t) and the
sliding mode controller v(t) respectively. Fig. 4 plots the
adaptive parameters. Regarding these results, we can con-
clude that the proposed SMO design method in this paper is
feasible.
Example 2: We have mentioned that our method is suit-

able for normal systems. Therefore, we are going to make a
comparison with the different SMO design method in [22].
Consider the following normal system:

ẋ(t) = Ax(t)+ B(u(t)+ f (t, x(t)))+ (H +1H )w(t)

y(t) = Cx(t) (53)
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FIGURE 4. Adaptive parameters. (a) λ̂1(t) and λ̂2(t). (b) σ̂11(t), σ̂21(t) and
σ̂31(t). (c) σ̂12(t), σ̂22(t) and σ̂32(t).

where

A =


−3 0 0 −14.7
0 0 0 1.2
1 15 0 2
1 0 0 −2

, B =


0
0
0
1



C =
[
0 0 1 0
0 0 0 1

]
, H =


0
0
0
1


In addition, we take for simulation purpose f (t, x(t)) =

sin(x1(t)). The initial conditions ϕ̃(t) =
[
12 3.3 2 2

]T ,
φ̃(t) =

[
0 −1 4 1

]T . In order to compare with the SMO
design method in [22], we set w(t) = 0. Then the state
trajectories of the error systems can be shown in Fig. 5.

From Fig. 5, we can find that the estimation error vari-
ables in both methods converge to zero quickly. However,

FIGURE 5. State trajectories of the error systems. (a) Estimation error
variables e1(t). (b) Estimation error variables e2(t). (c) Estimation error
variables e3(t). (d) Estimation error variables e4(t).

in our method, the estimation error variables converge to zero
faster.

From Fig. 7, it is easy to see that the resulting closed-loop
system of (54) is asymptotically stable.
Example 3: In order to illustrate the feasibility of the

SMO based SMC method. Consider the following T-S fuzzy
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FIGURE 6. State trajectories of the open-loop system. (a) Response of
state x1(t). (b) Response of state x2(t). (c) Response of state x3(t).

descriptor system:

Eẋ(t) =
3∑
i=1

h̄i(θ̄ (t)){Aix(t)+ Adix(t − τ (t))

+B(u(t)+ fi(t))+ (Hi +1Hi)w(t)}

y(t) = Cx(t) (54)

where

E =

 1 0 0
0 1 0
0 0 0

, A1

 0 1 0
0 0 1
−1 −6 0


A2 =

 0 1 0
0 0 1
−1 0 −6

, A3 =

 0 1 0
0 0 1
−1 0 0



FIGURE 7. State trajectories of the closed-loop system. (a) Response of
state x1(t). (b) Response of state x2(t). (c) Response of state x3(t).

Adi =

 0 0 0
0 0 0
1 0 0

, B =

 0
0
1

, Hi =

 0
0
1


C =

[
−0.5 1 −1
0 1 0

]
, Mi =

 0
0
1

 , Nwi = 1

h̄1(θ̄ (t)) =
x22 (t)

6
, h̄2(θ̄ (t)) =

1+ cos(x1(t))
6

h̄3(θ̄ (t)) = 1− h̄1(θ̄ (t))− h̄2(θ̄ (t))

In addition, we assume that the nonlinear functions f1(t) =
sin(x1(t)), f2(t) = sin(x1(t − τ (t))), f3(t) = sin(2x1(t)),
the external disturbance w(t) = sin(t)e−0.3t . The time-
varying delay τ (t) = 0.3 + 0.1 sin(t), thus, τm = 0.2,
τM = 0.4 and τa = 0.1. Then, we give the initial condition
ϕ̃(t) =

[
1 0 −0.18

]T , the state trajectories of the open-loop
system are displayed in Fig. 6.
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FIGURE 8. State trajectories of the error system. (a) Estimation error
variable e1(t). (b) Estimation error variable e2(t). (c) Estimation error
variable e3(t).

It is observed from Fig. 6 that state trajectories of the
open-loop system are not converge to zero. In other words,
the open-loop system (54) is not stable.

By solving the LMI (49), we can obtain the following
feasible solutions of Li.

L1 =

 0.2235 −0.2235
−0.3270 0.2437
−0.9633 0.9205

,
L2 =

−0.0004 0.0275
0.1150 −0.4695
−1.7823 3.6617


L3 =

−0.0526 0.0811
−0.3849 0.2763
−1.0851 1.2368


For convenience, we set Ḡ =

[
0 1 1

]
, G1 =

[
0 0 1

]
,

Q1 =
[
0 0 −1

]
, Q2 =

[
0 −1 0

]
, Q3 =

[
−1 −3 −1

]
.

FIGURE 9. Switching surface and controller. (a) Switching surface
function s(t). (b) Sliding mode controller v (t).

FIGURE 10. Switching surface and controller. (a) Switching surface
function s1(t). (b) Sliding mode controller u(t).

Taking the matrices

S =
[
0 1

]
, T =

 0 0
0 0.5
−1 0.5
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FIGURE 11. Adaptive parameters. (a) λ̂1(t), λ̂2(t) and ϑ̂(t). (b) σ̂11(t),
σ̂21(t) and σ̂31(t). (c) σ̂12(t), σ̂22(t) and σ̂32(t). (d) σ̂13(t), σ̂23(t) and σ̂33(t).

Then given the initial condition φ̃(t) =
[
1 0 −0.55

]T ,
we can obtain the state trajectories of the closed-loop system
and the error system which are depicted in Fig. 7 and Fig. 8.

It can be seen from Fig. 8 that the error system is asymptot-
ically stable. Therefore the designed SMO in this paper can
successfully track the original system.

Fig. 9 and Fig. 10 plot the switching surface function s(t),
the sliding mode controller v(t) and the switching surface
function s1(t), the sliding mode controller u(t) respectively.
Fig. 11 plots the adaptive parameters. Regarding these results,
we can conclude that the proposed results in this paper is
feasible.

VI. CONCLUSION
In this paper, we have presented a robust adaptive SMO
design method and a SMO based adaptive SMC strategy
for T-S fuzzy descriptor systems with time-varying delay.
By taking the SMO gain matrix into account, two integral-
type sliding surfaces were constructed. Then some delay-
dependent sufficient conditions have been obtained, which
guaranteed the sliding motions to be admissible with H∞
performance. New adaptive sliding mode controllers, which
need not to use the assumption that the fast subsystem of
descriptor system is observable, are synthesized for the error
system and the SMO system such that the reachability con-
ditions can be guaranteed. Furthermore, the adaptive control
strategy is applied to estimate the unknown parameters espe-
cially the bounds of e(t) and e(t − τ (t)). Finally, simulation
examples are provided to support our results.

REFERENCES
[1] L. Dai, Singular Control Systems. Berlin, Germany: Springer-Verlag, 1989.
[2] S. Y. Xu, J. Lam, Y. Zou, and J. Z. Li, ‘‘Robust admissibility of time-

varying singular systems with commensurate time delays,’’ Automatica,
vol. 45, no. 11, pp. 2714–2717, Nov. 2009.

[3] Q. L. Zhang, L. Qiao, B. Y. Zhu, and H. G. Zhang, ‘‘Dissipativity
analysis and synthesis for a class of T–S fuzzy descriptor systems,’’
IEEE Trans. Syst., Man, Cybern. Syst., vol. 47, no. 8, pp. 1774–1784,
Aug. 2017.

[4] M. Kchaou, H. Gassara, A. El-Hajjaji, and A. Toumi, ‘‘Dissipativity-based
integral sliding-mode control for a class of Takagi–Sugeno fuzzy singular
systemswith time-varying delay,’’ IET Control Theory Appl., vol. 8, no. 17,
pp. 2045–2054, Aug. 2014.

[5] H. Wang, B. Zhou, R. Lu, and A. Xue, ‘‘New stability and stabilization
criteria for a class of fuzzy singular systems with time-varying delay,’’
J. Franklin Inst., vol. 351, pp. 3766–3781, Jul. 2014.

[6] H. B. Zhang, Y. Y. Shen, and G. Feng, ‘‘Delay-dependent stability andH∞
control for a class of fuzzy descriptor systems with time-delay,’’ Fuzzy Sets
Syst., vol. 160, no. 12, pp. 1689–1707, Jun. 2009.

[7] B. P. Jiang, Y. G. Kao, H. R. Karimi, and C. C. Gao, ‘‘Stability and
stabilization for singular switching semi-Markovian jump systems with
generally uncertain transition rates,’’ IEEE Trans. Autom. Control, to be
published, doi: 10.1109/TAC.2018.2819654.

[8] C. S. Han, G. J. Zhang, L. G.Wu, and Q. S. Zeng, ‘‘Sliding mode control of
T-S fuzzy descriptor systems with time-delay,’’ J. Franklin Inst., vol. 349,
no. 4, pp. 1430–1444, May 2012.

[9] J. Li andQ. Zhang, ‘‘An integral slidingmode control approach to observer-
based stabilization of stochastic Itô descriptor systems,’’ Neurocomputing,
vol. 173, pp. 1330–1340, Jan. 2016.

[10] T. M. Guerra, V. Estrada-Manzo, and Z. Lendek, ‘‘Observer design
for Takagi–Sugeno descriptor models: An LMI approach,’’ Automatica,
vol. 52, pp. 154–159, Feb. 2015.

[11] C. Y. Yang, Q. F. Kong, and Q. L. Zhang, ‘‘Observer design for a
class of nonlinear descriptor systems,’’ J. Franklin Inst., vol. 350, no. 5,
pp. 1284–1297, Jun. 2013.

[12] M. Darouach, ‘‘Observers and observer-based control for descrip-
tor systems revisited,’’ IEEE Trans. Autom. Control, vol. 59, no. 5,
pp. 1367–1373, May 2014.

[13] T. Takagi and M. Sugeno, ‘‘Fuzzy identification of systems and its appli-
cation to modeling and control,’’ IEEE Trans. Syst., Man, Cybern. Syst.,
vol. SMC-15, no. 1, pp. 116–132, Feb. 1985.

46016 VOLUME 6, 2018

http://dx.doi.org/10.1109/TAC.2018.2819654


Q. Zhang et al.: Robust Adaptive SMO Design for T-S Fuzzy Descriptor Systems With Time-Varying Delay

[14] Y. Zhang, Q. Zhang, and G. Zhang, ‘‘H∞ control of T–S fuzzy fish popu-
lation logistic model with the invasion of alien species,’’ Neurocomputing,
vol. 173, pp. 724–733, Jan. 2016.

[15] B. Pang and Q. Zhang, ‘‘Stability analysis and observer-based con-
trollers design for T-S fuzzy positive systems,’’ Neurocomputing, vol. 275,
pp. 1468–1477, Jan. 2018.

[16] F. B. Li, P. Shi, L. G. Wu, and X. Zhang, ‘‘Fuzzy model based D sta-
bility and nonfragile control for discrete-time descriptor systems with
multiple delays,’’ IEEE Trans. Fuzzy Syst., vol. 22, no. 4, pp. 1019–1025,
Aug. 2014.

[17] J. H. Li, Q. L. Zhang, X. G. Yan, and S. K. Spurgeon, ‘‘Integral sliding
mode control for Markovian jump T–S fuzzy descriptor systems based on
the super-twisting algorithm,’’ IET Control Theory Appl., vol. 11, no. 8,
pp. 1134–1143, May 2017.

[18] Q. Jia, W. Chen, Y. Zhang, and H. Li, ‘‘Fault reconstruction and fault-
tolerant control via learning observers in Takagi–Sugeno fuzzy descriptor
systems with time delays,’’ IEEE Trans. Ind. Electron., vol. 62, no. 6,
pp. 3885–3895, Apr. 2015.

[19] Q. Gao, G. Feng, Z. Y. Xi, and Y.Wang, ‘‘RobustH∞ control of T-S fuzzy
time-delay systems via a new sliding-mode control scheme,’’ IEEE Trans.
Fuzzy Syst., vol. 22, no. 2, pp. 459–465, Apr. 2014.

[20] K. Gu, V. Kharitonov, and J. Chen, Stability of Time-Delay Systems. Berlin,
Germany: Springer-Verlag, 2003.

[21] C. Edwards and S. K. Spurgeon, Sliding Mode Control: Theory and Appli-
cations. London, U.K.: Taylor-Francis, 1998.

[22] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, Sliding Mode Control
and Observation. New York, NY, USA: Birkhaüser, 2014.

[23] Q. Zhang, J. Zhang, and Y. Wang, ‘‘Robust sliding-mode
control for fuzzy stochastic singular systems with different local
input matrices,’’ IEEE Access, vol. 6, pp. 29391–29406, 2018,
doi: 10.1109/ACCESS.2018.2837063.

[24] Q. Gao, G. Feng, L. Liu, J. B. Qiu, and Y. Wang, ‘‘Robust H∞ control for
stochastic T–S fuzzy systems via integral sliding–mode approach,’’ IEEE
Trans. Fuzzy Syst., vol. 22, no. 4, pp. 870–881, Aug. 2014.

[25] Y. Niu, J. Lam, X. Wang, and D. W. C. Ho, ‘‘Observer-based sliding mode
control for nonlinear state-delayed systems,’’ Int. J. Syst. Sci., vol. 35, no. 2,
pp. 139–150, Feb. 2004.

[26] J. Li and Q. Zhang, ‘‘A linear switching function approach to sliding
mode control and observation of descriptor systems,’’ Automatica, vol. 95,
pp. 112–121, Sep. 2018, doi: 10.1016/j.automatica.

[27] X. G. Yan, S. K. Spurgeon, and C. Edwards, ‘‘Sliding mode control
for time-varying delayed systems based on a reduced-order observer,’’
Automatica, vol. 46, no. 8, pp. 1354–1362, Aug. 2010.

[28] Q. L. Zhang, L. Li, X. G. Yan, and S. K. Spurgeon, ‘‘Sliding mode con-
trol for singular stochastic Markovian jump systems with uncertainties,’’
Automatica, vol. 79, pp. 27–34, May 2017.

[29] H. Li, P. Shi, D. Yao, and L. Wu, ‘‘Observer-based adaptive sliding mode
control for nonlinear Markovian jump systems,’’ Automatica, vol. 64,
pp. 133–142, Feb. 2016.

[30] B. Chen, C. Lin, X. Liu, and K. Liu, ‘‘Observer-based adaptive fuzzy
control for a class of nonlinear delayed systems,’’ IEEE Trans. Syst., Man,
Cybern. Syst., vol. 46, no. 1, pp. 27–39, Jan. 2016.

[31] H. Li, J. Wang, H. Du, and H. R. Karimi, ‘‘Adaptive sliding mode control
for Takagi–Sugeno fuzzy systems and its applications,’’ IEEE Trans. Fuzzy
Syst., vol. 26, no. 2, pp. 531–542, Apr. 2018.

[32] J. Zhang, P. Shi, and Y. Xia, ‘‘Robust adaptive sliding mode control for
fuzzy systems with mismatched uncertainties,’’ IEEE Trans. Fuzzy Syst.,
vol. 18, no. 4, pp. 700–711, Aug. 2010.

[33] H. Y. Li, J. H. Wang, H. K. Lam, Q. Zhou, and H. P. Du, ‘‘Adaptive sliding
mode control for interval type-2 fuzzy systems,’’ IEEE Trans. Syst., Man,
Cybern. Syst., vol. 46, no. 12, pp. 1654–1663, Dec. 2016.

[34] X.-X. Yin, Y.-G. Lin,W. Li, H.-W. Liu, and Y.-J. Gu, ‘‘Fuzzy-logic sliding-
mode control strategy for extracting maximum wind power,’’ IEEE Trans.
Energy Convers., vol. 30, no. 4, pp. 1267–1278, Dec. 2015.

[35] X.-X. Yin, Y.-G. Lin, W. Li, Y.-J. Gu, H.-W. Liu, and P.-F. Lei, ‘‘A novel
fuzzy integral sliding mode current control strategy for maximizing wind
power extraction and eliminating voltage harmonics,’’ Energy, vol. 85,
pp. 677–686, Jun. 2015.

[36] K. Hfaiedh, K. Dahech, and T. Damak, ‘‘A sliding mode observer for
uncertain nonlinear systems based on multiple modes approach,’’ Int. J.
Automat. Comput., vol. 14, no. 2, pp. 202–212, Apr. 2017.

[37] C. P. Tan and C. Edwards, ‘‘An LMI approach for designing sliding mode
observers,’’ Int. J. Control, vol. 74, no. 16, pp. 1559–1568, 2001.

[38] B. Jiang, H. R. Karimi, Y. Kao, and C. Gao, ‘‘A novel robust
fuzzy integral sliding mode control for nonlinear semi-Markovian
jump T–S fuzzy systems,’’ IEEE Trans. Fuzzy Syst., to be published,
doi: 10.1109/TFUZZ.2018.2838552.

[39] B. Jiang, Y. Kao, C. Gao, and X. Yao, ‘‘Passification of uncertain singular
semi-Markovian jump systems with actuator failures via sliding mode
approach,’’ IEEE Trans. Autom. Control, vol. 62, no. 8, pp. 4138–4143,
Aug. 2017, doi: 10.1109/TAC.2017.2680540.

[40] W.H. Qi, G. D. Zong, andH. R. Karim, ‘‘Observer-based adaptive SMC for
nonlinear uncertain singular semi-Markov jump systems with applications
to DC motor,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 9,
pp. 2951–2960, Sep. 2018, doi: 10.1109/TCSI.2018.2797257.

[41] J. H. Li, Q. Zhang, X.-G. Yan, and S. Spurgeon, ‘‘Observer–based
fuzzy integral sliding mode control for nonlinear descriptor sys-
tems observer-based fuzzy integral sliding mode control for nonlin-
ear descriptor systems,’’ IEEE Trans. Fuzzy Syst., to be published,
doi: 10.1109/TFUZZ.2018.2802458.

[42] H. Z. Hou and Q. L. Zhang, ‘‘Novel sliding mode control for multi-
input–multi-output discrete–time system with disturbance,’’ Int. J. Robust
Nonlinear Control, vol. 28, no. 8, pp. 3033–3055, May 2018.

[43] C. P. Tan and C. Edwards, ‘‘Sliding mode observers for robust detection
and reconstruction of actuator and sensor faults,’’ Int. J. Robust. Nonlin.,
vol. 13, no. 5, pp. 443–463, Apr. 2003.

[44] S. Yin, H. Gao, J. Qiu, and O. Kaynak, ‘‘Descriptor reduced-order sliding
mode observers design for switched systems with sensor and actuator
faults,’’ Automatica, vol. 76, pp. 282–292, Feb. 2017.

[45] X. G. Yan and C. Edwards, ‘‘Fault estimation for single output nonlinear
systems using an adaptive sliding mode estimator,’’ IET Control Theory
Appl., vol. 2, no. 10, pp. 841–850, Oct. 2008.

[46] X. G. Yan and C. Edwards, ‘‘Adaptive sliding-mode–observer–based fault
reconstruction for nonlinear systems with parametric uncertainties,’’ IEEE
Trans. Ind. Electron., vol. 55, no. 11, pp. 4029–4036, Nov. 2008.

[47] R. C. Li and Q. L. Zhang, ‘‘Robust H∞ sliding mode observer design
for a class of Takagi–Sugeno fuzzy descriptor systems with time-varying
delay,’’ Appl. Math. Comput., vol. 337, pp. 158–178, Jun. 2018.

[48] Q. Gao, L. Liu, G. Feng, Y. Wang, and J. B. Qiu, ‘‘Universal fuzzy integral
sliding mode controllers based on T–S fuzzy models,’’ IEEE Trans. Fuzzy
Syst., vol. 22, no. 2, pp. 350–362, Apr. 2014.

[49] S. Xu, P. V. Dooren, R. Stefan, and J. Lam, ‘‘Robust stability and stabi-
lization for singular systems with state delay and parameter uncertainty,’’
IEEE Trans. Autom. Control, vol. 47, no. 7, pp. 1122–1128, Jul. 2002.

[50] I. R. Petersen, ‘‘A stabilization algorithm for a class of uncertain linear
systems,’’ Syst Control Lett., vol. 8, no. 4, pp. 351–357, Mar. 1987.

[51] L.Wu andD.W.C.Ho, ‘‘Slidingmode control of singular stochastic hybrid
systems,’’ Automatica, vol. 46, no. 4, pp. 779–783, Apr. 2010.

QINGLING ZHANG received the B.S. and M.S.
degrees from theMathematics Department, North-
eastern University, Shenyang, China, in 1982 and
1986, respectively, and the Ph.D. degree from the
Automatic Control Department, Northeastern Uni-
versity, in 1995. He held post-doctoral position
at the Automatic Control Department, Northwest-
ern Polytechnical University, Xi’an, China, from
1995 to 1997. He was a Professor and serves as
theDeanwith the College of Science, Northeastern

University from 1997 to 2006. During these periods, he visited The Uni-
versity of Hong Kong, the University of Seoul University, the University
of Alberta, Lakehead University, The University of Sydney, The University
of Western Australia University, University of Windsor, The Hong Kong
Polytechnic University, and University of Kent as a Research Associate,
a Research Fellow, a Senior Research Fellow, and a Visiting Professor,
respectively. He has authored 16 books and over 600 papers about control
theory and applications. He was also a member of the University Teaching
Advisory Committee of the National Ministry of Education. He is currently
the Vice Chairman of the Chinese Biomathematics Association, a member of
the Technical Committee on Control Theory of the Chinese Association of
Automation and the Chinese Association of Mathematics, and the Chairman
of the Mathematics Association of Liaoning Province. He received 14 prizes
from central and local governments for his research. He has also received the
Golden Scholarship from Australia in 2000.

VOLUME 6, 2018 46017

http://dx.doi.org/10.1109/ACCESS.2018.2837063
http://dx.doi.org/10.1016/j.automatica
http://dx.doi.org/10.1109/TFUZZ.2018.2838552
http://dx.doi.org/10.1109/TAC.2017.2680540
http://dx.doi.org/10.1109/TCSI.2018.2797257
http://dx.doi.org/10.1109/TFUZZ.2018.2802458


Q. Zhang et al.: Robust Adaptive SMO Design for T-S Fuzzy Descriptor Systems With Time-Varying Delay

RONGCHANG LI received the B.E. degree in
measurement and control technology and instru-
ment from the Qingdao University of Science and
Technology, China, in 2016. He is currently pursu-
ing the M.S. degree with Northeastern University,
Shenyang, China. His current research interests
focus on descriptor systems, fuzzy control, and
sliding mode observer design.

JUNCHAO REN received the B.S. degree in
applied mathematics from Northeastern Univer-
sity, China, in 2000, and the M.S. degree in control
theory and control engineering from the Guang-
dong University of Technology, Guangzhou,
in 2003, and the Ph.D. degree in control theory and
control engineering from Northeastern University,
in 2011. He is currently a Professor with the Insti-
tute of Systems Science, Northeastern University.
His research interests include robust control and
singular systems.

46018 VOLUME 6, 2018


	INTRODUCTION
	PROBLEM FORMULATION
	SLIDING MODE OBSERVER DESIGN
	CONSTRUCTION OF SLIDING MODE OBSERVER
	SLIDING SURFACE DESIGN FOR THE ERROR SYSTEM
	ADMISSIBILITY ANALYSIS
	NOMINAL CASE
	UNCERTAIN CASE
	ANALYSIS OF GAIN MATRIX

	ADAPTIVE SLIDING MODE CONTROL LAW SYNTHESIS

	SMO BASED SLIDING MODE CONTROL
	SLIDING SURFACE DESIGN FOR THE SMO SYSTEM
	ADMISSIBILITY ANALYSIS OF THE SLIDING MOTION
	SLIDING MODE CONTROL LAW SYNTHESIS

	ILLUSTRATIVE EXAMPLES
	CONCLUSION
	REFERENCES
	Biographies
	QINGLING ZHANG
	RONGCHANG LI
	JUNCHAO REN


